用户名: 密码: 验证码:
平原农区杨农复合生态系统碳储量与碳平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨农复合经营是平原农区发展杨树人工林的主要方式。本研究选择杨树已有大面积栽植以及杨树产业已成规模的苏北平原地区的几种典型栽植模式,采用实测样地的方法,以生态系统为整体对不同复合经营模式的碳储量、碳平衡进行研究。结果表明:
     (1)三种模式杨农复合生态系统各组分碳储量均是土壤>农作物>杨树>枯枝落叶,各组分百分比为土壤69~83%、农作物12~27%、杨树4~13%、凋落物0.15~0.42%,土壤碳储量是生物质碳储量的2.24~4.76倍。K模式、P模式与W模式不同农作物间作种类(小麦+玉米、小麦+大豆、小麦+水稻)系统碳储量分别为88.40 t·hm~(-2)、86.16 t·hm~(-2)与89.47 t·hm~(-2); 58.38 t·hm~(-2)、56.89 t·hm~(-2)与58.53 t·hm~(-2);61.70 t·hm~(-2)、58.25 t·hm~(-2)与58.87 t·hm~(-2)。
     (2)对生态系统碳收支平衡公式进行了探讨与推算,表明2006年度和2007年度三种模式杨农复合生态系统都是大气CO2的“汇”。5年生时K模式、P模式、W模式(间作秋作物为玉米和大豆)净碳汇分别为3.33 tC·hm~(-2)·a~(-1)和3.10 tC·hm~(-2)·a~(-1)、4.54 tC·hm~(-2)·a~(-1)和4.17 tC·hm~(-2)·a~(-1)、3.65 tC·hm~(-2)·a~(-1)和2.99 tC·hm~(-2)·a~(-1);6年生时三种模式(小麦+水稻)净碳汇分别为4.65 tC·hm~(-2)·a~(-1)、4.47 tC·hm~(-2)·a~(-1)、2.97 tC·hm~(-2)·a~(-1)。经营模式、间作作物以及间作的年限都会对碳汇的大小产生一定的影响。
     (3)2007年K模式、P模式、W模式碳素的循环流动过程:通过光合作用输入植被碳库的碳量为14.93 t·hm~(-2)·a~(-1)、14.31 t·hm~(-2)·a~(-1)、13.97 t·hm~(-2)·a~(-1),从植被碳库输入到土壤碳库的碳量为3.37 t·hm~(-2)·a~(-1)、3.19 t·hm~(-2)·a~(-1)、3.08 t·hm~(-2)·a~(-1),同时土壤进行异养呼吸释放1.88 t·hm~(-2)·a~(-1)、1.99 t·hm~(-2)·a~(-1)、1.63 t·hm~(-2)·a~(-1)的碳量;农作物收获有8.39 t·hm~(-2)·a~(-1)、7.84 t·hm~(-2)·a~(-1)、9.38 t·hm~(-2)·a~(-1)的碳输出系统。
Poplar-crop intercropping is a main way developing poplar plantation in plain. In order to evaluate the carbon absorptive function of poplar- crop ecosystem, the carbon storage and carbon budget were systematically studied with a practical measurement method for sample plots among three poplar-crop intercropping patterns in the northern Jiangsu plain. The main results of the research are as follows:
     (1) The carbon storage in various parts of the agroforestry system was in the order of soil >crop > poplar > litter-fall for all the three poplar-crop intercropping patterns. The percentage of soil carbon storage to the whole system was 69~83%, while the percentage was 12~27% for crop, 4~13% for poplar, and 0.15~0.42% for litter-fall, respectively. The carbon storage in soil was 2.24~4.76 times in the biomass carbon storage. The carbon storage in poplar-crop intercropping ecosystem in K pattern were 88.40 t·hm~(-2) with wheat + corn, 86.16 t·hm~(-2) with wheat + bean and 89.47 t·hm~(-2) with wheat + rice, respectively, while those of P pattern accounted for 58.38 t·hm~(-2), 56.89 t·hm~(-2) and 58.53 t·hm~(-2), as well as those of W pattern accounted for 61.70 t·hm~(-2),58.25 t·hm~(-2) and 58.87 t·hm~(-2).
     (2) After a carbon balance formula was developed, the balance of carbon was studied in the three poplar-crop intercropping patterns. Results showed that NEP was above zero in 2006 and 2007, and poplar-crop intercropping ecosystem also showed absorptive and solidifying function of CO2. NEP in K pattern with poplar plantations of 5-year-old was 3.33 tC·hm~(-2)·a~(-1) for intercroping of wheat + corn and 3.10 tC·hm~(-2)·a~(-1) for intercroping of wheat + bean respectively, but amounting to 4.65 tC·hm~(-2)·a~(-1)at the 6-year-old for intercroping of wheat + rice. NEP in P pattern in the 5-year-old was 4.54 tC·hm~(-2)·a~(-1) for intercroping of wheat + corn and 4.17 tC·hm~(-2)·a~(-1) for intercroping of wheat + bean respectively, but amounting to 4.47 tC·hm~(-2)·a~(-1)at the 6-year-old for intercroping of wheat + rice. NEP in W pattern in the 5-year-old was 3.65 tC·hm~(-2)·a~(-1)for intercroping of wheat + corn, and 2.99 tC·hm~(-2)·a~(-1) for intercroping of wheat + bean respectively, while in the 6-year-old NEP was 2.97 tC·hm~(-2)·a~(-1) for for intercroping of wheat + rice. The results suggested carbon storage was influenced by the management patterns, intercrops and periods of intercropping.
     (3) The dynamics of carbon was studied in K, P and W patterns in 2007. The results showed that net carbon production by the photosynthesis inputing to the plant carbon pool was 14.93 t·hm~(-2)·a~(-1),14.31 t·hm~(-2)·a~(-1) and 13.97 t·hm~(-2)·a~(-1). The carbon from the plant carbon pool to the soil carbon pool was 3.37 t·hm~(-2)·a~(-1),3.19 t·hm~(-2)·a~(-1) and 3.08 t·hm~(-2)·a~(-1).for K, P and W patterns, respectively. The soil releasesed 1.88 t·hm~(-2)·a~(-1),1.99 t·hm~(-2)·a~(-1) and 1.63 t·hm~(-2)·a~(-1) through heterotrophic respiration, while the carbon output by the way of crop harvest was 8.39 t·hm~(-2)·a~(-1), 7.84 t·hm~(-2)·a~(-1), 9.38 t·hm~(-2)·a~(-1) for the three patterns, respectively.
引文
1. Adams J M. Increases in terrestrial carbon storage from the last glacial maximum to the present[J]. Nature, 1990, 348:711-714.
    2. Aerts R. Climate, leaf chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship[J]. Oikos, 1997, 79: 439- 449.
    3. Ajtay G L, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass.In:Bolin B,et al.,The global carbon cycle[M].New York:John Wiley&Sons. 1979, 129-181.
    4. Alexeyev V, Birdsey R, Stakanov V. Carbon in vegetation of Russian forests:Methods to estimate storage and geographical distribution[J]. Water, Air and soil Pollution, 1995, 82:271-282.
    5. Amthor J S. Plant respiratory response to the environment and their effects on the carbon balance,In Plant-environment interactions[M]. Edited by R E Wilkinson, Marcel Dekker Inc, New York: 501-554.
    6. Anderson J P, Page A L. Methods of soil respiration analysis, chemical and microbiological properties, partⅡ[M]. Madison: American society of agronomy, 1982,831-871
    7. Anderson T H, Domsch K H. Rations of microbial biomass carbon to total organic carbon in arable soils[J].Soil Biology & Biochemistry, 1989, 21:471-479
    8. Angelis P D, Kesari S C, Giuseppe E S M. Litter quality and decomposit in a CO2-enriched mediterranean forest ecosystem[J]. Plant Soil, 2000,224:31~41.
    9. Attignon S E, Weibel D, Lachat T, et al. Leaf litter breakdown in natural and plantation forests of the Lama forest reserve in Benin[J]. Applied Soil Ecology,2004,27:109~124.
    10. Aubinet M A, Grelle A, Ibrom U, Rannik, et al. Estimates of the annual net carbon and water exchange of forests: The EuroFlux Methodology[J]. Advances in Ecological Research, 2000(30):113-175.
    11. Ausin A T & Vitousek P M. Precitation decomposition and litter decomposability of Metrosideros polynorpha in native forests on Hawaii [J]. Journal of Ecology,2000,88(3):129~138.
    12. Baldocchi D, Valentini R, Running S, et al. Strategies for measuring and modeling carbon dioxide and water vapour fluxes over terrestrial ecosystems[J]. Global Change Biology, 1996.(2):159-168.
    13. Batjes N H. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil[J]. Biol Fertil Soils,1998,27:230-235.
    14. Batjes N H. Total carbon and nitrogen in the soil of the world[J]. European Journal of soils Science,1996,47:151-163.
    15. Birdsey R A. Carbon storage and accumulation in United States forest ecosystems[M]. United States Department of Agriculture Forest Service, General Technical Report, 1992.
    16. Black T A, Harden J W. Effect of timber harvest on soil carbon storage at blodget experimental forest, California[J]. Canadian Journal of Forest Research,1995,25:1385-1396.
    17. Bohn H L. Estimates of organic carbon in world soils[M]. Soil Soc. Am. J.l982,46:1118-1119.
    18. Bolin B. Changes of 1and biota and their importance to the carbon cycle[J]. Science,1977,196:613-615.
    19. Bolin B. How much CO2 will remain in the atmosphere? In: Bolin B et al. (eds.) The Greenhouse Effect, Climate Change and Ecosystems, SCOPE 29.Chichester[M]: John Wiley & Son,1986,93-155.
    20. Bouwman A F. Exchange of greenhouse gasses between terrestrial ecosystems and the atmosphere in: Bouwman AF.(ed.) Soils and the greenhouse effect. Chichester[M].England: John Wiley & Sons,1990, 61-127.
    21. Bouwman A F. Modeling soil organic matter decomposition and rainfall erosion in two tropical soil after forest clearing for permanent agriculture[M]. Land Degrad. Repubic.,1989,l:125-140.
    22. Bowden R D, Nadelhoffer K J, Boone R D, et al. Contributions of above ground litter, below ground litter, and root respiration total soil respiration in a temperate mixed hard wood forest [J].Can For.Res,1993, 23:1402-1407.
    23. Boysen J P. Studies over skovtraernes forhold tillyset[J]. Tidsskr F Skorvaessen.1910,22:11-16.
    24. Bridge B J, Mott J J and Hartigan R J. The formation of degraded areas in the dry savanna woodlands of northern Australian [J]. Aust J Soil Res, 1983,21:91-104.
    25. Brown S, GIllespie A J, Lugo A E. Biomass estimation methods for tropical forests with application to forest inventory data[J]. Forest Science,1989,35 (4) : 881-902.
    26. Brown S, Lugo A E, Iverson L R. Process and land for sequestering carbon in the tropical forest landscape[J]. water , Air and soil Pollution,1992,64:139-155.
    27. Brown S, Lugo A E. Biomass of tropical forests: A New Estimate Based on forest Volumes[J]. Science, 1984,223:1290-1293.
    28. Brown S, Lugo A E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle[J]. Biotropica, 1982,14:161-187.
    29. Campbell C A, Zentner R P, Liang B C, et al. Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan-Effect of crop rotations and fertilizers[J]. Can. J. Soil Sci, 2000, 80:179-192.
    30. Cao M K, Tao B, Li K R, et al. Interannual Variation in Terrestrial Ecosystem Carbon Fluxes in China from 1981 to 1998[J]. Acta Botan Sin, 2003,45:552-560.
    31. Carlo Calfapietra, Ingmar Tulva, Eve Eensalu et al. Canopy profiles of photosynthetic parameters CO2 and N fertilization in a poplar plantation[J], Environment Pollution , 2005, 137:525-535.
    32. Chang H P, Michael J A. Contribution of China to the global carbon cycle since the last glacial maximum reconstruction from palaeovegetation maps and an empirical biosphere model[J]. Tellus,1997, 49(B):393-408.
    33. Chapin M F, Ruess R. The roots of the matter [J]. Nature, 2001,4(11):719-752.
    34. Chen G S, Yang Y S, Wang X G, et al. Root respiration in a natural forest and two plantations in subtropical China seasonal dynamics and controlling factors[J]. Acta Ecologyica, 2005, 25(8):1941-1947.
    35. Chen W J, Chen J, Cihlar J. An integrated terrestrial ecosystem carbon budget model based on changes in disturbance,climate,and atmospheric chemistry[J]. Ecological Modelling, 2000.
    36. Cheng W, Zhang Q, Coleman D C, Carroll C R and Hofman C A. Is available carbon limiting microbial respiration in the rhizosphere[J]? Soil Biology and Biochemistry, 1996, 28:1283-1288.
    37. Christopher W, Swanston, Bruce A, Caldwell, et al. Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils[J]. Soil biology and biochemistry, 2002, 34(8):1121-1130.
    38. Ciais P, Cramer W, Jarvis P, et al. Summary for policymakers:Land use,land use change and forestry. In:Watson R T, Noble I R, Bolin B, Ravindranath N H, Verardo D J, Dokken D J(Eds), Land use,land use change ,and forestry,A special report of the IPCC.Cambridge:University Press.
    39. Collier K J, Jackson R J, Winterbourn J. Dissolved organic carbon dynamics of developed and undeveloped catchments in Westland, New Zealand[J]. Arch Hydrobiol, 1989, 117:21-38.
    40. Collins H P, Elliot E T, Paustian K, et al. Soil carbon pools and fluxes in long-term corn belt agroecosystems[J]. Soil Biology & biochemistry, 2000, 32:157-168.
    41. Collins H P, Rasmussen P E. Crop rotation and residue management effects on soil carbon and micobiaal dynamics[J]. Soil Sci Soc Am J, 1992, 56:783-788.
    42. Cotrufo M F, Raschi A, Lanini M, et al. Decomposition and nutrient dynamics of Quercus Pubescens leaf litter in a naturally enriched CO2 Mediterranean ecosystem[J]. Funct. Ecol., 1999, 13:343~351.
    43. Daniel W M, Denys Y, Glenn F, et al. Yield in short rotation coppice: model simulations using the process model SECRETS[J]. Forest Policy and Economics, 2004, (6):345-358.
    44. Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hard wood forest[J]. Global Change Biology, 1998, 4:217-227.
    45. Davidson E A, Verchot L V, Cattanio J H, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia [J]. Biochemistry, 2000, 48:53-69.
    46. Deckmyn G, Laureysens I, Garcia J, et al. Yield in short rotation coppice: model simulations using the process model [J]. Poplar growth and Biomass and Bioenergy, 2004, 26:221-227.
    47. Desjardins R L, Lemon E R. Limitations of an eddy covatiance techniques for the determlnation of the carbon dioxide and sensible heat fluxes[J]. Boundary Layer Meteorology, 1974, 5:475-488
    48. Desjardlns R L. A technique to measure CO2 exchange under field conditions[J]. International Journal of Biometeorology, 1974, 18:76-83
    49. Dilly O, Blume H P, Sehy U, et al. Variation of stabilized, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices[J]. Chemosphere, 2003, 52: 557-569.
    50. Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263:185-190.
    51. Dobbins D C. Methodology for assessing respiration and cellular incorporation of radiolabekked substrates by soil microbial communities[J]. Mirobial Ecology, 1988, 15:257-276.
    52. Earth System Science Committee NASA Advisory Council, Earth System Science [A]. Washington D C: National Aeronautics and Space Administration January, 1998.
    53. Edwards N T. Root and soil respiration responses to ozone in Pinustaeda L seeding[J]. New Phytologist, 1991, 118:315-321.
    54. Eiland F, Gahonia T S, et al. Biologically associated C and N in relation to number of bacteria and ATP content in the rhizosphere,Trans[J]. 15th World Congr.Soil Sci.,Acapulco,Mezico, 1994, Vb4:50-51.
    55. Epron D, Farque L, Lucot E, et al. Soil CO2 efflux in a beech forest: the contribution of root respiration [J]. Ann Sci For, 1999, 56: 289-295.
    56. Epron D, NgaoJ G, Ranier A. Interanual variation of soil respiration in a beach forest ecosystem over a six year study[J]. Annals of Forest Science, 2004, 61(6),499-505.
    57. Esser G. Modeling global terrestrial sources and sinks of CO2 with special reference to soil organic matter. In: Bouwman AF.(ed.) soil and the greenhouse effect[M]. John Wiley & Sons,Chichester, England, 1990, 247-262.
    58. Falge E, Olson R J, Tenhunen J A. Perspective on the extension of fluxnet by Asia flux .In: Proceedings Internationalworkshop for Advanced Flux Network and Flux Evaluation[M]. Sapporo:ASAHI Printing CO.Ltd. 2001, 1-4.
    59. Fankhauser S. Valuing Climate Change[M]. London: Earthscan Publications Ltd. 1995.
    60. FAO. Global forest resources assessment 2005. FAO Forestry Paper 147. Rome:[s.n.], 2006.
    61. Flanagan L B, Johnson B G. Interacting effects of temperature,soilmoisture and plantbiomass production on ecosystem respiration in a northern temperate glassland[J]. Agricultural and Forest Meteorology, 2005, 130(3-4):237-253.
    62. Fleessa H, Ludwig G. Heil B, et al. The origin of organic-c,dissolved organic C and resporation in a long-term maize experiment in Halle,Germany,determined by 13C natural abundance[J]. Journal of Plant Nutrition & Soil Sci, 2000, 163(2):157-163.
    63. Friedlingstein C, Delire C, Muller J F. The climate induced variation of continental biosphere:A model simulation of the last glacia maximum [J]. Geophysical Research Letter, 1992, 19: 897-900
    64. Seo G T. Two-stage intermittent aeration membrane bioreactor for simultaneous organic, nitrogen and phosphorus removal Wat[J]. Sci Tech., 2000, 41(11):217-225.
    65. Gallardo A, Schlesinger W H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest[J]. Soil Biol.Biochem, 1994, 26(10):1409-1415.
    66. Goulden M L, Munger J W, Fan S, et al. Exchange of carbon dioxide by a deciduous forest: response to inerannual climate variability[J]. Science, 1996, 271:1576-1578.
    67. Hamson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil respiration:A review of methods and observations[J]. Biogeochemistry, 2000, 28:115-116.
    68. Harrison K, Broecker W, Bonani G. A strategy for estimating the impact of CO2 fertilization on soil carbon storage[J]. Global Biogeochemical Cycles, 1993, 7(1):69-80.
    69. Haynes B E, Gower S T. Below ground carbon allocation in unfertilized and fertilized red pine plantations in Northern Wisconsin [J]. Tree Physiology, 1995, (15):317-325.
    70. Hendrick R L, Pregitzer K S. Temporal and depthrelated patterns of fine root dynamics in northern hardwood forest[J]. Ecology, 1996, 77(1):167-176.
    71. Hignland K. Fungal and bacterial enzyme activities in Alnus nepalensis D.Don[J]. European Journal of Soil Biology, 2001, 37:175-180.
    72. Houghton R A, Hobbie J E, Melillo J M, et al. Changes in carbon content of terrestrial biota and soil between 1860 and 1980: A net release of CO2 to the atmosphere[M]. Ecological Monogragh, 1983, 53 : 235-262.
    73. Houghton R A, Skole D L. Carbon, the earth as transformed by human action [M]. In: Tumer B L, Clark W C, Kates R W, et al eds. Cambridge University Press, 1990, 393-408
    74. Houghton R A. Land-use change and the carbon cycle [J]. Global Change Biology, 1995, 1:275-287
    75. Huang C C, Ge Y, Chang J. Studies on soil respiration of three woody plant communities in the east mid-subtropical zone of China[J]. Acta Ecologica Sinica, 1999, 19(3):321-328.
    76. Inoue I. An aerodynamic measurement of photosynthesis over a paddy field[M]. 1958, 211-214.
    77. IPCC. Climate change 1995,The science of climate change, Cambridge University Press,1996.
    78. IPCC. Land use,land-use change,and forestry,Summary for Policymakers’a special report of the Intergovernmental Panel on Climate Change. Geneva.Switzerland, 2001, 1-20.
    79. Jackson R B, Canadell J, Mooney H A. A global analysis of root distribution for terrestrial biomes [J]. Oecologia, 1996,108:389-411.
    80. Jamaa B A, Nair P K R. Decomposition and nitrogen mineralization patterns of Leucaena leucocephala and Cassia siamea mulch under tropical semiarid conditions in Kenya[J]. Plant Soil, 1996, 179:275-285.
    81. Jenkinson D S, Ladd J N. Microbial Biomass in Soil:Measurement and Turnover In Soil Biobhemistry[M]. V Paul EA & Ladd J N(eds).New York: Marcel Dekker INC, 1981, 415-458.
    82. Jensen L S, Mueller T, Tate K R, et al. Soil surface CO2 flux as an index of soil respiration in situ:a comparison of two chamber methods[J]. Soil Biology & Biochemistry, 1996, 28:1297-1306.
    83. Jia B R, Zhou G S, Wang Y H, et al. Effects of temperature and soil water content on soil respiration of grazed and ungrazed leymus chinensis steppes,Inner Mongolia [J] . Joumal of Arid Environments, 2006, 67(1):60-76.
    84. Jobb G Y, Esteban G, Robert B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2):423-436.
    85. Kaur B, Gupta S R, Singh G. Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India[J]. Applied Soil Ecology, 2000, 15(3):283-294.
    86. Keith H, Jacobsen K L, Raison R. J. Effects of soil phosphorus availability,temperature and moisture on soil respiration in Eucalyptus pauciflora forest[J]. Plant Soil, 1997, 190(1):127-141.
    87. Kelting D L, Burger J A, Edwards G S. Estimating root respiration microbial respiration in the rhizosphere,and root-free soil respiration in forest soils[J]. Soil Biol. Biochem., 1998, 30(7):961-968.
    88. King J A and Harrison R. Measuring soil respiration in the field:an auto mated closed chamber system compared with portable IRGA and alkali absorption methods[J]. Communications in Soil Science and Plant Analysis, 2002, 33:403-423.
    89. Kumar B M, Deepu J K , Litter production and decomposition dynamics in moist deciduous forests of the Western Ghats in Peninsular-India[J]. For. Ecol.Manage, 1992, 50:181-201.
    90. Kursar T A. Elevation of soil respiration and soil CO2 concentration in a lowland moist forest in Panama [J]. Plant and Soil, 1989, 113:21-29.
    91. Kuzyakov Y V. Sources of CO2 efflux from soi1 and review of partitioning methods[J]. Soil Biology & Biochemistry, 2006, 38,425-448.
    92. Lambers H, Stulcn I&Werf A. Carbon use in root respiration as affected by elevated atmospheric CO2[J]. Plant and Soi1, 1996, 187:251-263.
    93. Laura L White, Donald R Zak, Burton V. Barnes. Biomass accumulation and soil nitrogen availability in an 87-year-old Populus grandidnetata chronosequence[J], Forest Ecology and Management, 2004, 191:121-127.
    94. Laureysens I, Pellis A. Growth and production of a short rotation coppice culture of poplar in second rotation results [J]. Biomass and Bioenergy, 2005, 29:10-21.
    95. Leadly P W, Drake B G. Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas ex-change[J]. Plant Ecology, 1993, 104/105(10):3-15.
    96. Lee M S, Nakane K, Nakatsubo T, et al. Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest [J]. Ecological Research, 2002, 17:401-409.
    97. Lee M S, Nakatsubo T and Koizumi H. Seasonal changes in the contribution of root respiration to total soil respiration in a cool-termperate deciduous forest[J]. Plant Soil, 2003, 255:311-318.
    98. Leith H, Whittaker R H. Primary productivity of biosphere[J]. Berlin, Springer-Verlag. 1975.
    99. Leith H. Modeling the primary production of the world [A]. In:Leith H,Whittaker R H eds. Primary Productivity of Biosphere [M]. New York:Springer, 1975, 40:237-263.
    100. Li L H, Han X G, Wang Q B, et al. Separation root and soil microbial contributions to total soil respiration in a grazed grassland in the Xilin River Basin[J]. Acta Phytoecologica Sinica, 2002, 26(1): 29-32.
    101. Liang W J, Hu H Q, Liu F J. Research advance of biomass and carbon storage of poplar in China[J].Journal of Forestry Research, 2006, 17(1):75-79.
    102. Loranger G, Ponge J F, Imbert D, et al. Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality[J]. Biol Fertil Soils, 2002, 35:247-252.
    103. Lugo A E, Sanchez A J, Brown S. Land use and organic carbon content of some subtropical soils[J]. Plant and soil, 1986, 96:185-196.
    104. Luo Y, Wan S, Hui D and Wallace L L. Acclimatization of soil respiration to warming in a tall grass praine[J]. Nature, 2001, 413:622-625.
    105. Majdi H, Kangas P. Demography of fine roots in response to nutrient applications in a Norway spruce stand in southwestern Sweden [J]. Ecoscience, 1997, 4:199-205.
    106. Malhi Y, Baldocchi D D, Jarvis P G. The carbon balance of tropical,temperate and boreal forests[J]. Plant,Cell and Environment, 1999, 22:715-740.
    107. Mazzarino M J, Bertiller M B, Sain C, et al. Soil nitrogen dynamics in northeastern Patagonia steppe under different precipitation regines [J]. Plant and Soil, 1998, 202:125-131.
    108. McLauchlan K K and Sarah E H. Comparison of labile soil organic matter fractionation techniques[J]. Soil Sci.Soc.Am.J, 2004, 68:1616-1625.
    109. Milner K S. A bio-physicial soil site model for estimating potential productivity of forested landscapes[J]. Canada forest research, 1996, 26:1174-1186
    110. Mitchell J F B. The Greenhouse effect and climate change[J]. Reviews of Geophysics, 1989, 27 (1):115-139.
    111. Mo J M, Brown S, Peng S L, et al. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China[J]. Forest Ecology and Management, 2003, 175(13):573-583.
    112. Monteith J L, Szeicz G. The CO2 flux over a field of sugar beets[J]. Quarterly Journal of the Royal Meteorological Society, 1960, 86:205-214.
    113. Nambiar E K S. Do nutrient retranslocate from fine root [J]? Can J.For.Res., 1987, 17:913-918.
    114. Nay S M, Mattson K G and Bormann B T. Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus [J]. Ecology, 1994, 75:2460-2463.
    115. Norman J N, Garcia R & Verma S B. Soil CO2 fluxes and the carbon budget of a grassland[J]. Journal Geophysical Research, 1992, 97(17):18845-18853.
    116. Olson J. Energy storage and the balance of producers and decomposers in ecologyical systems[J]. Ecology, 1963, 44:322-331.
    117. O'Neill K P, Kasischke E S and Richter D D. Environmental controls on soil CO2 flux following fire in black spruce,white spruce, and aspen stands of interior Alaska[J]. Can.J.For.Res., 2002, 32(9):1525-1541.
    118. Pan G X, Li L, Wu L, et al. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils[J]. Glob Change Biol, 2003, 10:79-92.
    119. Parton W J, Schimel D S, Cole C V and Ojima D S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Sci.Soc. Am.J, 1987, 51:1173-1179
    120. Persson H, Firocks Y V, Majdi H, et al. Root distribution in a Norway spruce(Pinus abies (L.) karst.) stank subjected to drought and ammonium sulphate application[J]. Plant and Soil, 1995, 168/169:161-165.
    121. Persson T, Lundkvist H, When A, et al. Effects of acidification and liming on carbon and nitrogen mineralization and soil organisms inmor humus[J]. Water, Air,Soil Pollu., 1989, 45(1/2):77-96.
    122. Piao S L, Fang J Y, Zhu B, et al. Forest biomass carbon stocks in China over the past 2 decades:estimation based on integrated in-ventory and satellite data[J]. Geophys Res, 2005,110,G01006, doi:10.1029/2005J G00001.
    123. Piermaria Corona, Pasquale Antonio Marziliano, Roberto Scotti. Top-down growth modelling a prototype for poplar plantation in Italy[J]. Forest Ecology and Management. 2002. 161:65-73.
    124. Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and life zones [J]. Nature, 1982, 298:156-159.
    125. Post W M, Peng T H, Emanuel W R, et al. The Global Carbon Cycle[J]. American Scientist, 1990, 78: 310-326.
    126. Powlson D S, Jenkinson D S. The effects of biocidal treatments on metabolism in soil.Gamma irradiation, autoclaving air-dring and fumigation[J]. Soil Biology & Biochemistry, 1976, 8:179-188.
    127. Puri S, Singh V, Bhushan B, et al. Biomass production and distribution of roots in three stands of populus deltoides [J]. Forest Ecology and Management, 1995, 65:135-147.
    128. Qi Y, Xu M. Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada mountains[J]. Plant and Soil, 2001, 237(1):15-23.
    129. Raich J W & Nadelhoffer K J. Belowground carbon allocation in forest ecosystems:Global trends[J].Ecol, 1989, 70:1346-1354.
    130. Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and cliimate[J]. Tellus, 1992, 44B:81~99.
    131. Raich J W. Comparison of two static chamber techniques for determining carbon dioxide efflux from forest soil [J]. Soil Science Society of America Journal, 1990, 54:1754-1757.
    132. Reiners W A. Carbon dioxide evolution from the floor of the Minnesota forests[J]. Ecology, 1968, 49:471-483.
    133. Remezov N P. Method studying the biological cycles of elements in forest[J]. Soviet Soil Sci, 1959, 1:59-67.
    134. Ritson P, Sochacki S. Measurement and prediction of biomass and carbon content of pinus pinaster trees in farm forestry plantation,south-western Australian[J]. Forest Ecology and Management, 2003, 75:103- 117.
    135. Rustad I E and Fernandez I J. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Main,USA[J]. Global Change Biology, 1998, 4:597-605.
    136. Rustad I E, Iluntingtun T G, Boone R D. Controls on soil respiration: Implications for climate change[J]. Biogeochemistry, 2000, 48:1-6.
    137. Sa J C, Cemi C C, Dick W A, Lal R, et al. Organic matter dynamics and carbon sequestration rates for a tillage Chronosequence in a Brazilian Oxisol[J]. Soil Sci. Soc. Am. J., 2001, 65:1486-1499.
    138. Satoo T. Physical basis of growth of forest trees[M]. In:Recent Advance in Silvicutural Sciences, 1955, 116-141.
    139. Schoeneberger M M. Agroforestry: working trees for sequestering carbon on agriculture lands[J]. Agroforest Systems, 2009, 75(1):27-37.
    140. Sedjo R A. The carbon cycle and global forest ecosystem [J]. Water,Air,and Soil Pollution, 1993, 70: 295-307.
    141. Simmons J A, Fernandez I J, Briggs R D, et al. Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA [J]. Forest Ecology and Management, 1996, 84:81-95.
    142. Singh J S and Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystem[J]. The Biological Review, 1977, 43(2):449-528.
    143. Stevenson F J. Nitrogen in Agriculture Soils[M]. Madison:America Society of Agronomy, Inc;Crop Science Society of America, Inc;Soil Science Society of America,Inc. 1982.
    144. Studdert G A and Echevemia H. Crop rotations and nitrogen fertilization to manage soil organic carbon dynamic[J]. Soil Sci.Soc.Am.J. 2000, 64:1496-1503.
    145. Suman D O. The flux of charcoal to the troposphere during the period of agricultural burning in Panama[M]. J. Atmos. Chem. 1988, 6: 21-34.
    146. Tang J, Laurent M, Alexander G, et al. Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains[J]. Agricultural and Forest Meteorology, 2005, 132:212-227.
    147. Tunner D P, Koepper G J, Harmon M E, et al. A carbon budget for forests of the conterminous United States[J]. Ecological Application, 1995,5: 421-436.
    148. Usman S, Singh S P, Rawat Y S, et al. Fine root decomposition and nitrogen mineralisation patters in Quercus leucotrichphora and Pinus roxburghii forest in central Himalaya[J]. Forest Ecology and Management, 2000, 131:191-199.
    149. Vermna S B, Baldocchi D D, Anderson D E, et al. Eddy fluxes of CO2, water vapor , and sensible heat over a deciduous forest[J]. Boundary Layer meteorology, 1986, 36:71-91.
    150. Vermna S B, Kim J, Clement R J. Carbon dioxide, water vapor and sensible heat flues over a tall grass prairie [J]. Boundary Layer Meteorology, 1989, 46:53-67.
    151. Vitousek, Publicover D A, Bloomfield J, et al. Belowground responses as indication of environmental change [J]. Environ.Exp.Bol., 1993, 33:189-205.
    152. Vogt K A, Vogt D J, Bloomfield J. Analysis of some direct and indirect methods for estimating root biomass and production of forest at an ecosystem level [J]. Plant and Soil, 1998, 200:71-89.
    153. Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems ground by climate, climatic forest type and species [J]. Plant and Soil, 1996, 187:159-219.
    154. Wang W, Guo J X. The contribution of root respiration to soil CO2 efflux in Puccinellia tenuiflora dominated community in a semi-aridmeadow steppe[J]. Chinese Science Bulletin, 2006, 51(6): 697-703.
    155. Wang X G, Zhu B, Wang Y Q, et al. Soil respiration and its sensitivity to temperature under different land use conditions[J]. Acta Ecologica Sinica, 2007, 27(5): 1960-1969.
    156. Wang X, Zhuang Y, Feng Z. Carbon dioxide release due to change in land use in China Mainland [J]. Environ Sci. 1994, 6:287-295.
    157. Waring R H, Running S W. Forest ecosystems: analysis at multiple scales [M] .San Diego: Academic Press, 1998, 1-10.
    158. Wesely M L, Cook D R, Hart R L. Fluxes of gases and particles above a deciduous forest in winter time[J]. Boundary Layer Meteorology, 1983, 27: 273-255
    159. Wildnng R E, Garl T R and Bnschom R L. The interdependent effect of soil respiration rate and plant root decomposition in arid grassland soils [J]. Soil Bio Biochem, 1975, 7:373-378.
    160. Woodwell G M, Hobbie J E, Hought R A, et al. Global deforestation:contribution to atmosphere carbon dioxide[J].Science, 1983, 222:1081-1086.
    161. Woodwell G M, Whittaker R H, Reiners W A, et al. The biota and the world carbon budget[J]. Science, 1978, 199:141-146.
    162. Yamamoto S, Murayallla S, Saigusa N, et al. Seasonal and interannual vanation of CO2 flux between a temperate forest and the atmosphere in Japan [J]. Tellus, 1999, 51B:402-413.
    163. Yang Y S, Dong B, Xie J S, et al. A review of tree root respiration significance and methodologies[J]. Acta Phytoecologica Sinica. 2004, 28(3):426-434.
    164. Yi Z G, Yi W M. Proceeding of studies on soil respiration of forest ecosystem[J]. Ecology and Environment, 2003, 12(3):361-365.
    165. Yim M H, Joo S J, Nakane K. Comparison of field methods for measuring soil respiration:a static alkali absorption method and two dynamic closed chamber methods[J]. Forest Ecology and Management, 2002, 170:189-197.
    166. Zogg G P, Zak D R, Pregitzer K S, et al. Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest[J]. Ecology, 2000, 81:1858-1866.
    167.布雷迪N.C (美)著.南京农学院土化系等译.土壤的本质与性状[M].北京:科学出版社, 1982.
    168.蔡祖聪.土壤气体研究展望[J].土壤学报, 1993, 30(2):117-124.
    169.曹福亮,吕士行,徐锡增,等.南方型无性系生长特性的研究[A].南京林业大学杨树课题组.黑杨派南方型无性系速生丰产技术论文集[C].北京:学术书刊出版社, 1989, 81- 93.
    170.查同刚.北京大兴杨树人工林生态系统碳平衡的研究[D].北京:北京林业大学. 2007.
    171.陈楚莹,廖利平,汪思龙.杉木人工林生态系统碳素分配与贮量的研究[[J].应用生态学报, 2000.11(增刊):175-178.
    172.陈光水,杨玉盛,王小国,等.格氏拷天然林与人工林根系呼吸季节动态影响因素[J]生态学报, 2005, 25( 8):1941-1947.
    173.陈军.杨树人工林地上生物量和碳储量研究[D].北京:北京林业大学, 2007.
    174.陈灵芝,黄建辉,严昌荣.中国森林生态系统养分循环[M].北京:气象出版社, 1997.
    175.陈平,万福绪,秦飞,等.徐州农田林网杨树生长特性及经营现状分析[J].安徽农业科学, 2010,38(2):968-971.
    176.陈庆强,沈承德,易惟熙,等.土壤有机碳循环研究进展.地球科学进展. 1998, 13(6):555-563.
    177.陈庆强,沈承德.土壤碳循环研究进展[J].地球科学进展, 1998, 13(6):555- 563.
    178.陈全胜,李凌浩,韩兴国,等.水热条件对锡林河流域典型草原退化群落土壤呼吸的影响[J].植物生态学报, 2003, 27 (2): 202-209.
    179.陈全胜,李凌浩,韩兴国,等.温带草原11个植物群落夏秋土壤呼吸对气温变化的响应[J].植物生态学报. 2003, 27(4):441-447.
    180.陈四清,崔晓勇,周广胜,李凌浩.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放[J].植物学报, 1999, 41(6):645-650.
    181.陈文荣.拟赤杨人工林地上部分净生产力动态变化研究[J].福建林业科技, 2000, 27(3):31-34.
    182.陈遐林.华北主要森林类型的碳汇功能研究[D].北京:北京林业大学, 2003.
    183.陈宜瑜. IGBP未来发展方向[J].地球科学进展, 2001, 16 (1): 325-329.
    184.陈宜瑜. IGBP未来发展方向[J].地球科学进展, 2001, 16(1):15-17.
    185.陈银秀.福建柏人工林凋落物特性的研究[D].福州:福建农林大学. 2002.
    186.成向荣,赵忠,郭满才,等.刺槐人工林细根垂直分布模型的研究[J].林业科学. 2006,42(6):40-48.
    187.崔晓勇,陈四清,陈佐忠.大针茅典型草原土壤CO2排放规律的研究[J].应用生态学报, 2000, 11(3):390-394.
    188.代静玉,秦淑平,周江敏.水杉凋落物分解过程中溶解性有机质的分组组成变化[J].生态环境, 2004, 13(2): 207- 210
    189.丁贵杰.马尾松人工林生物量和生产力研究I不同造林密度生物量及密度效应[J].福建林学院学报, 2003, 23 (1):34-38.
    190.丁贵杰.马尾松人工林生物量及生产力的变化规律III不同立地生物量及生产力变化[J].山地农业生物学报, 2000, 19( 6):411-417.
    191.董文渊,黄宝龙,谢泽轩,等.筇竹无性系种群生物量结构与动态研究[J].林业科学研究, 2002, 15(4): 416-420.
    192.方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等science一文(Science, 2001, 2320~2322)的若干说明[J].植物生态学报, 2002, 26(2):243-249.
    193.方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报, 2001, 43(9):967-973.
    194.方精云,刘国华.我国森林植被的生物量和净生产力[J].生态学报, 1996, 16(5): 497-508.
    195.方精云,郭兆迪,朴世龙,等. 1981~2000年中国陆地植被碳汇的估算[J].中国科学, 2007, 37(6):804-812.
    196.方精云,刘国华.中国陆地生态系统碳库现代生态学热点问题研究[M].北京:中国科学技术出版社. 1996: 251-267.
    197.方精云,王效科,刘国华.北京地区辽东栋呼吸的侧定[J].生态学报, 1995, 15(3):235 -244.
    198.方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报2000a, 24(5):635-638.
    199.方精云.北极陆地生态系统的碳循环与全球温暖化工厂[J].环境科学学报, 1998, 18:113~121.
    200.方精云.北纬中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报, 2000, 24 (5):635-638.
    201.方精云.森林群落呼吸量的研究方法及其应用的探讨[J].植物学报, 1999, 41(l):88- 94.
    202.方精云.中国森林生产力及其对全球气候变化的响应(英) [J].植物生态学报, 2000b, 24(5): 513-517.
    203.方升佐,黄宝龙,徐锡增.高效杨树人工林复合经营体系的构建与应用[J].西南林学院学报, 2005, 25(4):36-41.
    204.方升佐,王明庥,黄敏仁,等.江苏杨树资源培育与产业化[J].林业科技开发, 2004, 18(1):3-5.
    205.方升佐,徐锡增,吕士行.杨树定向培育[M].合肥:安徽科学技术出版社, 2004.
    206.方升佐,章小明,徐锡增,等.杨树无性系生物量生产的三维模拟研究[J].南京林业大学学报, 1999, 23(5):7-12.
    207.方升佐.中国杨树人工林培育技术研究进展[J].应用生态学报, 2008, 19(10):2308-2316.
    208.方晰,田大伦,青灿辉.马尾松人工林生产与碳素动态[J].中南林学院学报, 2003, 23 (2):11-16.
    209.方晰,田大伦,项文化.速生阶段杉木人工林碳素密度贮量和分布[J].林业科学, 2002, 38 (3):14-20.
    210.方晰,田大伦,张仕吉.樟树人工林林地CO2释放量的研究[J].中南林学院学报, 2002 , 22(1):11-16.
    211.方晰.杉木人工林生态系统碳贮量与碳平衡的研究[D].赣州:中南林学院. 2004.
    212.方运霆,莫江明, Sandra Brown,等.鼎湖山自然保护区土坡有机碳贮盆和分配特征[J].生态学报, 2004, 24(1):135-142.
    213.方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究[[J].广西植物, 2002, 22(4):305-310.
    214.方运霆,莫江明,黄忠良,等.鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征[J].热带亚热带植物学报, 2003, 11(1):47-52.
    215.方运霆,莫江明,张德强,等.鼎湖山山马尾松林与季风常绿阔叶林植物碳素含量的比较[A].见:热带亚热带森林生态系统Vo1.9 [C].2002, 64-72.
    216.冯仲科,罗旭,石丽萍.森林生物量研究的若干问题及完善途径[J].世界林业研究, 2005, 18(3): 25-28.
    217.冯宗炜,陈楚莹,张家武,等.不同自然地带的杉木林的生物生产力[J].植物生态学与陆地植物学丛刊, 1984, 8(2): 93-100.
    218.冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社.1999.
    219.高志勤,傅懋毅.不同毛竹林土壤碳氮养分的季节变化特征[J].浙江林学院学报, 2006, 23(3):248-254.
    220.高志勤.北亚热带几种林分类型对土壤养分状况的影响[D].南京:南京林业大学, 1993.
    221.耿元波,董云社,孟维奇.陆地碳循环研究进展[J].地理科学进展, 2000,19(4):297-306.
    222.郭然,王效科,刘康,等.樟子松林下土壤有机碳和全氮储量研究[J].土壤, 2004, 36(2):192-196.
    223.郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学,2006,42(4):93-100.
    224.韩冰,王效科,欧阳志云,等.辽宁省农田土壤碳库分布及变化的模拟分析[J].生态学报, 2003, 23(7): 1321-1327.
    225.韩世杰.森林生态系统碳循环过程研究.地球系统碳循环[M].北京:科学出版社, 2004.
    226.何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤, 1997, 2:61-69.
    227.黄昌勇.土壤学[M].北京:中国农业出版社, 2000.
    228.黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报, 1999, 19(3): 324-328.
    229.黄玫,季劲钧,曹明奎,等.中国区域植被地上与地下生物量模拟[J].生态学报, 2006, 26(12):4156-4163.
    230.黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科学通报, 2006, 51(7):750-763.
    231.贾玉彬,裴保华,王德艺,等.杨粮间作的光照效益[J].中国农业气象, 1998, 19(6):1-7.
    232.姜勇,张玉革,梁文举,等.潮棕壤不同利用方式有机碳剖面分布及碳储量[J].中国农业科学,2005,38(3):544-550.
    233.姜小三,潘剑君,李学林.江苏表层土壤有机碳密度和储量估算和空间分布分析[J].土壤通报. 2005, 36(4):501-503.
    234.蒋高明,黄银晓.北京山区辽东栋林土坡释放CO2的模拟实验研究[J].生态学报, 1997, 17(5):477-482.
    235.蒋有绪.世界森林生态系统结构与功能的研究综述[J].林业科学研究, 1995, 8(3): 314-321.
    236.康惠宁,马钦彦,袁嘉祖.中国森林碳汇功能基本估计[J].应用生态学报, 1999, 7(3): 230-234.
    237.寇太记,朱建国,谢祖彬.测定方法和植物生长对土壤呼吸的影响[J].生态环境, 2007, 16(1):205-209,
    238.雷巫锋,项文化,田大伦,等.樟树人工林生态系统碳素贮量与分布研究[J].生态学杂志, 2004, 23(4): 25-30.
    239.李惫德,吴仲民,曾庆波,等.尖峰岭热带山地雨林群落呼吸初步侧定[J].林业科学研究, 1997, 10(4):348-355.
    240.李海玲,陈乐蓓,方升佐,等.不同杨-农间作模式碳储量及分布的比较[J].林业科学, 2009, 45(11):9-14.
    241.李海玲,陈乐蓓,方升佐.不同杨农复合经营模式土壤有机碳和全氮含量垂直分布及储量研究[J].南京林业大学学报:自然科学版. 2010, 34(2):125-128.
    242.李景文主编.森林生态学[M].北京:中国林业出版社, 1994, 70-85.
    243.李灵.不同退化林地土壤微生物生物量动态[D].福州:福建农林大学. 2004.
    244.李凌浩,韩兴国,王其兵.等.锡林河流域一个放牧草原群落中根系呼吸占土壤总呼吸比例的初步估计[J].植物生态学报, 2002 , 26( 1): 29- 32.
    245.李凌浩,王其兵,白永飞,等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J].植物生态学报, 2000, 24 (6):680-686.
    246.李铭红,于明坚,陈启常,等.青冈常绿阔叶林的碳素动态[[J].生态学报, 1996, 16 (6):645-651.
    247.李怒云编著.中国林业碳汇[M].北京:中国林业出版社. 2007, 47-55.
    248.李庆云,万猛,樊巍,等.黄淮海平原农区杨树人工林生物量和生产力研究[J].河南科学, 2008, 26(4):434-437.
    249.李庆云.黄淮海平原杨农间作系统碳贮量研究[D].郑州:河南农业大学. 2008.
    250.李淑芬,俞元春,何晟.土壤溶解性有机碳的研究进展[J].土壤与环境, 2002, 11(4):422-429,
    251.李淑兰,陈永亮.不同落叶林林下凋落物的分解与养分归还[J].南京林业大学学报(自然科学版), 2004, 28(5):59-62.
    252.李淑玲,侯建治.毛白杨无性系生物量研究[J].河南农业大学学报, 1995, 29(2):134-140.
    253.李文华,罗天祥.中国云冷杉生物生产力格局及其数学模型[J].生态学报, 1997, 17(5)511-518.
    254.李意德,曾庆波,吴仲民,等.我国热带天然林植C贮存量的估算[J].林业科学研究, 1998, 12(2):156-162
    255.李意德.林木土壤和凋落物呼吸测定[A].见:曾庆波,等主编.热带森林生态系统研究与管理[C].北京:中国林业出版社, 1997, 173-186.
    256.李跃林,胡志成,张云,等.几种人工林土壤碳储量研究[J].福建林业科技, 2004, 31(4):4-7.
    257.李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报, 2002, 20(5):548-552.
    258.李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志, 2004, 23(6):77-83.
    259.李治安.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志, 2004, 23(6):77-83.
    260.梁妮,王卫斌,田昆. 4年生及13年生西南桦人工林生物量的分布特征[J].西部林业科学, 2006, 35 (4):118-122.
    261.林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志, 2004, 23(1) :60-64.
    262.林德喜,罗水发,高小坤.引种的尾叶桉林生物量的动态特征研究[J].福建林学院学报, 2003, 23(3): 261-265.
    263.林开敏,俞新妥,何智英.不同密度杉木林分生物量结构与土壤肥力差异研究[J].林业科学, 1996, 32(5): 385-392.
    264.刘东霞.万木林主要群落凋落物的动态研究[D].福州:福建农林大学. 2004.
    265.刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报, 2000, 20(5):733-740.
    266.刘建军,王得祥,雷瑞德,等.秦岭林区天然油松锐齿栎林细根周转过程与能态变化[J].林业科学, 2002, 38(4): 126-131.
    267.刘绍辉,方精云,清田信.北京山地沮带森林的土壤呼吸[J].植物生态学报, 1998, 22(2):119-126.
    268.刘婷婷.基于树体结构推算杨树人工林生物量及碳储量[D].北京:北京林业大学, 2009.
    269.刘允芬.农业生态系统碳循环研究[J].自然资源学报, 1995, 10(1):1-8.
    270.刘允芬.中国农业系统碳汇功能[J].农业环境保护, 1998, 17(5):197-202.
    271.娄运生,李忠佩,张桃林.不同利用方式对红壤CO2排放的影响[J].生态学报, 2004, 24(5):978-983.
    272.鲁春霞,谢高地,肖玉,等.我国农田生态系统碳蓄积及其变化特征研究[J].中国生态农业学报, 2005, 13(3):35-37.
    273.吕国虹,周莉,赵先丽,等.芦苇湿地土壤有机碳和全氮含量的垂直分布特征[J].应用生态学报, 2006, 17(3):384-389.
    274.吕士行.杨树造林的几个主要技术问题[M].北京:学术书刊出版社, 1989.
    275.吕晓涛.西双版纳热带季雨林碳储量研究[D].中国科学院西双版纳热带植物园, 2006.
    276.罗辑,解宪丽,孙波,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报, 2004, 41(5):688-689.
    277.罗辑,杨忠,杨清伟.贡嘎山东坡峨眉冷杉林区土城CO2排放[J].土壤学报, 2000, 37(3):402-409.
    278.罗水发.尾叶桉人工林生物量的研究[J].福建林学院学报, 1999, 19(3): 279~281.
    279.罗天祥,中国主要森林类型生物生产力格局及其数学模型[D],中国科学院自然资源综合考察委员会博士学位论文.1996.
    280.骆土寿,陈步峰,李意德,等.海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究[J].生态学报, 2001, 21(12):2013-2017.
    281.马钦彦,谢征鸣.中国油松林储碳量基本估计[J].北京林业大学学报, 1996, 18(3): 98-112.
    282.马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报, 2002, 24(5/6 ):96-100.
    283.马钦彦,谢征鸣.中国油松林储碳量基本估计[J].北京林业大学学报, 1996, 18(3):31-34,
    284.马秀玲.农林复合系统中林带和作物的根系分布特征[J].中国农业大学学报, 1997, 2(1) : 109-116.
    285.毛子军.森林生态系统碳平衡估测方法及其研究进展[J].植物生态学报, 2002, 26(6):731-738.
    286.孟宪宇.测树学[M].北京:中国林业出版社, 1996.
    287.米方秋.杨树人工林复合经营模式及效益的研究[D].南京:南京林业大学, 2005.
    288.莫江明,彭少麟, SandraBrown,等.鼎湖山马尾松林群落生物量生产对人为干扰的响应[J].生态学报, 2004, 24: 24-29.
    289.南京林业大学杨树课题组.黑杨派南方型无性系速生丰产论文集[C].北京:学术书刊出版社, 1989.
    290.潘开文,何静,吴宁.森林凋落物对林地微生境的影响[J].应用生态学报, 2004, 15(1):153-158.
    291.彭少麟,李跃林,任海,等.全球变化条件下的土壤呼吸效应[J].地球科学进展, 2002, 17(5)706-713.
    292.朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报, 2004, 28:491-498.
    293.漆良华,张旭东,周金星,等.湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征[J].林业科学, 2009, 45(8):14-20.
    294.邱尔发,陈电梅,郑郁善,等.麻竹山地笋用林凋落物发生、分解及养分归还动态[J].应用生态学报, 2005, 16(5):811- 814.
    295.阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律[[J].生态学杂志, 1997, 16(6):17-21.
    296.桑卫国,马克平,陈灵芝.暖温带落叶阔叶林碳循环初步估算[J].植物生态学报, 2002, 26(5):543-548
    297.邵玉琴,赵吉,杨劼.内蒙古皇甫川流域凋落物分解过程中营养元素的变化特征[J].水土保持学报, 2004, 18(3):81-84.
    298.沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志, 1999, 18(3):32-38.
    299.盛炜彤.杉木人工林的地力衰退及防治对策[A].见:盛炜彤.人工林地力衰退研究[C].北京:中国科技出版社, 1992, 15-19.
    300.宋金凤.凋落物中的有机酸及其对森林土壤的磷释放效应[D].哈尔滨:东北林业大学. 2004.
    301.孙启祥,凤安,彭镇华.长江滩地杨树人工林生物量的研究[J].林业科技通讯, 1998, 3:4-6.
    302.孙启祥.不同林龄林分对间作物产量的影响[J].安徽农业大学学报, 2000, 27(2):146-149.
    303.孙向阳,郭青俊.妙峰山林地CO2释放量的初步研究[[J].北京林业大学学报, 1995, 17(4):22-28.
    304.孙向阳,乔杰,谭笑.温带森林土壤中的CO2排放通量[J].东北林业大学学报, 2001, 29(1):34 -39.
    305.孙新.马尾松林下套种阔叶树对森林凋落物及土壤的影响[D].福州:福建农林大学. 2005.
    306.孙煜.闽楠叶凋落物分解动态及其养分释放规律研究[D].福州:福建农林大学. 2003.
    307.唐罗忠,生原喜久雄,黄宝龙,等.江苏省里下河地区杨树人工林的碳储量及其动态[J].南京林业大学学报(自然科学版), 2004, 28(2):1-6.
    308.唐万鹏,王月容,郑兰英.南方型杨树人工林生物量与生产力研究[J].湖北林业科技(增刊), 2003, 43-47.
    309.万猛,田大伦,樊巍,等.豫东平原杨农复合系统物质生产与碳截存[J].林业科学, 2009, 45(8):27-33.
    310.汪业,赵士洞.中国森林生态系统区域碳循环研究[D],中国科学院自然资源综合考察委员会博士学位论文. 1999.
    311.王凤友.森林凋落物研究综述[J].生态学进展, 1989, 6(2): 82-89.
    312.王庚辰主编.中国温室气体排放机制的研究[M].北京:环境出版社,1999.
    313.王晶,解宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志, 2003, 22(6): 109-122.
    314.王连峰,潘根兴,石盛莉,等.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布[J].植物营养于肥料学报, 2002, 8(1):29-34.
    315.王勤,徐小牛,平田永二.不同坡位对琉球松人工林凋落物及其养分归还量的影响[J].应用生态学报, 2004, 15(7):112-125.
    316.王绍强,周成虎,刘纪远,等.东北地区陆地碳循环平衡模拟分析[J].地理学报, 2001, 56(4):390-400.
    317.王娓,郭继勋.松嫩草甸草地碱茅群落根呼吸对土壤呼吸的贡献[J].科学通报. 2006, 51(6): 697-703.
    318.王文全,贾渝彬.毛白杨根系分布的研究[J].河北农业大学学报, 1997, 20(1): 24-29.
    319.王小国,不同退化程度森林土壤呼吸与平衡[D].福州:福建农林大学. 2004.
    320.王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报, 2001, 12(1):13-16.
    321.王岩,沈其荣,史瑞和,等.土壤微生物量及其生态效应[J].南京农业大学学报, 1996, 19(4): 45-51.
    322.王彦辉, Peter R, Horst F.环境因子对挪威云杉林土壤有机质分解过程中重量和碳的气态损失影响及模型[J].生态学报, 1999, 19(5):641~646.
    323.王艳芬,陈佐忠, Larry T, Tieszen.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报, 1998, 22 (6):545-551
    324.王燕,赵士洞.天山云杉林生物量和生产力的研究[J].应用生态学报,1999 10(4):389-391.
    325.王义弘.森林生态学实验实习方法[M].哈尔滨:东北林业大学出版社, 1990.
    326.王颍.杨粮间作系统小气候研究[J].中国生态农业学报, 2001, 9(3):40-42
    327.王玉光.不同杉木混交幼林生物量与生产力研究成果[J].福建林学院学报, 1996, 16(2): 156-159.
    328.王仲锋.森林生物量建模与精度分析[D].北京林业大学, 2006.
    329.文启孝,杜丽娟,张晓华,等.土壤有机质研究法[M].北京:农业出版社, 1984,256- 271.
    330.吴刚,冯宗炜.中国油松林群落特征及生物量的研究[J].生态学报, 1994, 14(4): 416~422.
    331.吴仲民,李意德,曾庆波,等.尖峰岭热带山地雨林碳素库及皆伐影响的初步研究[J].应用生态学报, 9(4): 341-344.
    332.武维华.植物生理学[M].北京:科学出版社, 2002.
    333.肖文发,聂道平,张家诚.我国杉木林生物量与能量利用率的研究[J].林业科学研究, 1999, 12(3): 237-243.
    334.徐德应.人类经营活动对森林土壤碳的影响[J].世界林业研究, 1994, (5):26-31.
    335.徐化成.森林地力的动态特性和人工林的地力下降问题[A].见:盛炜彤.人工林地力衰退研究[C].北京:中国科技出版社, 1992,3-10.
    336.徐振邦,戴洪华.长白山阔叶红松林生物产量的研究[J].森林生物量研究, 1985, ( 5):33-44.
    337.许新建,陈金耀,俞新妥.武夷山六种杉木伴生树种落叶养分归还的研究[J].福建林学院学报. 1995,15( 3):213- 217.
    338.许信旺,潘根兴,候鹏程.不同土地利用对表层土壤有机碳密度的影响[[J],水土保持学报, 2005, (19)6: 193-196.
    339.杨晶,黄建辉,詹学明,等.农牧交错区不同植物群落土壤呼吸的日动态观测与测定方法比较[J].植物生态学报, 2004, 28 (3):318-325.
    340.杨黎芳,李贵桐,赵小蓉,等.栗钙土不同利用方式下有机碳和无机碳剖面分布特征[J].生态环境, 2007, 16(1):158-162.
    341.杨平,杜宝华.国外土壤二氧碳释放问题的研究动态[J].中国农业气象, 1996, 17(1):37,48-50.
    342.杨旭静,应金花.收获与迹地清理对二代杉木幼林生长影响初报[J].福建林学院学报, 1999, 19(2): 174-177.
    343.杨玉盛,陈光水.格氏栲天然林与人工林细根生物量、季节动态及净生产力[J].生态学报, 2003, 23 (9):719-731
    344.杨玉盛,陈光水,王小国,等.中亚热带森林转换对土壤呼吸动态及通量的影响[J].生态学报, 2005, 25(7):1684-1690.
    345.杨玉盛,董彬,谢锦升,等.林木根系呼吸测定方法进展[J].植物生态学报, 2004, 28(3):426-434.
    346.杨忠,张建平,王道杰,等.元谋干热河谷桉树人工林生物量初步研究[J].山地学报, 2001, 19(2): 503-510.
    347.蚁伟民,张祝平,丁明懋,等.鼎湖山格木群落的生物量和光能利用效率[J].生态学报, 2000, 20(2): 397-403.
    348.易志刚,蚁伟民.森林生态系统中土壤呼吸的研究进展[J ].生态环境, 2003, 12(3): 361-365.
    349.殷秀琴.森林凋落物-土壤动物-土壤系统中营养元素含量关系及分异[J].地理研究, 2006, 25(2):320-326.
    350.俞元春.苏南丘陵不同林分类型土壤养分的动态特性[J].浙江林学院学报, 1998, 15(1):32- 36.
    351.宇万太,于永强.植物地下生物量研究[J].应用生态学报, 2001, 12(6):927-932
    352.袁玉欣.杨粮间作系统农作物产量研究.河北林果研究, 2001, 16(1):7-13
    353.袁玉欣,裴保华,贾渝彬,等.农林间作条件下的杨树生长研究[J].林业科学, 2000, 36(S1):144-150.
    354.袁玉欣,裴保华,王文全,等.杨粮间作条件下的作物产量与生物量[J].河北农业大学学报, 1996, 19(2):24-30.
    355.曾希柏,黄雪夏,刘子刚,等.种植年限对三江平原农田土壤剖面性质及碳、氮含量的影响[J].中国农业科学, 2006, 39(6):1186-1195.
    356.张家武,陈楚莹,邓仕坚,等.估测杉木现存量的数学模式的比较[J].东北林学院学报, 1993, 14(2):13-19.
    357.张建国,段爱国.理论生长模型与直径结构模型的研究[M].北京:科学出版社, 2004.
    358.张其水,俞新妥.连栽杉木林生长状况的调查研究[J].福建林学院学报, 1992, 12(3): 334-338.
    359.张万儒,许本彤.森林土壤定位研究方法[M].北京:中国林业出版社, 1986.
    360.张小全,武曙红编著.中国CDM造林再造林项目指南[M].北京:中国林业出版社. 2006.
    361.张秀娟.落叶松人工林凋落物分解及其N、P、K养分归还[J].吉林林业科技, 2006, 35(2):15-18.
    362.郑燕明.青钩栲人工林生物量及其分配的初步研究[J].福建林学院学报, 1996, 16(2):114-118.
    363.郑征,冯志立,曹敏,等.西双版纳原始热带湿性季节雨林生物量及净初级生产[J].植物生态学报, 2000, 24(2): 197-203.
    364.中科院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社, 1978.
    365.周焱.武夷山不同海拔土壤有机碳库及其矿化特征[D].南京:南京林业大学, 2009.
    366.周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报, 2000, 24(5):518 -522.
    367.周志田,成升魁,刘允芬,等.中国亚热带红壤丘陵区不同土地利用方式下土壤CO2排放规律初探[J].资源科学, 2002, 24(2):83-87.
    368.朱强根.苏北不同杨树人工林经营模式下土壤呼吸及杨树细根研究[D].南京:南京林业大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700