用户名: 密码: 验证码:
配有高强钢筋高强混凝土框架结构抗震性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要工作是对配有高强钢筋高强混凝土框架结构进行了抗震性能试验研究。与传统钢筋混凝土结构相比,高强钢筋高强混凝土框架是更加有效和经济的结构体系。除了充分利用材料的经济性方面,研究表明此结构在强度方面比普通钢筋混凝土框架结构更优秀,延性性能方面也能够满足抗震要求。在国内首次对1/2比例两个自由度试验子结构及六个自由度计算子结构的八层高强钢筋高强混凝土框架结构进行了子结构拟动力试验研究,并运用OpenSees对该结构进行了非线性地震反应分析,主要的研究成果可以概括为以下几个方面。
     (1)研究了轴压比系数和体积配箍率等因素对配有高强钢筋高强混凝土柱的滞回特性的影响并确定了其在不同抗震性态水平条件下的变形指标。通过试验结果分析了配有高强钢筋高强混凝土柱试件的破坏形态、变形能力、滞回特性等抗震性能指标。基于配有高强钢筋高强混凝土柱试件的低周反复加载试验结果,采用修正Park-Ang模型对12个配有高强钢筋高强混凝土柱试件进行了不同位移角幅值下的损伤指数计算对比分析。基于不同性能水平下的变形和相关参数试验结果,提出了以裂缝宽度和纵向钢筋应力水平、残余变形、极限转角分别作为正常使用、可修和避免倒塌等性能水平的评定参数,并建议了相应性能水平的限值。与试验结果的对比显示,该模型可以合理的反映不同参数高强混凝土柱的损伤发展过程,可为高强混凝土结构基于性态的震损评估提供参考。
     (2)拟动力试验结合了拟静力试验和振动台试验的优点,是非常有效和具有发展潜力的抗震试验方法。将子结构技术应用到拟动力试验中使拟动力试验有了更广泛的应用范围。本文根据子结构法拟动力试验的原理及特点阐述对子结构法拟动力试验方法。通过对配有高强钢筋高强混凝土框架结构进行子结构拟动力试验,当试验子结构采用多自由度时,不仅能够得到全结构的地震反应,还可较好地反映试验子结构在地震作用下力和位移的分布方式,并且可得到不同性质楼层在地震作用下的滞回耗能特性。试验结果与地震反应观测结果吻合得较好。研究结果表明,进行子结构法拟动力试验时试验子结构的合理选取是试验成功的关键。所以,子结构拟动力试验方法对研究高强混凝土结构的试验性能来说是很有效的工具。
     (3)本文利用MTS生产的电液伺服加载系统,分别对两个缩尺比例为1/2的两层两榀单跨的框架模型进行抗震试验研究。首先,采用经过调幅的具有不同地震加速度峰值的三种地震波作为激励进行拟动力试验,共采用10种工况加载,重点研究了这种结构在地震过程中动力特性的变化、裂缝出现情况、滞回性能、弹性和弹塑性阶段的地震反应及抗震性能;然后,再对试件进行低周往复的拟静力试验。试验结果(加速度、水平位移、以及基底剪力等)表明:此类高强混凝土框架结构具有较好的抗震性能。本文的试验研究成果为在地震区采用高强混凝土框架结构提供了一条有效的途径。
     (4)本文研究了配有高强钢筋高强混凝土框架结构的耗能性能与抗震能力。结合拟动力和拟静力试验的结果,分析了高强钢筋高强混凝土框架结构在地震作用下的滞回反应和耗能能力,探讨了结构在地震作用下的破坏机理,滞回特性及薄弱环节或部位,结构的延性系数达到4.0以上,等效阻尼系数达到0.055以上。试验结果表明,此类结构具有较好的变形和耗能能力,抗震性能较好,所提出的方法能够用于地震区高强混凝土框架结构体系之中。
     (5)本文完成了配有高强钢筋高强混凝土框架结构与构件的数值模拟分析并与试验结果进行了对比分析。基于前期关于配有高强钢筋的高强混凝土柱及节点进行了理论与试验研究,本文利用OpenSees程序,进行了试验框架的数值分析研究,同时也考虑了混凝土单元塑性铰、P-△效应及应变硬化率等特点,重点对比分析了结构的响应。有限元分析结果表明:前期工作中提出的配有高强钢筋的高强混凝土柱的恢复力模型适用于框架结构地震反应分析,并证明模拟模型的有效性。根据峰值位移和结构的总体反应,模型结构的数值分析结果和实测响应吻合得相当好。在试验后阶段的工况中出现一些偏差,这可能是由于刚度退化及损伤积累的影响,这种情况很难在模拟分析中实现,今后还需做进一步研究工作。
The study of this dissertation focuses on the seismic performance of high-strength concrete frame structure reinforced with high-strength rebars. Based on design experience, high-strength concrete frames reinforced with pre-stressed rebars can provide efficient and economical alternatives to traditional reinforced concrete construction. Apart from the economies achieved by effective use of materials, researches show the frames can provide strength exceeding that in conventional reinforced concrete frames and acceptable ductility. A sub-structure pseudo-dynamic test on8-storey1/2scale building model with a test used sub-structure of two freedom degrees and a compute used sub-structure of six freedom degrees has been firstly launched domestically, and its crack patterns, deformed features and failure models, etc. have been observed and analyzed. The FEM software OpenSees was applied to perform the nonlinear seismic response analysis of the structure. The main research achievements may be summed up in the following aspects:
     Firstly, effects of axial compression ratio and stirrup ratio on hysteretic characteristics of the high strength concrete columns reinforced with high strength reinforcement(HSC) and the seismic performance parameters for performance based seismic design of HSC columns were investigated. The failure mechanism, ductility, and hysteretic behavior of the columns were analyzed based on the experimental data. Based on the results of the cycle loading tests of the columns, the damage indexes of12HSC columns with the different story drifts were calculated using the modified Park-Ang model. According to the deformation with different performance levels and results of the corresponding tests, it was indicated that the crack width and stress level of longitudinal bar, residual drift and ultimate drift index can be adopted as the key parameters to appraise the seismic performance of functional, repairable and collapse avoidable capacities, respectively. Comparison between the calculated damage indices using the proposed model and test results shows good agreement, and the proposed method can be referenced for the performance based seismic assessment of HSC columns.
     Secondly, at present, pseudo dynamic testing method has the development potential and is popular in all seismic testing methods. Sub-structure pseudo-dynamic test is more flexible and less expensive than traditional pseudo-dynamic test. The methods of sub-structure pseudo-dynamic tests were introduced in the paper based on its principles and features. Seismic testing had been carried out for high-strength concrete frame structure reinforced with high-strength rebars to illustrate that the sub-structure pseudo-dynamic testing method can not only obtain the dynamic performance of the structure, but also characterize the structural displacement and force distributions under earthquake. The test results were in agreement with the monitored earthquake responses. The study revealed that rational selection of the testing sub-structure was the key for sub-structure pseudo-dynamic tests. Therefore, the sub-structure pseudo-dynamic testing method shows that it is an effective tool for investigating the seismic behavior of high-strength concrete structure.
     Thirdly, in the paper, based on the seismic behaviors of high-strength concrete (HSC) frame structure reinforced with high-strength rebars and pseudo-dynamic testing method, the pseudo-dynamic tests had been conducted on the two specimens of two-story, two-bay and one-span frame model with1/2scale by MTS computer-actuator system in order to research the seismic behaviors of high-strength concrete structure system under earthquake action. The specimen was subjected to10loading cases by using three kinds of acceleration records of ground motion with the adjusted amplitude, focusing on study of change of dynamic character during earthquakes, cracking pattern, hysteretic behaviour and seismic responses in elastic and elastic-plastic stages. After pseudo dynamic test, the frame was subjected to a pseudo-static loading. The test results showed that this kind of HSC frame structure can meet the requirement of the seismic performance. The results of the test may open a new road for application of HSC frame structure in seismic zone.
     Fourthly, this paper presents an experimental analysis on energy dissipation and seismic property of a high-strength concrete structure reinforced with pre-stressed rebars. Based on the results of the pseudo dynamic and pseudo-static loading tests, the analysis of the hysteretic response and energy dissipation capacity of the structure under seismic action, and discussion of the damage mechanism were experimentally performed. The experimental results showed that the ductility coefficient was greater than4.0and the equivalent damping ratio was higher than0.055. It also showed that this kind of frame structure had good deformation and dissipation capacity as well as great seismic performance. The proposed method can be applied in high-strength concrete structures in seismic zone.
     Fifthly, the finite element analysis on the the members and structures was performed and the results between the numerical simulation and experiments were compared in this paper. Based on the previous works, a nonlinear FEM analysis was performed by using OpenSees software. The dynamic responses of the frame structure were numerically analyzed. During the simulation, the nonlinear development of the compressive concrete was specially considered. The plastic hinge and P-△effect of the structure were also considered. The results of the simulation showed that the developed constitutive model was suitable to calculate the seismic responses of the frame structure by FEM. The test offers additional opportunities to validate performance simulation models. In terms of peak displacements and overall response, the numerical and measured frame response agreed fairly well. But for late loading events, divergences occur, which were likely due to degradation effects and damage accumulation that were not modeled in the analysis. The observed damages suggest the need for further research to improve the performance simulation tools.
引文
[1]谢礼立.2008年汶川特大地震的教训[J].中国工程科学,2009,11(6):28-35.
    [2]PRIESTLE M J N. Displacement-based seismic assessment of reinforced concrete buildings [J]. Journal of Earthquake Engineering,1997,1(1):157-192.
    [3]沈聚敏,周锡元,高小旺等.抗震工程学[M].北京:中国建筑工业出版社,2000.
    [4]徐伟栋.配置高强钢筋的混凝土柱抗震性能研究[D].上海:同济大学,2007.
    [5]程斌,薛伟辰,周质炎.高性能混凝土应用的最新进展[J].特种结构,2003,20(4):80-82.
    [6]陈家辉.高性能混凝土应用现状及其前景[J].广东土木与建筑,2000,5:3-8.
    [7]齐岳.核心高强混凝土柱力学性能试验与分析[D].哈尔滨:哈尔滨工业大学,2010.
    [8]XIAO Y, MARTIROSSYAN A. Seismic performance of high-hstrength concrete columns [J]. Structural Engineering, ASCE,1998,124(3):241-251.
    [9]KURAMOTO H, KABEYASAWA T, SHEN F T. Influence of axial deformation on ductility of high-strength reinforced concrete columns under varying tri-axial forces [J]. ACI Journal Structural, 1995,92(5):610-618.
    [10]CLAESON C, GYLLTOFT K. Slender high-strength concrete columns subjected to eccentric loading [J]. Structural Engineering, ASCE,1998,124(3):233-240.
    [11]GARDNER N J, GODSE R M, WONG T F. Laterally pre-stressed eccentrically loaded slender columns [J]. ACI Journal Structural,1992,89(5):547-554.
    [12]DINIZ S M C, FRANGOPAL D M. Strength and ductility simulation of high-strength concrete columns [J]. Structural Engineering, ASCE,1997,123(10):1365-1374.
    [13]DEZI L, LEONI G, TARANTINO A M. Algebraic methods for creep analysis of continuous composite beams [J]. Structural Engineering, ASCE,1996,122(4):423-430.
    [14]HSU L S, HSU C T T. Stress-strain behavior of steel-fiber high-strength concrete compression[J]. ACI Journal Structural,1994,91(4):448-457.
    [15]CUSSON D, LARRRARD F D, et al. Strain localization in confined high-strength concrete columns [J]. Structural Engineering, ASCE,1997,123(9):1055-1061.
    [16]CUSSON D, PAULTRE P. High-Strength Concrete Columns Confined by Rectangular Ties [J].Structural Engineering ASCE,1994,120(3):783-804.
    [17]LIU J, FOSTER S J, ATARD M M. Strength of tied high-strength concrete columns loaded in concentric compression [J]. ACI Journal Structural,2000,97(1):149-156.
    [18]SAATCIOGLU M, ALSIWAT J M, OZCEBE G. Hysteretic behavior of anchorage slip in RC member [J]. Structural Engineering, ASCE,1992,118(9):2439-2458.
    [19]袁万城,SIMSCHG G, KONIG G.反复荷载作用下高强约束混凝土柱的弯曲延性[J].土木工程学报,1995,28(5):55-61.
    [20]LEE J N, SON H S. Failure and strength of high-strength concrete columns subjected to eccentric loads [J]. ACI Journal Structural,2000,97(1):75-85.
    [21]IBRAHIM H H H, MACGREGOR J G. Flexural behavior of laterally reinforced high-strength concrete sections [J]. ACI Journal Structural,1996,93(6):674-684.
    [22]LIOYD N A, RANGAN B V. Studies on high-strength concrete columns under eccentric compression [J]. ACI Journal Structural,1996,93(6):631-638.
    [23]XIE J, James MACGREGOR G, ELWI A E. Numerical investigation of eccentrically loaded high-strength concrete tied columns [J]. ACI Journal Structural,1996,96(8):546-597.
    [24]IBRAHIM H H H, MACGREGOR J G. Tests of eccentrically loaded high-strength concrete columns [J]. ACI Journal Structural,1996,93(5):585-594.
    [25]AZIZINAMINI A, KUSKA S S B, et al. Seismic behaviors of square high-strength concrete columns [J]. ACI Journal Structural,1994,91(3):336-345.
    [26]SHEIKH S A, SHAH D V, KHOURY S S. Confinement of high-strength concrete columns [J]. ACI Journal Structural,1994,91(1):100-111.
    [27]肖建庄,谢猛.高性能混凝土框架火灾后抗震性能试验研究[J].土木工程学报,2005,38(8):36-42.
    [28]王博,朱海堂.高强混凝土刚架结构的受力性能研究[J].建筑结构,2002,32(8):26-27.
    [29]SOESIANAWATI W. Design of reinforced concrete frames of limited ductility [D]. Christchurch: Univ. of Canterbury,1989.
    [30]SATYARNO I. Concrete columns incorporating mixed ultra high and normal strength longitudinal reinforcement [D]. Christchurch:Univ. of Canterbury,1993.
    [31]LI B. Strength and ductility of reinforced concrete and frames constructed using high-strength concretes [D]. Christchurch:Univ. of Canterbury,1994.
    [32]SHEIKH S A, SHAH D V, KHOURY S S. Confinement of high-strength concrete columns[J]. ACI Journal Structural,1994,91(1):233-256.
    [33]时旭东.周期反复荷载下钢筋混凝土压弯构件的受力性能[D].北京:清华大学,1988.
    [34]侯长欣.高强混凝土压弯构件抗震性能的试验研究[D].北京:清华大学,1993.
    [35]李蓬.冷轧带肋钢筋作箍筋的高强混凝土柱的抗震性能研究[D].北京:清华大学,2000.
    [36]王清湘,越国藩,林立岩.冷轧带肋箍筋柱轴压比及配箍率的试验研究[J].建筑结构,1999,9:7-9
    [37]关萍,王清湘.冷轧带肋钢筋作箍筋对高强混凝土柱延性的影响[R].高强混凝土及其应用第三届学术讨论会论文集,1998.
    [38]李立仁,支运芳,陈永庆等.高强约束混凝土框架柱抗震性能的研究[J].重庆建筑大学学报,2002,24(5):38-45.
    [39]中华人民共和国行业标准.建筑抗震试验方法规程(JGJ 101-96)[S].北京:中国建筑工业出版社,1997.
    [40]邱法维.结构抗震实验方法进展[J].土木工程学报,2004,37(10):19-27.
    [41]黄浩华.地震模拟振动台的设计与应用技术[M].北京:地震出版社,2008.
    [42]HAKUNO M, SHIDOWARA M, HARA T. Dynamic destructive test of a cantilevers beam controlled by an analog computer [J]. Journal of Structural and Construction Engineering,1969, 171(10):768-779.
    [43]CHEN C H, LAI W C, CORDOVA P, et al. Pseudo-dynamic test of full-scale RCS frame:part I-design, construction and testing [C]. Proceedings of International Workshop on Steel and Concrete Composite Constructions, National Centre for Research on Earthquake Engineering, Taipei,2003.
    [44]CORDOVA P, CHEN C H, LAI W C, et al. Pseudo-dynamic test of full-scale RCS frame:part Ⅱ-analysis and design implications [C]. Proceedings of the 2004 Structures Congress, Nashville,2004.
    [45]DONEA J, JONES P M. Pseudodynamic capabilities of the ELSA laboratory for earthquake testing of large structures [J]. Earthquake Spectra,1996,12(1):163-180.
    [46]TSAI K C, WENG Y T, LIN M L, et al. Pseudo-dynamic test of a full-scale CRT/BRB composite frame:displacement based seismic design and response evaluations[C]. Proceedings of International Workshop on Steel and Concrete Composite Constructions, National Centre for Research on Earthquake Engineering, Taipei,2003.
    [47]TSAI K C, WENG Y T, LIN M L, et al. Pseudo-dynamic test of a full-scale CFT/BRB frame:part 1 performance based specimen design[C]. VProceedings of the 13th World Conference on Earthquake Engineering, Vancouver,2004.
    [48]CHEN C H, HSIAO P C, LAI J W, et al. Pseudo-Dynamic Test of a Full-Scale CFT/BRB Frame: Part 2-Construction and Testing[R]. Vancouver:Proceedings, Paper No.2175,13th World Conference on Earthquake Engineering,2004.
    [49]LIN M L, WENG Y T, TSAI K C, et al. Pseudo-dynamic test of a full-scale CFT/BRB frame:part 3-analysis and performance evaluation[R]. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver,2004.
    [50]孙香红,朱军强等.大型工业厂房纵向框架-剪力墙结构的拟动力试验研究[J].西安建筑科技大学学报,2002,34(1):42-47.
    [51]柴俊.型钢高强高性能混凝土框架拟动力试验研究[D].西安:西安建筑科技大学,2008.
    [52]李永旺.地震作用下子结构拟动力试验方法研究[D].西安:西安建筑科技大学,2008.
    [53]邱法维,钱嫁茹,陈志鹏.结构抗震实验方法[M].北京:科学出版社,2000.
    [54]郭昕.地震作用下多自由度结构拟动力实验方法研究[D].西安:西安建筑科技大学,2005.
    [55]邱法维,国明超,李暄.采用微机开发的拟动力实验[J].地震工程与工程振动,1994,14(3):91-96.
    [56]欧进萍,邱法维.耗能-隔震柔性底层钢管混凝土-钢筋混凝土组合框架的实验研究[J].地震工程与工程振动,1995,15(2):29-43.
    [57]邱法维,吕西林,卢文生.结构拟动力实验方法及其应用研究[R].土木工程防灾国家重点实验室课题总结报告,1996.
    [58]范力,赵斌,吕西林.拟动力试验中几个问题的讨论[J].结构工程师,2006,22(5):50-53.
    [59]李暄,刘季,田石柱.结构拟动力试验力控制实现技术[J].地震工程与工程振动,1997,(1):49-53.
    [60]邱法维,钱稼茹.结构在多维多点地震输入下的拟动力实验方法[J].土木工程学报,1997,30(5):28-34
    [61]梁兴文,王庆霖,梁羽风.底部框架剪力墙砖房1/2比例模型拟动力试验研究[J].土木工程学报,1999,(2):14-21.
    [62]施楚贤,黄靓,蔡勇等.框支配筋砌块砌体剪力墙抗震性能试验研究[J].建筑结构学报,2007,28(1):89-100
    [63]MOSALAM K M, WHITE R N, AYALA G. Response of infilled frames using pseudodynamic experimentation [J]. Earthquake Engineering and Structural Dynamics,1998,27:589-608.
    [64]黄靓.框支配筋砌块砌体剪力墙多自由度子结构拟动力试验研究及非线性地震反应分析[D].长沙:湖南大学土木工程学院,2005.
    [65]CACCESE V, HARRIS H G. Earthquake simulation testing of small-scale reinforced concrete structures [J]. ACI Structure Journal,1990,87(1):72-80.
    [66]赵世春,黄雄军,夏招广.SRC单跨两层框架结构拟动力地震反应试验研究[J].西南交通大学学报,1995,30(4):360-367.
    [67]NEGRO P, PINTO A V, VERZELETTI G, et al. PsD test on four-story R/C building designed according to eurocodes [J]. Journal of Structural Engineering,1996,122(12):1409-1417.
    [68]KAMINOSONO T, et al. US-JAPAN cooperation research on R/C full scale building test part 1: single-degree-of-freedom [C]. Proceedings of Eighth World Conference on Earthquake Engineering, San Francisco,1984,30(5):678-690.
    [69]NAKASHIMA M, TAKAI H. Use of substructure techniques in pseudo-dynamic testing[J]. BRI Research Paper,1985,111(23):350-365.
    [70]唐岱新,朱本全,王凤来等.底层大开间框剪组合墙1/3比例模型房屋子结构拟动力试验研究[J].建筑结构,2001,31(4):20-22.
    [71]Flex-Test TM Ⅱm program for pseudo-dynamic Testing[M]. MTS System Corporation,1999.
    [72]邱法维,潘鹏,杜文博.结构拟动力实验软件TUT使用手册[M].北京,2004.
    [73]中华人民共和国行业标准.混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002.
    [74]肖潇.配有高强钢筋的高强混凝土柱的抗震性能研究[D].沈阳:沈阳建筑大学土木工程学院,2004.
    [75]张曰果.高强钢筋高强混凝土圆柱抗震性能研究[D].沈阳:沈阳建筑大学,2005.
    [76]中华人民共和国行业标准.结构抗震设计规范(GB50011-2002)[S].北京:中国建筑工业出版社,2002.
    [77]郭子雄,刘阳,杨勇.结构震害指数研究评述[J].地震工程与工程振动,2004,24(5):56-61.
    [78]郭子雄,张志伟,刘阳.SRC柱抗震性能和抗震性态水平指标试验研究[J].西安建筑科技大学学报(自然科学版),2009,41(5):593-598.
    [79]刘阳,郭子雄,黄群贤.型钢混凝土柱的损伤模型试验研究[J].武汉理工大学学报,2010,32(9):203-207.
    [80]郭子雄,刘阳,杨勇.框架柱试验结果的震害指数计算模型比较[J].华侨大学学报(自然科学版),2005,26(2):145-148.
    [81]郭子雄,林煌,刘阳.不同配箍形式型钢混凝土柱抗震性能试验研究[J].建筑结构学报,2010,31(4):110-115.
    [82]PARK Y J, ANG H S. Mechanistic seismic damage model for reinforced concrete [J]. Journal of Structural Engineering, ASCE,1985,111(4):722-739.
    [83]何利,叶献国.Kratzig及Park-Ang损伤指数模型比较研究[J].土木工程学报,2010,43(12):1-6.
    [84]MAZZONI S, MCKENNA F, SCOTT M H, et al. OpenSees users manual[R]. Berkeley:PEER, University of California,2004.
    [85]王瑾,蔡新江,田石柱.基于OpenSees的CFRP加固RC短柱抗震性能数值模拟[J].世界地震工程,2009,25(4):108-111.
    [86]凌炯.面向对象开放程序OpenSees在钢筋混凝土结构非线性分析中的应用与初步开发[D].重庆:重庆大学,2004.
    [87]李少巍.基于OpenSees的预应力混凝土框架非线性数值模拟与抗震性能初步分析[D].重庆:重庆大学,2009.
    [88]黄尚安,邹银生.底部框剪配筋砌块砌体房屋弹塑性地震反应的数值模拟[J].结构学报,2004,25(1):53-57.
    [89]朱锦心.剪切模型弹塑性地震反应计算[J].地震工程与工程振动,1983,3(4):60-68.
    [90]魏琏.地震作用下建筑结构变形计算方法[J].建筑结构学报,1994,15(2):2-10.
    [91]史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估[D].西安:西安建筑科技大学,2002.
    [92]KENT D C, PARK R. Flexural Members with Confined Concrete [J]. Journal of the Structural Division, ASCE,1971,97(7):1969-1990.
    [93]赵西安.用计算机-试验机联机系统进行结构拟动力试验的方法[J].建筑结构学报,1986(5):32-41.
    [94]HORIUCHI T, INOUE M, KONNO T, et al. Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber [J]. Earthquake Engineering and Structural Dynamics,1999,28(10):1121-1141.
    [95]NAKASHIMA M, MASAOKA N. Real-time on-line test for MDOF systems [J]. Earthquake Engineering and Structural Dynamics,1999,28(4):393-420.
    [96]BUONOPANC S G, WHITE R N. Pseudo-dynamic testing of masonry infilled reinforced concrete frame [J]. Journal of Structural Engineering,1999,125(6):578-589.
    [97]马乐为,吴敏哲.12层异形柱小型混凝土空心砌块组合结构拟动力试验研究[J].世界地震工程,2002,18(4):159-162.
    [98]白国良,刘志钦,康灵果.型钢混凝土框排架结构主厂房拟动力实验研究[J].世界地震工程,2009,25(3):55-60.
    [99]田石柱,赵桐,赵雪峰.位移保护下力控制拟动力试验方法的原理[J].地震工程与工程振动,2002,22(3):37-41.
    [100]邱法维.联机结构实验的子结构技术及应用[J].实验力学,1995,10(4):335-342.
    [101]邱法维.采用隐式积分方法和子结构技术的拟动力实验[J].土木工程学报,1997,30(2):27-33.
    [102]SCHNEIDER S P, ROEDER C W. An inelastic substructure technique for the pseudodynamic test method [J]. Earthquake Engineering and Structural Dynamics,1994,23(7):761-775.
    [103]国明超,唐岱新.子结构伪动力试验方法[J].哈尔滨建筑工业大学学报,1991,24(2):110-116.
    [104]SHING P B, MAHIN S A. Rate of loading effects on pseudodynamic test [J]. Journal of Structural Engineering,1988,114(11):2403-2420.
    [105]NAKASHIMA M, et al. Development of real-time pseudodynamic testing [J]. Earthquake Engineering and Structural Dynamics,1992,21(1):79-92.
    [106]WU B, XU G S. Numerical behavior of operator-splitting method for real-time Substructure testing[R]. The First International Conference on Advances in Experimental Structural Engineering, Nagoya,2005.
    [107]WU B, WANG Q Y, SHING P B, et al. Equivalent force control method for generalized real-time substructure testing with implicit integration [J]. Earthquake Engineering and Structural Dynamics, 2007,36(9):1127-1149.
    [108]吴斌,王向英,王倩颖.电液伺服加载系统的滑动模态控制及其在实时子结构试验中的应用[C].大连:第四届中国结构控制年会,2004.
    [109]WU B, BAO H E,OU J P, et al. Stability and accuracy analysis of central difference method for real-time substructure testing [J]. Earthquake Engineering and Structural Dynamics,2005,34: 705-718.
    [110]YAMAZAKI Y, NAKASHIMA M, KAMINOSONO T. Correlation between shaking table and pseudodynamic responses [J]. Journal of Structural and Construction Engineering,1986,364(30): 23-32.
    [111]IGARASHI A, IEMURA H, TANAKA H. Development of substructure hybrid shake table test method and application to verification tests of vibration control devices [C]. China-Japan Workshop on Vibration Control and Health Monitoring of Structures and Third Chinese Symposium on Structural Vibration Control, Shanghai,2002.
    [112]KAUSEL E. New seismic testing method Ⅰ:fundamental concepts [J]. Journal of Engineering Mechanics,1998,5:565-570.
    [113]KAUSEL E. New Seismic TestingMethod Ⅱ:Proof for MDOF System. Journal of Engineering Mechanics,1998,5:571-575.
    [114]程耿东,李刚.基于功能的结构抗震设计的一些问题探讨[J].建筑结构学报,2000,21(1):5-11.
    [115]郭玉荣,张国伟,肖岩等.单自由度结构远程分析及拟动力试验平台[J].湖南大学学报,2006,33(2):18-21.
    [116]肖岩,胡庆,郭玉荣等.结构拟动力远程协同试验网络平台的开发研究[J].建筑结构学报,2005,26(3):122-129.
    [117]郭玉荣,肖岩,胡庆等NetSLab-网络化结构实验室平台[J].湖南大学学报,2006,33(3)增刊:10-17.
    [118]范云蕾,郭玉荣,肖岩.远程拟动力试验平台的开发研究[J].建筑科学与工程学报,2005,22(4):22-26.
    [119]范云蕾,郭玉荣,肖岩等.单层结构远程协同拟动力试验平台开发[J].地震工程与工程振动,2007,27(3):77-82.
    [120]XIAO Y, GUO Y R. A network platform for remote pseudo dynamic testing[C]. The Third International Conference on Earthquake Engineering, Nanjing,2004.
    [121]刘一江,谭凯,童桦.网络结构试验异地协同控制平台的开发与研究[J].湖南大学学报,2005,32(6):97-102.
    [122]刘一江,李轶等.结构试验远程协同控制系统的设计与实现[J].实验室研究与探索,2004,23(9):45-49.
    [123]刘一江,谭凯,童桦.基于结构异地协同控制试验网络平台的开发与研究[J].实验技术与管理, 2006,23(1):45-49.
    [124]何庆锋,易伟建,肖岩.远程协同试验中的数据库方法应用研究[J].湖南大学学报(自然科学版),2006,33(3):47-51.
    [125]GUO Y R, XIAO Y, HU Q. Remote cooperative analysis of nonlinear seismic response of structures[C]. The First International Conference on Construction IT (ICCI2004), Beijing,2004.
    [126]范云蕾,董旭华,郭玉荣等.基于NetSLab远程协同平台的桥梁抗震研究[J].湖南大学学报,2006,33(3):27-33.
    [127]张国伟,郭玉荣,肖岩等.远程控制的钢管混凝土柱拟动力试验[J].湖南大学学报,2006,33(3):34-39.
    [128]XIAO Y, HU Q, GUO Y R, et al. NetSlab:a network platform for general distributed testing [C]. The 9th World Multi-Conference on Systemics, Cybernetics and Information (WMSCI), Orlando, Florida,2005.
    [129]XIAO Y, HU Q, GUO Y R, et al. Networked structural laboratories-NetSLab [C]. Proceedings of the first international conference on Advances in Experimental Structural Engineering (AESE), Nagoya,2005.
    [130]GUO Y R, FAN Y L, XIA Y, et al. NetSLab based remote hybrid dynamic testing method for single story structures[C]. Proceedings of the 9th International Symposium on Structural Engineering for Young Experts (Advances in Structural Engineering-Theory and Application), Fuzhou & Xiamen, 2006.
    [131]GUO Y R, XIAO Y, FAN Y L, et al. Development and application of a collaborative hybrid dynamic testing software based on NetSLab [C]. Proceedings of the 8th U. S. National Conference on Earthquake Engineering, San Francisco,2006.
    [132]FAN Y L, GUO Y R, HE W H, et al. Remotely collaborative pseudo-dynamic testing of multistory structures [C]. Proceedings of the 2nd International Conference on Advances in Experimental Structural Engineering (AESE), Shanghai,2007.
    [133]黄靓,施楚贤,刘桂秋等.MDOF子结构拟动力方法在复杂高层结构抗震试验中的应用研究[J].土木工程学报,2006,39(12):23-32.
    [134]邱法维,徐晓红.拟动力试验系统的开发与应用[J].哈尔滨建筑大学学报,1995,28(5):45-49.
    [135]BURSI O R, SHING P B, GUZINA Z R. Pseudodynamic testing of strain-softing systems with adaptive time steps[J]. Earthquake Engineering and Structural Dynamics,1994,23(7):745-760.
    [136]KUMAR S, ITOH Y, SAIZUKA K, et al. Pseudodynamic testing of scaled models [J]. Journal of Structural Engineering, ASCE,1997,123(4):524-526.
    [137]CALVI G M, KINGSLEY G R. Problems and Certainties in the Experimental Simulation of the Seismic Response of MDOF Structures[J]. Engineering Structures,1999,18:213-226.
    [138]王德才.拟动力试验数值积分方法及子结构拟动力试验研究[D].合肥:合肥工业大学,2007.
    [139]CHANG S Y. Explicit pseudo-dynamic algorithm with unconditional-stability [J]. Journal of Engineering Mechanics,2002,128(9):935-947.
    [140]TANAKA H. A computer-actuator on-line system for non-linear earthquake response analysis of structure [J]. Journal of Institute of Industrial Science,1975,27(12):512-520.
    [141]BURSI O R, SHING P B, GUZINA Z R. Evaluation of some implicit time-stepping algorithms for pseudodynamic tests [J]. Earthquake Engineering and Structural Dynamics,1996,25(4):333-355.
    [142]邱法维.无条件稳定数值积分方法在拟动力实验中的应用研究[J].实验力学,1997,12(4):579-586.
    [143]SHING P B, VANNAN M T. On the accuracy of implicit algorithm for pseudodynamic tests [J]. Earthquake Engineering and Structural Dynamics,1990,19(5):761-775.
    [144]SHING P B, VANNAN M T. Cater E. Implicit time integration for pseudodynamic tests [J]. Earthquake Engineering and Structural Dynamics,1991,20(6):551-576.
    [145]邱法维.隐式时间积分方法的拟动力试验[J].世界地震工程,1995,(3):44-47.
    [146]邱法维.采用隐式积分方法和子结构技术的拟动力实验[J].土木工程学报,1997,30(2):27-33.
    [147]TSUTSUMI H, HIGASHIURA A. Pseudo-dynamic testing method using the Newmark implicit integration method [C]. Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto,1988.
    [148]HILBER H M, HUGHER T R, TAYLOR R L. Improved numerical dissipation for time integration algorithms in Structural Dynamics [J]. Earthquake Engineering and Structural Dynamics,1977,5(2): 283-292.
    [149]THEWALT C R, MAHIN S A. Hybrid solution techniques for generalized pseudo-dynamic testing [R]. California:Report No. UCB/EERC-87/09, University of California, Berkeley.
    [150]COMBESCURE D, PEGON P. Operator splitting time integration technique for pseudodynamic testing error propagation analysis [J]. Soil Dynamics and Earthquake Engineering,1997,16: 427-443.
    [151]NAKASHIMA M, AKAZAWA T, SAKAGUCHI O. Integration method capable of controlling experimental error growth in substructure pseudodynamic test[J]. Journal of structural and construction engineering, Transactions of AIJ,1993,454:61-71.
    [152]阎石,肖潇,张曰果等.高强钢筋约束混凝土矩形截面柱的抗震性能试验研究[J].沈阳建筑大学学报(自然科学版),2006,22(1):7-10.
    [153]阎石,张曰果,王旭东.圆形截面高强混凝土柱抗震性能试验研究[J].沈阳建筑大学学报(自然科学版),2006,22(4):538-542.
    [154]阎石,郑文泉,张曰果.高强钢筋高强混凝土框架梁柱节点抗震性能试验研究[J].沈阳建筑大学学报(自然科学版),2006,22(2):199-203.
    [155]阎石,肖潇,阚立新等.高强钢筋高强混凝土柱的恢复力模型[J].沈阳建筑大学学报(自然科学版),2005,21(2):81-85.
    [156]肖潇,阎石.基于截面条带法的高强混凝土柱的滞回性能的分析[J].南华大学学报(自然科学版),2005,19(3):52-55.
    [157]张曰果,阎石.高强度螺旋箍筋约束下的高强混凝土圆柱延性分析[J].沈阳建筑大学学报(自然科学版),2006,22(5):7 13-717.
    [158]阎石,倪鹏,张曰果等.高强钢筋高强混凝土框架梁柱节点非线性有限元分析[J].沈阳建筑大学学报(自然科学版),2009,25(1):80-85.
    [159]阎石,肖潇,张曰果等.高强混凝土柱滞回性能数值分析[J].沈阳建筑大学学报(自然科学版),2006,22(3):353-356.
    [160]HOUSNER G W. Limit design of structures to resist earthquake [C]. Proceedings of First World Conference on Earthquake Engineering, Berkeley California,1956.
    [161]FAJFAR P. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structural Dynamics,1999,28:979-993.
    [162]UANG C, BERTERO V V. Evaluation of seismic energy in structure [J]. Earthquake Engineering and Structural Dynamics,1990,19(2):177-190.
    [163]MANFREDI G. Evaluation of seismic energy demand [J]. Earthquake Engineering and Structural Dynamics,2001,30(4):485-499.
    [164]FAJFAR P, VIDIC T. Consistent inelastic design spectra:hysteretic and input energy[J]. Earthquake Engineering and Structural Dynamics,1994,23(5):523-537.
    [165]FILIATRAULT A, LEGER P, TINAWI R. On the computation of seismic energy in inelastic structures [J]. Engineering Structures,1994,16(6):425-436.
    [166]熊仲明,史庆轩,王社良等.钢筋混凝土框架-剪力墙模型结构试验的滞回反应和耗能分析[J].建筑结构学报,2006,27(4):89-95.
    [167]KENT D C, PARK R. Flexural members with confined concrete [J]. Journal of the Structural Division, ASCE,1971,97(7):1969-1990.
    [168]MENEGOTTO M, PINTO P E. Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending [J]. Preliminary Report IABSE,1973,13:15-22.
    [169]MAZZONI S, MCKENNA F, SCOTT M H, et al. OpenSees command language manual [M]. Berkeley:Pacific Earthquake Engineering Research Center, University of California,2006.
    [170]MAZZONI S, MCKENNA F, GROGORY L F, et al. Open system for earthquake engineering simulation examples manual[M]. Berkeley:Pacific Earthquake Engineering Research Center University of California,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700