用户名: 密码: 验证码:
合金镀层对碳纤维催化石墨化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维是一种新型的高性能增强材料,它具有低密度、高强度、高模量、耐高温、抗化学腐蚀、低电阻、高导热、低热膨胀、耐化学辐射和良好的生物相容性等特性。主要用作树脂、碳、金属、陶瓷、水泥基复合材料的增强体,在航空航天、汽车工业、土木建筑、文体器材、医疗器材等方面应用非常广泛。而碳纤维表面金属化可进一步拓展其应用范围。碳纤维石墨化后其性能得到极大增强,但较高的热处理温度一直是影响石墨纤维价格的主要因素。通过添加催化剂可以降低热处理温度使得碳纤维石墨化过程更加容易进行。而如何添加催化剂一直是研究的热点。碳纤维催化石墨化研究一般都集中在单元素催化,而对于多元催化研究甚少。本文针对以上问题,研究并开发了碳纤维表面电沉积合金工艺,并就碳纤维表面电沉积合金催化剂对其催化石墨化进行了深入的探讨。研究工作主要包括以下几个方面:
     1.研究了碳纤维表面电沉积Ni-B合金工艺,结果表明碳纤维的预处理、镀液组分以及电解参数对沉积速度及镀层质量有明显的影响。通过扫描电子显微镜(SEM)、X射线衍射(XRD)、电感耦合等离子体发射光谱仪(ICP-AES)对镀层的微观形貌、结构及组分进行了分析,结果表明在确定的电镀条件下可获得镀层中B的质量分数为0.8%~4%的Ni-B微晶镀层,且镀层细致、均匀、致密、结合力好。
     2.研究了碳纤维表面电沉积Ni-B合金对其催化石墨化的影响。将镀有含B质量分数为4%的Ni-B合金的碳纤维和碳纤维原丝在不同温度下热处理,通过XRD、激光拉曼(Raman)光谱、SEM对其结构进行分析,结果表明:有Ni-B催化剂的碳纤维在较低的热处理温度下能获得较高的石墨化度,而碳纤维原丝即使在很高的热处理温度下石墨化程度也很低,Ni-B合金对碳纤维有很好的催化石墨化效果。改变镀层中B含量,在相同温度下热处理,研究结果表明:随着镀层中B含量的增加,碳纤维石墨化程度相应增大,Ni和B有很好的协同催化效果。另外,还对Ni-B合金的催化石墨化机理进行了探讨。
     3.研究了碳纤维表面电沉积Fe-P合金对其催化石墨化的影响。将镀有含P质量分数为7%的Fe-P合金的碳纤维在不同温度下热处理,通过XRD、Raman光谱、SEM对其结构进行分析,结果表明:碳纤维在较低的热处理温度下能获得很高的石墨化度,随着热处理温度的增加,碳纤维石墨化度相应增大,Fe-P合金对碳纤维有很好的低温催化石墨化效果。改变Fe-P合金中P的含量,在相同温度下热处理,研究结果表明:随着镀层中P含量的增加,碳纤维石墨化程度相应增大。改变Fe-P合金催化剂的沉积时间,在相同温度下热处理,研究结果表明:随着沉积时间的增加,碳纤维石墨化程度逐渐增大。而当催化剂达到一定的量后,其石墨化程度基本不变。另外,还对Fe-P合金的催化石墨化机理进行了探讨。
Carbon fibers are a new type of high-performance reinforced material which has characteristics of low density, high strength, high modulus, resistance to high-temperature, good chemical anti-corrosion, low resistance, high thermal conductivity, low thermal expansion, resistance to chemical radiation and good biocompatibility. Carbon fibers are used mostly as reinforced materials of resin, carbon, metal, ceramic and cement and have extensive applications in aerospace, automotive, civil engineering, cultural and sports equipment, medical devices and so on. Carbon fibers coated with metals can further expand their application scope. The properties of carbon fibers can be greatly enhanced after graphitization. However, high heat treatment temperature (HTT) to graphitization is the main factor leading to high price of graphite fibers. The graphitization temperature can be reduced and the graphitization process will be facile by adding catalysts. Studies on catalytic graphitization of carbon fibers have mainly concentrated on single elements. However, there is little research on multi-element catalytic graphitization. Electroplating alloy on the surface of carbon fibers and the catalytic graphitization mechanism of carbon fibers with electrodeposited alloy coating were studied in this paper. The main contents are presented as follows:
     1. The process of electroplating Ni-B alloy on the surface of carbon fibers was investigated. The results show that the Ni-B deposits performance and deposition rate were evidently affected by pretreatment, bath composition and electrodeposition parameters. scanning electron microscope (SEM) , X-ray diffraction (XRD) and ICP-AES techniques were used to analyze the morphology, structure and composition of the Ni-B deposit. The results show that uniform, compact Ni-0.8~4 wt%B microcrystalline coatings with good adhension can be obtained under certain conditions.
     2. Catalytic graphitization of carbon fibers with electrodeposited Ni-B alloy coating was studied. Carbon fibers with and without electrodeposited Ni-B coating were heat treated at different temperatures and the structural changes were characterized by XRD, Raman spectroscopy and SEM The results show that high graphitization can be achieved for carbon fibers at low heat treatment temperature (HTT) when the Ni-B coating is present. Moreover, the degree of graphitization increases with the increasing of B content in Ni-B coating for Ni-B coated carbon fibers at the same HTT. The mechanism of catalytic graphitization was discussed.
     3. Catalytic graphitization of carbon fibers with electrodeposited Fe-P alloy coating was studied. Carbon fibers with electrodeposited Fe-P coating were heat treated at different temperatures and the structural changes were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscope. The results show that high graphitization can be achieved for carbon fibers at lower HTT when the Fe-P coating is present. Moreover, the degree of graphitization increases with the increasing of P content in Fe-P coating for Fe-P coated carbon fibers at the same HTT. And the degree of graphitization increases with the increasing of the electrodepositing time of Fe-P coating. But the degree of graphitization is unchanged when the catalyst reaches a certain quantity. The mechanism of catalytic graphitization was also discussed.
引文
[1] 张晓明, 刘雄亚. 纤维增强热塑性复合材料及其应用. 北京: 化学工业出版社, 2007: 82-92
    [2] 贺福. 碳纤维及其应用技术. 北京: 化学工业出版社, 2004: 1-10
    [3] 余波. 碳纤维生产发展及市场前景. 上海化工, 2007, 32(9): 46-49
    [4] 刘宝峰, 陈绍杰, 李佩兰. 大丝束碳纤维复合材料力学性能研究. 高科技纤维与应用, 2003, 28(6): 8-9
    [5] 宋显辉, 刘冬, 吕泳等. 碳纤维树脂基复合材料的传感特性研究. 工程塑料应用,2007, 35(2): 48-51
    [6] 刘洪凤. 防电磁辐射纤维的研究进展. 产业用纺织品, 2007, 25(6): 1-4
    [7] Harris B, Varlow J, Ellis C D. The fracture behaviour of fibre reinforced concrete. Cement Concrete Res, 1972, 2(4): 447-461
    [8] 何军拥, 姚立宁. 碳纤维混凝土的特征及应用探讨. 新型建筑材料, 2006, 34(4): 12-13
    [9] 陈绍杰, 朱珊. 大丝束碳纤维应用研究. 高科技纤维与应用, 2004, 29(4): 13-16
    [10] 张鹏. 碳纤维的应用及市场. 新材料产业, 2001, 10(12): 27-29
    [11] 刘国昌, 徐淑琼. 聚丙烯腈基碳纤维及其应用. 机械制造与自动化, 2004, 33(4): 41-43
    [12] 杨秀珍, 李青山, 卢东. 聚丙烯腈基碳纤维研究进展. 现代纺织技术, 2007, 15(1): 45-47
    [13] 马运志. 沥青基碳纤维的发展和应用. 山东纺织经济, 2006, 13(3): 74-76
    [14] 范华林, 孟凡颢, 杨卫. 碳纤维格栅结构力学性能研究. 工程力学, 2007, 24(5): 42-46
    [15] 朴洪立. 碳纤维结构加固技术的原理及在建筑结构中的应用. 黑龙江科技信息, 2007, 12(3): 192-193
    [16] 王明先, 王荣国, 刘文博等. 国产高性能碳纤维组织结构表征与性能分析. 玻璃钢/复合材料, 2007, 12(1): 28-32
    [17] 傅强, 庄茁. 新型碳纤维格栅夹层结构模拟研究. 强度与环境, 2006, 33(3): 49-55
    [18] Hosseinzadeh R, Shokrieh M M, Lessard L. Damage behavior of fiber reinforced composite plates subjected to drop weight impacts. Compos Sci Technol, 2006, 66(1): 61-68
    [19] 赵稼祥. 民用航空和先进复合材料. 高科技纤维与应用, 2007, 32(2): 6-10
    [20] 陈兴, 余渊. 碳纤维在土木建筑中的应用. 江西建材, 2004, 8(4): 20-21
    [21] 徐巍巍. 碳纤维复合材料在高新技术领域中的应用. 国外丝绸, 2005, 20(5): 21-23
    [22] 赵福辰. 电磁屏蔽材料的发展现状. 材料开发与应用, 2001, 16(10): 29-33
    [23] Lu G H, Li X T, Jiang H C. Electrical and shielding properties of abs resin filled with nickel-coated carbon fibers. Compos Sci Technol, 1996, 56(2): 193-200
    [24] Tzeng S S, Chang F Y. Electrical resistivity of electroless nickel coated carbon fibers. Thin Solid Films, 2001, 388(1): 143-149
    [25] 张红波, 刘洪波, 吴勇. 碳纤维表面化学镀 Ni-B 的初步研究. 表面技术, 1994, 23(3): 120-124
    [26] 韩变华, 罗天骄, 姚广春等. 碳纤维镀镍. 有色矿冶, 2006, 22(2): 37-40
    [27] Tzeng S S, Chang F Y. Electrical resistivity of electroless nickel coated carbon fibers. Thin Solid Films, 2001, 388(1): 143-149
    [28] Park S J, Jang Y S, Rhee K Y. Interlaminar and Ductile Characteristics of Carbon Fibers-Reinforced Plastics Produced by Nanoscaled Electroless Nickel Plating on Carbon Fiber Surfaces. J Colloid Interf Sci, 2002, 245(2): 383-390
    [29] 陶宁, 查正根, 张良等. 碳纤维表面电镀铜的研究. 表面技术, 2001, 30(4): 1-5
    [30] 李东风, 王浩静, 朱星明等. 碳纤维石墨化设备的研究与进展. 化工进展, 2004, 23(2): 168-172
    [31] 李东风, 王浩静, 贺福等. 碳纤维高温热处理技术进展. 化工进展, 2004, 23(8): 823-826
    [32] 陈蔚然. 碳素材料工艺基础. 长沙: 湖南大学出版社, 1985: 50-52
    [33] Jeong S H, Lim D C, Boo J H, et al. Interaction of silver with oxygen on sputtered pyrolytic graphite. Appl Catal A, 2007, 320(1): 152-158
    [34] Oya A, Otani S. Influences of particle size of metal on catalytic graphitization on non- graphitizing carbons. Carbon, 1981, 19(5): 391-400
    [35] 李玉敏. 催化石墨化. 炭素, 1982, 2(2): 18-20
    [36] 冯汉明. 石墨化过程中铁的作用. 炭素, 1985, 4(1): 11-17
    [37] Dhakate S R, Mathur R B, Bahl O P. Catalytic effect of iron oxide on carbon/ carbon composites during graphitization. Carbon, 1997, 35(12): 1753-1756
    [38] Oya A, Otani S. Effects of particle size of calcium and calcium compounds on graphitization of phenolic resin carbon. Carbon, 1979, 17(2): 125-129
    [39] Yudasaka M, Tasaka K, Kikuchi R,et al. Influence of chemical bond of carbon onNi catalyzed graphitization. J Appl Phys, 1997, 81(109): 7623-7629
    [40] Mochida I, Ohtsubo R, Takeshita K. Catalytic graphitization of non-graphitizable carbon by chromium and manganese oxides. Carbon, 1980, 18(2): 117-123
    [41] Marsh H. Warburrton A P. Catalysis of graphitization. J Appl Chem, 1970, 20(1): 133-142
    [42] Marinkovic S, Suznjevic C, Dezarov I. Simultaneous pyrolytic deposition of carbon and boron. Carbon, 1969, 72(2): 185-193
    [43] 李崇俊, 马伯信等. 硼在碳/碳复合材料中的状态及其催化石墨化作用. 材料工程, 1998, 5(12): 3-7
    [44] 姚广春, 张晓明. 钠及氟盐对铝电解槽中炭阴极石墨化过程的催化作用. 炭素, 1997, 16(2): 20-22
    [45] 邱海鹏,宋永忠,刘朗. 掺杂硅再结晶石墨微观结构及其性能的研究. 航空材料学报, 2002, 22(3): 16-21
    [46] Kotosonov A S, Vinnekov V A ,Polozhichin A I, et al. Effect of chlorine on the changes of electronic properties of pyrolytic carbon in the course of graphitization. Carbon, 1970, 8(3): 389-392
    [47] Allen S, Cooper G A, Mayer R M. Carbon fibres of high Young’s modulus. Nature, 1969, 224(5220): 684-685
    [48] Ezekiel H M. Morphology of graphite-fibers—Coexistence of crystalline graphite and turbostratic carbon phases. Carbon, 1968, 6(2): 237-240
    [49] Jones C. The chemistry of carbon fibre surfaces and its effect on interfacial phenomena in fibre/epoxy composites. Compos Sci Technol, 1991, 42(4): 275-298.
    [50] Dobiasova L, Stary V, Glogar P, et al. Analysis of carbon fibers and carbon composites by asymmetric X-ray diffraction technique. Carbon, 1999, 37(3): 421-425
    [51] Morn M, Miguel A, Robert J. Raman spectroscop study of HM carbon fibres. Carbon, 2002, 40(6): 845-855
    [52] 钱崇梁, 周桂芝, 黄启忠. XRD 测定炭素材料的石墨化度. 中南工业大学学报, 2001, 32(3): 285-288
    [53] 邓海金, 李东生. C/C 复合材料石墨化度 P1 模型的表征及测定. 材料工程, 2001, 8(4): 29-33
    [54] 李崇俊, 马伯信, 霍肖旭. 炭/炭复合材料石墨化度的表征. 新型炭材料, 1999, 14(1): 19-24
    [55] 邹林华, 黄启忠, 邹志强. C/C 复合材料石墨化度的研究. 炭素, 1998, 17(1):8-11
    [56] 汤中华, 周桂芝, 熊杰等. 炭/炭复合材料石墨化度的 XRD 均峰位法测定. 中国有色金属学报, 2003, 13(6): 1435-1439
    [57] 张福勤, 黄伯云, 黄启忠等. 炭/炭复合材料石墨化度的研究进展. 矿冶工程, 2000, 20(4): 10-13
    [58] 张福勤, 黄启忠, 黄伯云等. C/C 复合材料石墨化度的喇曼光谱表征. 无机材料学报, 2003,18(2): 361-366
    [59] 郑昌琼, 张铭成, 冉均国. 金刚石薄膜品质及其表征. 材料研究学报, 1997, 11(3): 231-239
    [60] 邓海金, 李明, 孙立等. 石墨化处理对炭P炭复合材料磁电阻特性的影响研究. 新型炭材料, 2003, 18(2): 89-93
    [61] Park S J, Jang Y S. X-ray diffraction and X-ray photoelectron spectroscopy studies of Ni–P deposited onto carbon fiber surfaces: impact properties of a carbon-fiber-reinforced matrix. J Colloid Interf Sci. 2003, 263(1): 170-176
    [62] 华宝家, 肖高志, 杨建生. 碳纤维在结构隐身材料中的应用研究. 宇航材料工艺, 1994, 24(3): 31-34
    [63] 石子源, 高宏, 王德庆. 碳纤维化学镀镍及其复合材料. 兵器材料科学与工程, 1997, 20(1): 55-58
    [64] 徐维正. 世界碳纤维前途光明. 化工新型材料, 1997, 25(5): 27-28
    [65] 田丰, 黄永秋, 潘鼎. 炭纤维电镀镍工艺的研究. 炭素, 2002, 21(1): 16-20
    [66] Tzeng S S, Chang F Y. EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Materials Science Engineering A, 2001, 302(2): 258-267
    [67] Park S J, Shin J S. Influence of copper content on NO removal of the activated carbon fibers produced by electroplating. J Colloid Interf Sci, 2003, 264(1): 39-42
    [68] Tzeng S S. Catalytic graphitization of electroless Ni–P coated PAN-based carbon fibers. Carbon, 2006, 44(6): 1986-1993
    [69] Marsh H, Warburton A P. Catalysis of graphitization. J Appl Chem, 1970, 20(2): 133-142
    [70] Jackson P W, Marjoram J R. Recrystallization of nickel-coated carbon fibres. Nature, 1968, 218(2): 83-84
    [71] Oya A, Yamashita R, Otani S. Catalytic graphitization of carbons by borons. Fuel, 1979, 58(7): 495-500
    [72] 武学高. 塑料电镀技术. 成都: 四川科技出版社, 1983: 88-89
    [73] Oya A, Otani S, Catalytic Graphitization of Carbons by Various Metals. Carbon, 1979, 17(1): 131-137
    [74] Weisweiler W, Subramanian N, Terwiesch B, Catalytic Influence of Metal Melts on The Graphitization of Monolithic Glasslike Carbon. Carbon, 1971, 9(6): 755-761
    [75] Schwartz A S, Bokros J C. Catalytic Graphitization of Carbon by Titanium. Carbon, 1976, 5(3): 325-330
    [76] Oya A, Yamashita R, Otani S. Catalytic graphitization of carbons by borons. Fuel, 1979, 8(7): 495-500
    [77] Hishiyama Y, Yamada S. Graphitization of carbon fibre and glassy carbon composite. Carbon, 1973, 11(6): 689-691
    [78] Jackson P W, Marjoram J R. Recrystallization of nickel-coated carbon fibres. Nature, 1968, 218(5136): 83-84
    [79] Zou L H, Huang B Y, Huang Y, et al. An investigation of heterogeneity of the degree of graphitization in carbon–carbon composites, Mater Chem Phys, 2003, 82(3): 654-662
    [80] Awasthi S, Wood J L. C/C Composite Materials for aircraft brakes. Adv Ceram Mater, 1988, 3(4): 449-454
    [81] Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 1995, 33(11): 1561-1565
    [82] Wang Y, Serrano S, Santiago-Aviles J J. Raman characterization of carbon nanofibers prepared using electrospinning. Synth Met, 2003, 138(3): 423-427
    [83] Lespade P, Marchand A, Couzi M, et al. Caracterisation de materiaux carbones par microspectrometrie Raman. Carbon, 1984, 22(4): 375-385
    [84] Cuesta A, Dhamelincourt P, Laureyns J, et al. Raman microprobe studies on carbon materials. Carbon, 1994, 32(8): 1523-1532
    [85] Tanaka A, Yoon S H, Mochida I. Preparation of highly crystalline nanofibers on Fe and Fe–Ni catalysts with a variety of graphene plane alignments. Carbon, 2004, 42(3): 591-597
    [86] Fitzer E, Kegel B. Reaktionen von Kohlenstoffges?ttigter Vanadium- carbidschmelze mit ungeordnetem Kohlenstoff (Beitrag zur katalytischen Graphitierung). Carbon, 1968, 6(4): 433-446
    [87] Konno T J, Sinclair R. Crystallization of amorphous carbon in carbon-cobalt layered thin films. Acta Metall Mater, 1995, 43(2): 471-484
    [88] Lee K H, Chang D, Kwon S C. Properties of electrodeposited nanocrystallineNi–B alloy films. Electrochim Acta, 2005, 50(23): 4538-4543
    [89] Krishnaveni K, Sankara Narayanan T S N, Seshadri S K. Electroless Ni–B coatings: preparation and evaluation of hardness and wear resistance. Surf Coat Tech, 2005, 190(1): 115-121
    [90] Shi Z Y, Wang D Q, Ding Z M. Surface strengthening pure copper by Ni-B coating. Appl Surf Sci, 2004, 221(1): 62-68
    [91] Reshetenko T V, Avdeeva L B, Ismagilov Z R, et al. Catalytic filamentous carbon: Structural and textural properties. Carbon, 2003, 41(8): 1605-1615
    [92] Martin-Gallon I, Vera J, Conesa J A, et al. Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon, 2006, 44(8): 1572-1580
    [93] Tanaka A, Yoon S H, Mochida I. Preparation of highly crystalline nanofibers on Fe and Fe–Ni catalysts with a variety of graphene plane alignments. Carbon, 2004, 42(3): 591-597
    [94] Krishnankutty N, Park C, Rodriguez N M, et al. The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene. Catal Today, 1997, 37(3): 295-307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700