用户名: 密码: 验证码:
亚热带常绿叶林光能和水分利用效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中文摘要
     光能利用效率(LUE)是区域尺度以遥感模型结合气象资料监测陆地生态系统净初级生产力(NPP)的关键参数。水分利用效率(WUE)是深入认识生态系统碳、水循环间耦合关系的重要指标。研究不同尺度上森林的LUE和WUE为在尺度推绎及检验推绎结果的精确度提供了理论基础。LUE和WUE时空变异有助于加深对生态系统碳、水循环的认识。
     本研究以我国亚热带主要造林树种湿地松(Pinus elliottii)、马尾松(P. massoniana)和杉木(Cunninghamia lanceolata)为研究对象,在叶片水平上,于生长中期(7月)和后期(10月)采用Li-6400便携式CO2/H2O红外气体分析仪测定了气体交换和环境参数,研究了树冠不同部位和年龄针叶LUE和WUE时空变异特征;在林分水平上,探讨了树种及土壤特征对LUE影响;在区域水平上,总结已经发表文献并结合中国气象台站观测数据,估算了我国亚热带常绿针叶林LUE和WUE,探讨了区域水平上LUE和WUE空间分布格局。主要得到以下结果:
     (1)在叶片水平上,基于气体交换计算了树冠不同层次(上层和下层)、不同方位(阳面和阴面)和不同年龄(当年生和1年生)针叶LUE和WUE。结果表明,光的有效性与年龄共同影响针叶的光合和蒸腾水平。针叶通过调整LUE来适应冠层内部光环境进行碳同化。WUE时空变异结果表明,生长后期湿地松、马尾松和杉木WUE日均值分别降至生长中期的81%、60%和40%。生长中期,湿地松和马尾松下层针叶的WUE日均值为上层针叶1.1-1.2倍,杉木下层针叶为上层针叶的80%;生长后期,由于长期遮荫限制了下层针叶光合碳同化能力,湿地松和马尾松下层针叶WUE日均值分别为上层针叶的77%和63%,杉木不同层次针叶之间WUE相近。林冠背阴面针叶具有较高WUE。不同年龄针叶WUE没有明显差别。
     光响应曲线模拟结果表明,上层针叶和当年生最大光合速率(Amax)、暗呼吸速率(Rd)、光饱和点(LSP)和光补偿点(LCP)普遍高于下层针叶和1年生针叶。处于弱光环境下针叶通过调整叶绿素含量、叶绿素a/b、可溶性蛋白含量和最大光化学效率(Fv/Fm)来增加碳获取。尽管如此,弱光环境下针叶Amax仍然不及强光环境下针叶。
     (2)在林分水平上,基于生物量法估算湿地松、马尾松和杉木3种林分LUE,探讨土壤养分资源供应对林分LUE影响。结果表明,以热能百分比表示光能利用效率湿地松、马尾松和杉木林分的LUE分别为0.36%、0.44%和0.76%;以单位热能转化生物量来表示光能利用效率,3种林分的光能利用效率分别为0.18 g·MJ-1、0.20 g·MJ-1和0.34 g·MJ-1,杉木的光能利用效率极显著高于湿地松和马尾松(P<0.01),未能支持“功能收敛假说”。因此,采用光能利用效率模型准确估算区域尺度常绿针叶林NPP应区分不同树种。土壤养分有效性与LUE相关分析结果表明,林分LUE与土壤有机质呈显著正相关(P<0.05),与土壤pH呈负相关。
     (3)在区域水平上,基于生态系统NPP分析了我国亚热带常绿针叶林LUE和WUE空间分布规律,LUE和WUE平均值分别为0.71 g·MJ-1、1.12g·mm-1。LUE与NPP具有相同的空间变化规律,由东南至西北呈逐渐降低的趋势;WUE空间分布规律性不明显。马尾松和杉木LUE高于云冷杉(Abies-Picea)、油松林(Pinus tabulaeformis)、华山松(P. armandii)、黄山松(P. taiwanensis)高山松(P. densata)、云南松(P. yunnanensis)、思茅松(P. khasya)和柏树(Cupressus),不同树种间WUE没有明显差别。线性回归结果表明,经度、纬度和降雨量解释了LUE空间变异的50.5%;经度、纬度和太阳总辐射仅解释了WUE变异的1.4%,WUE表现出功能收敛性。
     通过不同尺度水平的观测和分析,获得如下结论:叶片水平上,PAR是LUE和WUE变异的主控因子;林分尺度上,树种、土壤有机质和pH值是影响LUE变异的主控因子;区域尺度上降雨量是控制LUE变异的主控因子。认识不同尺度LUE和WUE主控因子对于尺度推绎和采用遥感模型估算森林生态系统NPP提供理论依据。
Light-use efficiency (LUE) is used commonly with remotely sensed and meteorological data to monitor terrestrial ecosystem primary production (NPP). Water use efficiency (WUE) is an important indicator to in-depth understanding the coupling relationship between the ecosystem water and carbon cycles. Study on the different levels of forest LUE and WUE provides the oretical basis for scaling up as well as testing the accuracy of scaling up results. Studying the variation in space and time of LUE and WUE are helpful to obtain a deep understanding of the water and carbon cycles.
     In this investigation, we use Pinus elliottii, P. massoniana and Cunninghamia lanceolata, the main afforestation tree species in Subtropics of China as the research object. At leave level, during the middle growth stage (in July) and late growth stage (in October), gas change and environment parameter were estimated with Li-6400 portable CO2/H2O infrared gas analysis. The variation in time and space of LUE and WUE in different postion and ages needles was studied. At stand level, the Effects of species and soil characterstics on LUE were studied; at local level, based on the data published in peer-reviewed literature with data collected from nearby weather stations, LUE and WUE of subtropics evergreen coniferous forests were estimated, the spatial patterns were explored as well. The main findings of this study are as follows:
     (1) At leaf level, LUE and WUE in different depths (the upper and lower), orientations (north-facing and south-facing) and ages (the current year and one year old) needles within canopy scale were caculated based on gas change. Results showed that, the photosynthesis and transpiration of the whole canopy was affected by the interaction of light availability and leaf ages. Forest assimilates carbon from atmosphere by adjusting LUE of leaves to adapt the light environment within canopy; The variation of time and space of WUE in different position and aged needles were studied. Results showed that the WUE of P. elliottii, P. massoniana, C. lanceolata in late growth stage decreased to 81%,60% and 40% when compared with that in middle growth stage. The lower canopy WUE of P. massoniana, C. lanceolata were 1.1-1.2 times of upper canopy, the upper canopy WUE was 80% of lower canopy in C. lanceolata in middle growth stage. In later growth stage, the upper canopy WUE of P. massoniana, C. lanceolata were 77% and 63% of that in lower canopy because photosynthetic carbon assimilation was limited chronically by low light levels in the lower canopy. However, as for C. lanceolata, there was no significant difference in different depths of canopy. Higher WUE in the north facing leaves were noted. No significant differences of WUE in different year old needles were observed.
     Results from light response curve model showed that, the needles of Maximum photochemical efficiency (Amax), Dark respiratory rate (Rd), Light saturated point (LSP), and Light compensated point (LCP) in upper canopy and current year needles were higher than that in lower canopy of the three species. The needles in weak light could adjust the content of chlorophyll, chlorophyll a/b, soluble protein and Fv/Fm to increase the carbon acquisition. Nevertheless, the Amax in weaker light was still lower than that in strong light.
     (2) At stand level, the LUE of three forest species was estimated based on biomass, and the impacts of soil nutrient supplying to forest LUE were analyzed and discussed. Results showed that, when LUE was expressed as energy percentage, the LUE of P. elliottii, P. massoniana and C. lanceolata was 0.36%, 0.44% and 0.76%, respectively, whereas those of the three plantations was 0.18,0.20, and 0.34 g·MJ-1 respectively when LUE was expressed as biomass transformed from per unit of energy. LUE of C. lanceolata forest was significantly higher than P. elliottii and P. massoniana forests. Our data did not support the functional convergence hypothesis. Therefore, different tree species should be distinguished to accurately estimate NPP of evergreen coniferous forest by light use efficiency models. LUE was in positive relationship with soil organic matter, but in negative relationship with pH.
     (3) At local level, variation of time and space of LUE and WUE in subtropics evergreen coniferous forests based on NPP were studied. The results showed that, the average of LUE and WUE was 0.71 g·MJ-1 and 1.12 g·mm-1, respectively. LUE tracked closely with NPP, NPP gradually decreased from southeast of China to northwest of China. However, the WUE performed disciplinarian is not evidence. LUE of P. massoniana and C. lanceolata were higher than that of Abies-Picea, P. tabulaeformis, P. armandii, P. taiwanensis, P. densata, P.yunnanensi, P. khasya, P. taiwanensis, P. densata, P. khasya Cupressus. There are no signifanct differences among the WUE of tree species. In a linear regression, longitude, latitude, and preciptation accounted for approximately 50.5% of the variability in LUE, longitude, latitude, and PAR accounted for approximately 1.4% of the variability in WUE. WUE showed the functional convergence characterstics.
     Based on the measurement and analysis from different levels, the following results are obtained:at leaf level, LUE and WUE were mainly controlled by PAR; at stand level, species and LUE were controlled mainly by soil organic matter and pH; at local level, LUE was controlled mainly by precipitation. Understanding the different levels on spatiotemporal dynamics of LUE and WUE can provide basis for scaling up and estimating NPP of forest ecosystem.
引文
1. 曹生奎,冯起,司建华,等.植物叶片水分利用效率综述[J].生态学报,2009,29(7):3882-3892.
    2. 曾伟,蒋延玲,李峰等.蒙古栎光合参数对水分胁迫的响应机理[J].生态学报.2008,28(6):2504-2510.
    3. 陈斌,王绍强,刘荣高,等.中国陆地生态系统NPP模拟及空间格局分析[J].资源科学,2007,26(6):45-53.
    4. 陈建,张光灿,张淑勇,等.辽东木光合和蒸腾作用对光照和土壤水分的响应过程[J].应用生态学报,2008,19(6):1185-1190.
    5. 陈晋,唐艳鸿,陈学泓,等.利用光化学反射植被指数估算光能利用率研究的进展[J].遥感学报,2008,12(2):331-337.
    6. 陈启基.我国湿地松栽培区区划和基地布局的研究[J].广东林业科技,1995,11(4):1-6.
    7. 戴万宏,黄耀,武丽,等.中国地带性土壤有机质含量与酸碱度的关系[J].土壤学报,2009,46(15):852-861.
    8. 邓瑞文,陈天杏,冯梅.热带人工林的光能利用与生产量的研究[J].生态学报,1985,5(3):231-240
    9. 邓新安.江西省千烟洲红壤丘陵综合开发治理[J].自然资源,1990,(4):25-29.
    10.丁圣彦,卢训令,李吴民.天童国家森林公园常绿阔叶林不同演替阶段群落光环境特征比较[J].生态学报,2005,25(11):2862-2867.
    11.段爱国,保尔江,张建国,等.华山松不同叶龄、部位针叶叶绿素荧光参数的动态变化规律[J].北京林业大学,2008,30(5):26-32.
    12.范晶.东北东部主要成林树种光合生理生态研究[D].哈尔滨:东北林业大学,2006.
    13.官丽莉,周小勇,罗艳.我国植物热值研究综述[J].生态学杂志,2005,24(4):452-457.
    14.郭明辉,李晓敏,李英,等.天然三大硬阔林的能量环境与光能利用率[J].东北林业大学学报,1996,24(4):56-61.
    15.韩春丽,孙中海,王艳,等.不同光强对纽荷尔脐橙叶片PSⅡ功能和光能分配的影响[J].果树学报,2008,25(1):40-44.
    16.何东进,洪伟,吴承祯,等.林成来.毛竹种群光能利用率的研究[J].福建林学院学报,1999,19(4):324-326.
    17.洪利兴,王泳,杜国坚.我国南方马尾松林生态系统的退化特征和改造对策研究[J].浙江林业科技,2000,20(2):2-9.
    18.胡启鹏,郭志华,李春燕,等.不同光环境下亚热带常绿阔叶树种和落叶阔叶树种幼苗的叶形态和光合生理特征[J].生态学报,2008,28(7):3662-3670.
    19.胡中民,于贵瑞,王秋凤,等.生态系统水分利用效率研究进展[J].生态学报,2009,29(3):1498-1507.
    20.黄儒珠,李机密,郑怀舟,等.福建长汀重建植被马尾松与木荷光合特性比较[J],生态学报,2009(11):6120-6130.
    21.霍常富,孙海龙,王政权,等.光照和氮营养对水曲柳苗木光合特性的影响[J].生态学杂志,2008,27(8):1255-1261.
    22.霍宏,王传宽.冠层部位和叶龄对红松光合蒸腾特性的影响[J].应用生态学报,2007,18(6):1181-1186.
    23.姬兰柱,肖冬梅,王淼.模拟水分胁迫对水曲柳光合速率及水分利用效率的影响[J].应用生态学报,2005,16(3):408-412
    24.靳正忠,雷加强,徐新文,等.沙漠腹地咸水滴灌林地土壤养分、微生物量和酶活性的典型相关关系[J].2008,45(6):1119-1127.
    25.柯世省.水分胁迫下夏蜡梅光合作用的气孔和非气孔限制[J].浙江林业科技,2006,26(6):1-5.
    26.李海梅,何兴元,王奎玲,等.沈阳城区五种乔木树种的光合特性[J].应用生态学报,2007,18(8):1709-1714.
    27.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    28.李西文,陈士林.遮荫下高原濒危药用植物川贝母(Fritillaria cirrhosa)光合作用和叶绿素荧光特征[J].生态学报,2008,28(7):3438-3446.
    29.李轩然,刘琪璟,蔡哲.千烟洲针叶林的比叶面积及叶面积指数[J].植物生态学报,2007,31:93-101.
    30.李轩然,刘琪憬,陈永瑞,等.千烟洲人工林主要树种地上生物量的估算[J].应用生态学报,2006,17(8):1382-1388.
    31.李中魁.黄家二岔小流域能量流的系统分析Ⅳ人类群体子系统和小流域总体能量流分析[J].水土保持通报,1999,19(3):29-32.
    32.李银鹏,季劲钧.全球陆地生态系统与大气之间碳交换的模拟研究[J].地理学报,2001,56(4):379-389.
    33.林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47-56.
    34.刘琪璟,胡理乐,李轩然.小流域治理20年后的千烟洲植物多样性[J].植物生态学报,2005,29(5):766-774.
    35.刘茜.樟树叶片蒸腾特性及其与生理生态因子关系分析[J].中南林业科技大学学报,2009,29(1):1-5.
    36.刘晓静,赵平,王权,等.树高对马占相思整树水分利用的效应[M].应用生态学报,2009,20(1):13-19.
    37.陆同文,王宝荣.中国亚热带气候[M].北京:气象出版社,1992.
    38.罗天祥.中国主要森林类型生物生产力格局及其数学模型[D].北京:中国科学院国家计划委员会自然资源综合考察委员会.1996.
    39.马小卫.苹果属植物种间水分利用效率的差异及其机理研究[D].陕西:西北农林科技大学博十学位论文,2009.
    40.马泽清,刘琪璨,王辉民,李轩然,曾慧卿,徐雯佳.中亚热带人工湿地松林(Pinus elliottii)生产力观测与模拟[J].中国科学D辑:地球科学,2008,38(8):1005-1015.
    41.马泽清,刘琪璟,徐雯佳,等.江西千烟洲人工林生态系统的碳蓄积特征[J].林业科学,2007,43(11):1-7.
    42.孟陈,徐明策,李俊祥,等.栲树冠层光合生理特性的空间异质性[J].应用生态学报,2007,18(9):1932-1936.
    43.米娜.中亚热带人工针叶林生态系统碳水通量的观测和模拟研究[D].南京:南京信息工程大学,2007.
    44.彭少麟,张祝平.鼎湖山地带性植被生物量、和产力和光能利用效率[J].中国科学B辑,1994,5:497-502.
    45.朴世龙,方精云,郭庆华.用CASA模型估算我国植被净第一性生产力[J].植物生态学 报,2001,25(5):603-608.
    46.任海,彭少麟,余作岳,等.鹤山针叶混交林的光能利用效率[J].应用与环境生物学报,1996,2(1):15-21.
    47.邵全琴,杨海军,刘纪远,等.基于树木年轮信息的江西千烟洲人工林碳蓄积分析[J].地理学报,2009,64(1):69-83.
    48.沈文清.千烟洲人工针叶林生态系统碳收支结构[D].北京:北京林业大学,2006.
    49.司洪生.我国亚热带热带森林资源的发展趋势及其对策[J],林业实用技术,1989,6:2-4.
    50.孙谷畴,赵平,蔡锡安,等.马占相思叶片液汁碳同位素甄别率和水分利用效率[J],生态学杂志,2008,27(4):497-503
    51.孙谷畴,曾小平,刘晓静,等.适度高温胁迫对亚热带森林3种建群树种幼树光合作用的影响[J].生态学报,2007,27(4):1283-1291.
    52.孙一荣,朱教君,于立忠,等.不同光强下核桃楸、水曲柳和黄菠萝的光合生理特征[J].林业科学,2009,45(9):29-35.
    53.唐代生,成子纯,曾思齐.我国湿地松人工林种植范围的立地气候分区研究[J].中南林学院学报,1998,18(3):37-41.
    54.唐国勇,吴金水,苏以荣,等.亚热带典型景观单元土壤有机碳含量和密度特征[J],环境科学.2009,30(7):2048-2052.
    55.汪家社.杉木生态系统生物量与固碳能力的分析与评价[J].福建林业科技,2008(6):1-4.
    56.王凯,朱教君,于立忠,等.遮阴对黄波罗幼苗的光合特性及光能利用效率的影响[J].植物生态学报,2009,33(5):1003-1012.
    57.王德梅,许振柱,于振文.高产条件下不同小麦品种耗水特性和水分利用效率的差异[J].生态学报,2009,29(12):6552-6560.
    58.王博轶,冯玉龙.生长环境光强对两种热带雨林树种幼苗光合作用的影响[J].生态学报,2005,25(1):23-30.
    59.王乾,WANG Kaiyun川西亚高山针叶林生产力和光能利用效率研究现状[J].世界科技研究与发展,2003,25(5):25-32.
    60.王旭,尹光彩,周国逸,等.鼎湖山针阔混交林光合有效辐射的时空格局[J].北京林业大学学报,2007,29(21):8-23.
    61.王妍,江泽慧,彭镇华,等.长江滩地杨树林生态系统水分利用效率及影响因子[J].生态学报,2010,30(11):2933-2939.
    62.吴朝阳,牛铮.光化学植被指数估算植物光能利用率的研究进展[J].植物生态学报,2008,32(3):734-740.
    63.吴家兵,关德新,孙晓敏.长白山阔叶红松林主要树种及群落冠层光合特征[J].中国科学D辑2006,36(增刊1):83-90.
    64.吴金水,刘守龙,童成立.土壤有机质周转计算机模拟原理[J].土壤学报,2003,40(5):768-774.
    65.肖文发,徐德应,刘世荣,等.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38-46.
    66.肖文发,徐德应.森林能量利用与产量形成的生理生态基础[M].北京:中国林业出版社,1999:42-53.
    67.肖兴威,中国森林生物量与生产力的研究[D],哈尔滨:东北林业大学,2005,21-23.
    68.谢田玲,沈禹颖,邵新庆,等.黄土高原4种豆科牧草的净光合速率和蒸腾速率日动态及水分利用效率[J].生态学报,2004,(8):1679-1686.
    69.许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    70.严吕荣,韩兴国,陈灵芝.北京山区落叶阔叶林优势种叶片特点及其生理生态特性[J].生态学报,2001,21(11):1952-1956.
    71.杨海军.鄱阳湖流域人工造林碳蓄积效应研究—以千烟洲试验站为例[D],北京:中国科学院研究生院,2007,37-45.
    72.蚁伟民,张祝平,丁明懋,等.鼎湖山格木群落的生物量和光能利用效率[J].生态学报,2000,20(2):397-403.
    73.于强,谢贤群,孙菽芬,等.植物光合生产力与冠层蒸散模拟研究进展[J].生态学报,1999,19(5):744-753.
    74.袁凤辉,关德新,吴家兵,等.长白山红松针阔叶混交林林下光合有效辐射的基本特征[J].应用生态学报,2008,19(2):231-237.
    75.张黎萍,荆奇,戴廷波,等.温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响[J].应用生态学报,2008,19(2):311-316.
    76.张娜,于贵瑞,于振良,等.基于3S的自然植被光能利用率的时空分布特征的模拟[J].植物生态学报,2003,27(3):325-336.
    77.张健,张金政,姜闯道,等.鸢尾(Iris L.)叶片取向与其光合特性及光抑制的关系[J].生态学报,2008,28(8):3637-3643.
    78.张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化[J].林业科学,2000,36(3):19-26.
    79.张彦东,卢伯松,丁冰.红松人工林能量环境与光能利用率的研究[J].东北林业大学学报,1993,21(1):35-42.
    80.张祝平,丁明懋.鼎湖山亚热带季风常绿阔叶林的生物量和光能利用效率[J].生态学报.1996,16(5):525-534.
    81.赵广东,王兵,李少宁,等.江西大岗山常绿阔叶林优势种丝栗栲和苦槠栲不同叶龄叶片光合特性研究[J].江西农业大学学报,2005,27(2):161-165.
    82.赵育民,牛树奎.王军邦,等.植被光能利用率研究进展[J].生态学杂志,2007,26(9):1471-1477.
    83.朱文泉,陈云浩,潘耀忠,等.基于GIS和RS的中国植被光利用率估算[J].武汉大学学报,2004,29(8):694-714.
    84.朱文泉,潘耀忠,何浩.中国典型植被最大光能利用率模拟[J].科学通报,2006,51(6):700-706.
    85.朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报,2007,31(3):413-424.
    86. Andreas I, Alexander O, Tania J. Variation in photosynthetic light-use efficiency in a mountainous tropical rain forest in Indonesia[J].Tree Physiology,2008,28(4):499-508.
    87. Antonio C G, Freitas H. Modulation of leaf attributes and water use efficiency in Quercus suber along a rainfall gradient [J]. Trees,2009,23:267-275.
    88. Baldocchi D D, Wilson K B,Gu L.How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest-an assessment with the biophysical model CANOAK [J].Tree Physiology,2002, 22:1065-1077.
    89. Barbour M M, Whitehead D.A demonstration of the theoretical prediction that sap velocity is related to wood density in the conifer Dacrydium cupressinum [J].New Phytologist,2003,158: 477-488.
    90. Binkley D, Stape J L, Ryan M G. Thinking about efficiency of resource use in forests [J]. Forest Ecology and Management,2004,193:5-16.
    91. Bohn B A, Kershner J L. Establishing aquatic restoration priorities using a watershed approach [J]. Journal of Environmental Management,2002,64:355-363.
    92. Bowden R D, Davidson E, Savage K, Arabia C, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest [J]. Forest Ecology and Management,2004,196:43-56.
    93. Cabello P, Aguera E, Haba P.Metabolic changes during natural ageing in sunflower(Helianthus annuus) leaves:expression and activity of glutamine synthetase isoforms are regulated differently during senescence [J]. Physiologia plantarum,2006,128(1):175-185.
    94. Cernusak L A, Marshall J D. Responses of foliar 13C, gas exchange and leaf morphology to reduced hydraulic conductivity in Pinus monticola branches [J].Tree Physiology,2001, 21:1215-1222.
    95. Cescatti A, Niinemets U.2004. Sunlight capture:leaf to landscape//Smith WK, Chritchley C, Vogelmann TC, eds. Photosynthetic Adaptation:Chloroplast to Landscape, Ecological Studies, Berlin:Springer Verlag:42-85.
    96. Chapin F S, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology, New York: Springer-Verlag Inc,2002.
    97. Chasmer L, McCaughey H, Barr A, et al. Investigating light-use efficiency across a jack pine chronosequence during dry and wet years [J].Tree physilology,2008,28(9):1395-1406.
    98. Chen J W, Zhang Q, Cao K F. Inter-species variation of phothosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in south-western China [J]. Ecological Research,2009,24(1):65-73.
    99. Chmura D J Tjoelker M G. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine [J]. Tree Physilology,2008,28(5):729-742.
    100. Cook B D, Bolstad P V, Martin J G, Heinsch F A, DavisK J, Wang W, Desai A R, Teclaw R M. Using light-use and production efficiency models to predict photosynthesis and net carbon exchange during forest canopy disturbance[J]. Ecosystems,2008,11:26-44.
    101. Coursolle C, Margolis H A, Barr A G, et al.Late-summer carbon fluxes from caniadian forests and pealands along east-west continental transect [J]. Canadian Journal of Forest Research,2006,36 (3):783-800.
    102. Drolet G G, Middleton E M, Huemmrich K F, et al. Regional mapping of gross light-use efficiency using MODIS spectral indices [J]. Remote Sensing of Environment,2008,112(6):3064-3078.
    103. Du T B. Effects of site management on growth, biomass partitioning and light use efficiency in a young stand of Eucalyptus grandis in South Africa [J]. Forest Ecology and Mnagement,2008, 255(7):2324-2336.
    104. Enriquez S, Pantoja-Reyes N I. Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum[J].Oecologia,2005,145:235-243.
    105. Ethier G J, Livingston N J, Harrison D L. Low stomata and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves [J]. Plant, Cell and Environment,2006,29:2168-2184.
    106. Evans J R, Poorter H. Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain [J]. Plant, Cell and Environment,2001,24:755-767.
    107. Feng Y L, Wang J F, Sang W G. Irradiance acclimation, capture ability, and efficiency in invasive and non-invasive alien plant species[J].Photosynthetica,2007,45 (2):245-253.
    108. Gepstein S, Sabehi G, Carp M J, et al. Large-scale identification of leaf senescence-associated genes [J].The Plant Journal,2003,36:629-642.
    109. Goetz S J, Prince S D.Modeling terrestrial carbon exchange and storage:evidence and implications of functional convergence in light-use efficiency [J]. Advances in Ecological Research,1999,28: 57-92.
    110. Green D S, Erickson J E, Kruger E L. Foliar morphology and canopy nitrogen as predictors of light-use efficiency in terrestrial vegetation [J]. Agricultural and Forest Meteorology,2003,115: 163-171.
    111. Grot R. Sensitivity of volatile monoterpene emission to changes in canopy structure:a model-based exercise with a process-based emission model [J].New Phytologist,2007,173: 550-561.
    112. Gu L H, Baldocchi D,Verma S B, et al. Advantages of diffuse radiation for terrestrial ecosystem productivity [J].Journal of Geophysical Research Atmospheres,2002:107:5-6.
    113.Hanba Y T, Kogami H, Terashima I.The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand [J].Plant, Cell and Environment,2002,25: 1021-1030.
    114. Harlow B A, Duursma R A,Marshall J D.Leaf longevity of western red cedar (Thuja plicata) increases with depth in the canopy [J].Tree Physiology,2005,25:635-640.
    115. Hendrickson L, Forster B. Processes contributing to photoprotection of grapevine leaves illuminated at low temperature [J]. Physiologia Plantarum,2004,121:272-281.
    116. Herbert D A. Fownes J H. Forest productivity and efficiency of resource use across a chronosequence of tropical montane soils [J].Ecosystems,1999,2:242-254.
    117. Hilker T, Coops N C, Schwalm C R. Effects of mutual shading of tree crowns on prediction of photosynthetic light-use efficiency in a coastal douglas-fir forest [J].Tree physiology,2008,28: 825-834.
    118. Huxman T E, Smith M D, Fay P A, et al. Convergence across biomes to a common rain-use efficiency.Nature,2004,429(6992):651-654.
    119. Ishii H T, Jennings G M, Sillett S C, et al. Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirenstrees [J].Oecologia,2008,156(4):751-763.
    120. Jenkinsa J P,Richardsona A D,Braswella B H, et al. Refining,light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements [J].Agricultural and Forest Meteorology,2007,143(2):64-79.
    121. Johnson D M, Smith W K. Low clouds and cloud immersion enhance photosynthesis in understory species of a southern Appalachian spruce fir forest (USA) [J]. American Journal of Botany,2006, 93(11):1625-1632.
    122. Kelly J, Jose S, Nichols J D, et al. Growth and physiological response of six Australian rainforest tree species to a light gradient [J].Forest Ecology and Management,2009,257:287-293
    123. Kitahashi Y, Ichie T, Maruyama Y, et al. Photosynthetic water use efficiency in tree crowns of Shorea beccariana and Dryobalanops aromatica in a tropical rain forest in Sarawak, East Malaysia [J].Photosynthetica,2008,46(1):151-155.
    124. Kitajima K, Mulkey S S, Samaniego M. Decline of photosynthetic capacity with leaf age and position in two tropical pioneer tree species [J]. American Journal of Botany,2002,89:1925-1932.
    125. Kitajima K, Mulkey S S, Wright S J. Variation in Crown Light Utilization Characteristics among Tropical Canopy Trees[J], Annals of Botany,2005,95:535-547.
    126. Knohl A, Baldocchi D D. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem [J]. Journal of Geophysical Research-Biogeosciences,2008,113:1-17.
    127. Kursar T A. Coley P D. Contrasting modes of light acclimation in two species of the rainforest understory [J]. Oecologia,1999,121:489-498.
    128. Le Roux X, Bariac T, Sinoquet H, et al. Spatial distribution of leaf water-use effciency and carbon isotope discrimination within an isolated tree crown [J]. Plant, Cell and Environment,2001,24(10): 1021-1032.
    129. Leil T T, Nilsen E T, Semones S W. Light environment under Rhododendron maximum thickets and estimated carbon gain of regenerating forest tree seedlings [J].Plant Ecology,2006,184: 143-156.
    130. Lim P O, Kim H J, Nam H G. Leaf senescence [J]. Annual Review of Plant Physiology,2007,58: 115-136.
    131. Long S P, Zhu X G, Naidu S L, et al. Can improvementin photosynthesis increase crop yields [J]? Plant, Cell, and Environment,2006,29:315-330.
    132. Major J E, Mosseler A, Barsi D C. Impact of three silvculture treatment on growth, light-energy processing, and related needle-lever adaptive traits of Pinus strobes from two regions [J]. Forest Ecology and Management,2009,257:168-181.
    133. Martin R E, Asner G P, Sack L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden [J]. Oecologia,2007,151:387-400.
    134. Martin T A, Jokela E J. Developmental patterns and nutrition impact radiation use efficiency components in southern pine stands [J]. Ecological Applications,2004,14(6):1839-1854.
    135. Mitchell A K. Acclimation of Pacific yew (Taxus brevifolia) foliage to sun and shade [J].Tree Physiology,1998,18:749-757
    136. Monteith J L, Solar radiation and productivity in tropical ecosystems [J].Journal of Applied Ecology,1972,9:747-766.
    137. Monteith J L. Climate and the efficiency of crop production in Britain [J].Philosophical Transactions of the Royal Society B,1977,281:277-294.
    138. Montgomery R A. Givnish T J. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads:dynamic photosynthetic responses [J]. Oecologia,2008,155:455-467.
    139. Muthuri C W, Ong C K, Craigon J. Gas exchange and water use efficiency of trees and maize in agroforestry systems in semi-arid Kenya [J]. Agriculture Ecosystems and Environment,2009,129: 497-507.
    140. Nichol C J, Rascher U, Matsubara S, et al. Assessing photosynthetic efficiency in an experimental mangrove canopy using remote sensing and chlorophyll fluorescence [J]. Trees,2006,20:9-15.
    141.Nicotra A B, Chazdon R L, Iriarte S V B. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests [J]. Ecology,1999,80 (6):1908-1926.
    142. Niinemets U, Cescatti A, Rodeghiero M, et al. Complex adjustments of photosynthetic capacity and internal mesophyll conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant, Cell and Environment,2006,29,1159-1178.
    143. Niinemets U. Photosynthesis and resource distribution through plant canopies [J]. Plant, Cell and Environment,2007,30,1052-1071.
    144. O'Connell K E B, Gower S T, Norman J M. Comparison of net primary production and light-use dynamics of two boreal black spruce forest communities [J]. Ecosystems,2003,6:236-247.
    145. O'Grady A P, Cook P G. Eamus D, et al. Convergence of tree water use within an arid-zone woodland [J]. Oecologia,2009,160:643-655.
    146. Oelze M L, Kandibinder A, Dietz K J. Redox regulation and overreduction control in the photosynthesizing cell:Complexity in redox regulatory networks [J]. Biochimica Biophysica,2008, 178(11):261-127.
    147. Oguchi R, Hikosaka K, Hirose T. Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees [J]. Plant, Cell and Environment,2005,28:916-927.
    148. Parker W C, Dey D C. Influence of overstory density on ecophysiology of red oak(Quercus rubra) and sugar maple(Acer saccharum) seedlings in central Ontario shelterwoods [J]. Tree Physiology, 2008,28 (5):797-804.
    149. Paruelo J M, Lauenroth W K, Burke I C, et al. Grassland precipitation-use efficiency varies across a resource gradient [J]. Ecosystems,1999,2(1):64-68.
    150. Patakas A, Noitsakis B, Chartzoulakis K. Changes in WUE in Vitis vinifera as affected by leaf age. 2nd International Symposium on Irrigation of Horticultural Crops, Greece,1997:457-460.
    151. Pearcy R W. Responses of plants to heterogeneous light environments [M]. In:Pugnaire FI and Valladares F (eds) Handbook of Functional Plant Ecology 2nd edn,2007,213-257.
    152. Poorter H, Pepin S, Rijkers T, et al. Construction costs, chemical composition and payback time of high-and low-irradiance leaves[J]. Journal of Experimental Botany,2006,57,355-371.
    153. Potter C S, Randerson J T, Field C B, Matson P A, Vitousek P M, Mooney H A, Klooster S A. Terrestrial ecosystem production:a process model based on global satellite and surface data [J]. Global Biogeochemical Cycles,1993,7(4),811-841.
    154. Quero J L, Villar R, Maranon T, et al. Interactions of drought and shade effects on seedlings of four Quercus species:physiological and structural leaf responses. New Phytologist,2006,170(4): 819-833.
    155. Rambal S, Ourcival J M, Joffre R, et al Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem:scaling from leaf to a canopy [J]. Global Change Biology, 2003,9:1813-1824.
    156. Rascher U, Ladislav N. Dynamics of photosynthesis in fluctuating light Commentary [J].Current Opinion in Plant Biology,2006,9:671-678.
    157. Reich, P B, Uhl M B W, Ellsworth D S. Leaf lifespan as a dterminant of leaf structure and function among 23 amazonian tree species[J]. Oecologia,1991,86:16-24.
    158. Robakowski P, Wyka T, Samardakiewicz S, et al. Growth, photosynthesis and needle structure of silver fir(Abies alba Mill.) seedlings under different canopies [J]. Forest Ecology and Management, 2004,201:211-227.
    159. Rosati A, Dejong T M. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of Individual leaves [J].Annals of Botany,2003,91:869-877.
    160. Roupsard O, le Maire G, Nouvellon Y. Scaling-up productivity (NPP) using light or water use efficiencies (LUE, WUE) from a two-layer tropical plantation [J]. Agroforestry Systems,2009,76: 409-422.
    161. Ryan M G, Yoder B J. Hydraulic limits to tree height and tree growth-What keeps trees from growing beyond a certain height [J]? BioScience,1997,47:235-242.
    162. Santiago L S, Kitajima K, Wright S J, et al. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest [J]. Oecologia,2004,139(4):495-502.
    163. Sellin A, Eensalu E, Niglas A. Is distribution of hydraulic constraints within tree crowns reflected in photosynthetic water-use efficiency? An example of Betula pendula [J]. Ecology Reseach,2010, 25:173-183.
    164. Sharkey T D, Singsaas E L, Vanderveer P J, et al. Field measurements of isoprene emission from trees in response to temperature and light [J]. Tree Physiology,1996,16:649-654.
    165. Shirke P A. Leaf photosynthesis, dark respiration and fluorescence as influenced by leaf age in an evergreen tree, Prosopis juliflora [J]. Photosynthetica,2001,39(2):305-311.
    166. Stape J L, Ryan M, Binkley D, Testing the utility of the 3-PG model for growth of Eucalyptus grandis×urophylla with natural and manipulated supplies of water and nutrients [J].Forest Ecology and Management,2004,193:219-234.
    167. Stape J L, Binkley D, Ryan M G, Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil [J].Forest Ecology and Management,2004,193:17-31
    168. Takahashi K, Mikami Y. Effects of canopy cover and seasonal reduction in rainfall on leaf phenology and leaf traits of the fern Oleandra pistillaris in a tropical montane forest, Indonesia [J]. Journal of Tropical Ecology,2006,22:599-604.
    169. Teixeira E I, Moot D J, Brown H E. Defoliation frequency and season affected radiation use effciency and dry matter partitioning to roots of lucerne (Medicago sativa L.) crops [J]. European Journal Agronomy,2008,28:103-111.
    170. Terashima I, Miyazawa S I, Hanba Y T. Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf [J]. Journal of Plant Research,2001, 114:93-105.
    171. Toledo-Aceves T, Swaine M D. Biomass allocation and photosynthetic responses of lianas and pioneer tree seedlings to light [J].Acta oecologica,2008,34:38-49.
    172. Turner D P, Ollinger S V, Kimball J S. Integrating remote sensing and ecosystem process models for landscape- to regional-scale analysis of the carbon cycle [J], Bio Science,2004,54(6):573-584.
    173. Turner D P, Urbanski S, Bremer D, et al. A cross-biome comparison of daily light use efficiency for gross primary production [J]. Globle Change Biology,2003,9:383-395.
    174. Turner D P, Gower S T, Cohen W B, et al. Effects of spatial variability in light use efficiency on satellite-based NPP monitoring [J]. Remote Sensing of Envionment.2002,80:397-405
    175. Valladares F, Right S J, Lasso E. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rain forest [J]. Ecology,2000,81(7):1925-1936.
    176. Valladares F. Light heterogeneity and plants:from ecophysiology to species coexistence and biodiversity [M].In Progress in Botany. (eds Esser K, Luttge U, Beyschlag W, Hellwig F) Springer Verlag, Berlin, Germany.2003:439-471.
    177. van Kuijk M, Anten N P,Oomen R J, et al. The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam [J]. Oecologia,2008,157(1):1-12.
    178. Wang G G, Bauerle W L, Bryan T. Mudder effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut (Castanea dentata) seedlings[J]. Forest Ecology and Management,2006,226(1-3):173-180.
    179. Weaver L M, Amasion R M. Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants [J]. Plant Physiology,2001,127:876-886.
    180. Wyka T, Robakowski P, Zytkowiak R. Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments [J]. Photosynthesis Research,2008,95:87-99.
    181. Yu G R, Song X, Wang Q F. Water-use efficiency of forest ecosystems in eastern China and its relations to climation variables[J].New phytologist,2008,177:927-937.
    182. Zhang L, Yu G R, Sun X M. Seasonal variation of ecology apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China [J]. Agricultural and Forest Meteorology,2006,137:176-187.
    183. Zhang S B, Hu H, Xu K, et al. Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of cypripedium guttatum [J]. Journal of Plant Physiology,2007, 164(5):611-620.
    184. Zhao M S, Heinsch F A, Nemani R R, et al. Improvements of the MODIS terrestrial gross and net primary production global dataset [J]. Remote Sense,2005,95 (2):164-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700