用户名: 密码: 验证码:
结构地震响应波动分析的被研究块体方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构振动的本质是波在结构中不断传播与反射,结构振动是结构中波动传播的外在表现形式,地震响应是结构中地震波传播所导致的结果。通过对结构中地震波传播与反射过程的研究,不但可以为结构地震响应提供波动求解方法,而且更有利于明确结构内部各处地震响应细节。结构在地震(特别是富含高频分量的近断层地震)作用下的瞬态反应问题,从波动角度出发给予求解会更为合理。另外,波传播理论能很好地解释建筑结构中存在的波动传播的时滞现象。因此,波动方法是研究结构地震响应的有效途径。
     本文针对结构地震响应问题,考虑了结构或构件的弯曲变形、剪切变形和轴向变形,分别提出高耸高层结构、二维框架结构以及三维框架结构地震响应波动分析的被研究块体方法,通过模拟结构中地震波传播过程来研究结构地震响应。该方法主要思想是在结构中建立被研究块体,然后求解每个被研究块体的动力平衡方程,得到结构的波动响应。该方法直接将地震加速度记录积分得到的位移时程施加到支座上,即可实现时间域内的递推计算,不需要求解结构动力学方程组,具有物理意义清晰,方法简单的特点。对于二维和三维框架结构的地震响应问题,该方法在各支座处可以自然地引入行波激励,不需要求解经典的多点激励动力学方程组。本文主要研究工作如下:
     (1)提出高耸、高层结构地震响应波动分析的被研究块体方法。针对弯剪型串联多自由度体系力学模型的高耸、高层结构,介绍了被研究块体的概念;由空间离散段的端部力与端部位移之间关系式,推导给出离散段的段中内力(轴力、剪力和弯矩)计算公式;考虑被研究块体质心与离散节点之间的纵向偏心,建立被研究块体的动力平衡方程。给出算法的稳定性条件;给出算法的实现过程,即在时间域上交替运用段中内力计算公式、被研究块体的动力平衡方程以及被研究块体质心与离散节点加速度之间关系式进行递推计算。
     通过弯曲波波速模拟、两端自由梁中弯曲波传播和自由端受静载作用下的悬臂梁内力分析,验证所提出被研究块体方法的正确性。通过圆环型变截面梁动力响应分析和等截面理想烟囱结构地震响应分析,验证被研究块体方法中考虑纵向偏心的正确性。由于考虑纵向偏心的影响,使得该方法具有补偿功能,即使空间离散段截面不同或离散网格不均匀也能得到精确的计算结果。
     对南京电视塔地震响应研究发现:在钢桅杆的危险截面处,考虑纵向偏心影响的应力值比常规有限元方法计算的应力值要大。按常规方法计算结果进行设计时,电视塔的钢桅杆可能会偏于危险,因此,高耸结构地震响应分析应考虑纵向偏心的影响。对24层框架结构地震响应研究表明:被研究块体方法可以为高层结构的弹塑性地震响应提供一种有效的波动分析方法。
     针对弯剪型串联多自由度体系的力学模型,利用被研究块体方法的控制方程,给出考虑纵向偏心项的矩阵形式结构动力学方程。该方程修正了传统弯剪型串联多自由度体系结构动力学方程中的质量阵和刚度阵。
     (2)提出二维框架结构地震响应波动分析的被研究块体方法。将二维结构的梁或柱离散成空间段,取与节点相关联各空间离散段的一半及楼板构成被研究块体;推导给出二维局部坐标系中,空间离散段的段中内力计算公式;针对被研究块体质心建立了动力平衡方程;给出被研究块体方法的实现过程,即在时间域上交替运用段中内力计算公式、被研究块体动力平衡方程,并利用二维局部坐标与总体坐标之间位移关系式、被研究块体质心与节点加速度之间关系式进行递推计算。
     针对三跨六层钢筋混凝土框架结构,在一致激励和行波激励作用下,将被研究块体方法的计算结果分别与基于多点激励动力学方程的有限元法计算结果和MIDAS软件的计算结果进行对比,验证了被研究块体方法的正确性。
     通过对不同场地地震波作用下的四个二维框架结构(三跨六层钢筋混凝土框架结构、三跨三层、三跨六层现浇楼板钢筋混凝土框架结构和二跨十层钢-混凝土组合框架结构)的行波效应进行研究,结果表明:即使对于短跨结构,也不应一概忽略地震波的行波效应。行波效应可导致框架结构柱剪力和梁端弯矩出现增大现象,其中迎波方向的底层柱子剪力和一层梁端弯矩增加更为明显;底层柱子变形不一致,且结构的横向变形增大。
     (3)提出三维框架结构地震响应波动分析的被研究块体方法。在三维结构中取与节点相关联各空间离散段的一半构成被研究块体;推导给出三维局部坐标系中离散段的段中内力计算公式;给出三维局部坐标系与总体坐标系之间的坐标转换矩阵;建立了被研究块体的动力平衡方程;给出被研究块体方法的实现过程,即在时间域上交替运用段中内力计算公式、被研究块体动力平衡方程,并利用三维局部坐标与总体坐标之间关系式进行递推计算。
     研究了六层三维钢框架结构的行波效应,结果表明:考虑行波效应时,框架结构柱剪力和梁端弯矩存在明显增大现象。研究结果进一步表明:不应一概忽略短跨结构的行波效应。
The essence of vibration of structure is the problem of wave propagation and reflection in the structure. Structural vibration is an exterior behavior of wave propagation in structure, and earthquake responses are the results caused by wave propagation and reflection in structure. Research on wave propagation and reflection in structure can not only provide the solution of wave equation for the earthquake response of structure, but also be helpful to show in detail the earthquake response in the structure. It is reasonable for obtaining the solution from the point of view of wave motion to the problem of structural instant response caused by earthquake, especially for the near-fault earthquake that contains high frequency content. In addition, the wave theory can explain well the duration phenomena of wave propagation in structure. Therefore, wave propagation method is an effective approach for studying structural earthquake response.
     Investigated lump methods are respectively presented for analyzing earthquake responses of high-rise structure, plane frame structure, and three-dimensional frame structure by simulating wave propagations in the structures. The investigated lump method is a kind of wave-based method. Bending, shear and axial deformations of the high-rise structure or the members in the frame structure are considered together in the proposed wave-based method. The main ideas of investigated lump method are:firstly the investigated lumps are constructed in the structure, and then the solutions of dynamic responses are obtained by using the dynamic equilibrium equations of every investigated lump. In this method, time histories of displacement obtained from seismic acceleration records by doing time integration are applied on the supports of structure, and the earthquake response of structure is obtained by doing recursive calculations in time domain rather than solving the conventional dynamic equations. The investigated lump method has characteristics of clear physical background and simplicity. For plane frame structure and three-dimensional frame structure, wave passage excitation can be implemented naturally, and there is no need to solve the classical governing equations for multiple support excitations. The major contributions are listed as follows:
     1. The investigated lump method is presented for analyzing earthquake responses of high-rise structures based on wave propagation approach. Firstly, the concept of investigated lump is introduced for the shear-bending MDOF mechanical model for high-rise structure. Secondly, the calculating formula of the median internal forces (axial force, shear force and bending moment) of discrete segment is derived by using the relations between the forces and displacements of the segment ends, and finally, the dynamic equilibrium equations for each investigated lump are established by considering the longitudinal eccentricity appearing between the discrete node and the centroid of investigated lump. The stability condition of the method has been derived and given. The algorithm is implemented by using in turn in time domain the dynamic equilibrium equations, the calculating formulae of the median internal forces of segment as well as the acceleration relationship between the centroid and discrete node of investigated lump.
     The validity of the investigated lump method is confirmed by comparing the bending wave velocity, the response of bending wave propagation in beam, and the internal force analysis of cantilever beam under static loading. It is also confirmed to be valid for the investigated lump method to consider the longitudinal eccentricity in structure by studying the dynamic responses of variable cross-section circle ring beam and the earthquake responses of equal cross-section chimney respectively. In addition, the numerical results also confirmed that the investigated lump method has compensation function. That is to say, the method can provide numerical results of high accuracy even in the case of non-uniform discretization in practical calculation.
     The earthquake responses of Nanjing TV tower show that the influence of vertical eccentricity in high-rise structure should be considered in earthquake response analysis because the stress values of the dangerous cross-section of the steel mast obtained by using the proposed method arc bigger than those given by the conventional finite element method without considering vertical eccentricity. The earthquake response of a24-storey frame structure shows that the investigated lump method can be used to study the elastoplastic earthquake response of high-rise structure.
     The dynamic equation of matrix form of the investigated lump method has also been given with the longitudinal eccentricities being considered in the dynamic equation for the shear-bending MDOF mechanical model. In fact, the conventional mass matrix and stiffness matrix have been modified when considering the longitudinal eccentricities.
     2. The investigated lump method is presented for analyzing earthquake responses of plane frame structures based on wave propagation approach. Firstly, the half segments connecting one of the spatial discrete nodes are used to construct one investigated lump in the plane frame structure, and the dynamic equilibrium equations of the investigated lump arc established about its centroid. Secondly, the calculating formulae of the median internal forces (axial force, shear force and bending moment) of one spatial discrete segment are derived in local coordinate system of two dimensions. Finally, the algorithm is implemented by using in turn in time domain the dynamic equilibrium equations of investigated lumps, the calculating formulae of median internal forces, transforming relations of the median internal forces and the displacements between the local and global coordinate systems of two dimensions, and the acceleration relation between the discrete node and the corresponding centroid of investigated lump.
     The validity of the investigated lump method for plane frame structures is confirmed by comparing the numerical results obtained by the investigated lump with the corresponding results of finite element method as well as the results of MIDAS software for a three-span6-storey RC frame structure under the uniform excitations and wave passage excitations respectively.
     The wave passage effects of four plane frame structures (including a three-span6-storey RC frame structure, a three-span3-storey cast-in-place slab RC frame structure, a three-span6-storey cast-in-place slab RC frame structure, and a two-span10-storey steel-concrete composite structure) are studied on site classes Ⅰ, Ⅱ, Ⅲ and Ⅳ respectively. The computing results demonstrated that the wave passage effect should not be overlooked even for short-span frame structure. The wave passage effects may cause the column shear forces and beam-end bending moments to increase remarkably, especially for the first-floor column and the beam-end facing the input wave. In addition, the horizontal deformation of frame structure increases and the deformations of the first-floor columns are non-uniform.
     3. The investigated lump method for analyzing the earthquake responses of three-dimensional frame structures is presented based on wave propagation approach. Firstly, the half segments that connect one of the spatial discrete nodes are used to construct one investigated lump in the three-dimensional frame structure, and the dynamic equilibrium equations of the investigated lump are established. Secondly, the calculating formulae of the median internal forces (axial force, shear force and bending moment) of one spatial discrete segment are derived in local coordinate system of three dimensions. Finally, the algorithm is implemented by using in turn in time domain the dynamic equilibrium equations of investigated lumps, the calculating formulae of median internal forces, transforming relations of the median intemal forces and the displacements between the local and global coordinate systems of three dimensions, and the acceleration relation between the discrete node and the corresponding centroid of investigated lump.
     The wave passage effect of a three-dimensional frame structure was studied. The numerical results showed that the wave passage effect may cause the column shear forces and beam-end bending moments to increase remarkably. It demonstrated again that the wave passage effect should not be overlooked even for short-span frame structure.
引文
[1]Zhang R. R., Snieder R., Gargab L., et al. Modeling of seismie wave motion in high rise buildings[J].Probabilistic Engineering Mechanics, 2011, 26(4): 520-527.
    [2]Kohler M.D., Heaton T. H. , Bradford S. C.. Propagating waves in the steel, moment frame factor building recorded during earthquakes[J]. Bullet in of the Seismological Society of America, 2007, 97(4): 1334-1345.
    [3]Todorovska M. I. , Trifunae M.D.. Earthquake damage detection in the Imperial County Services Building Ⅲ: Analysis of wave travel times via impulse response functions[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(5): 387-404.
    [4]Todorovska M. I., Ivanovie'S. S. , Trifunac M.D.. Wave propagation in a seven story reinforeed conerete building Ⅰ. Theoretical models[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(3) : 211-223.
    [5]Chang P.C. , Flatan A., Liu S. C. . Review paper: Health monitoring of civil infrastructure[J]. Structural Health Monitoring, 2003, 2(3): 257-267.
    [6]Todorovska M. I., Trifunae M.D.. Earthquake damage detection in the Imperial County Services Building Ⅰ: The data and time-frequeney analysis[J]. Soil Dynamies and Earthquake Engineering, 2007, 27(6): 564-576.
    [7]Al Mousawi M. M.. Transient response of Timoshenko beams with diseontinuities of cross section[J]. International Journal of Mechanical Science, 1984, 26(4): 277-292.
    [8]Al Mousawi M. M.. H. R. Harrison, S. K. Ghosh. On numerical solution methods for flexural waves in stepped beams[J]. Intermational Jourmal of Impaet Enginecring, 1988, 7(3): 327-343.
    [9]Reid S. R. , Gui X. G. . On the elastic-plastie dcformation of cantilever beams subjected to tip impact[J]. Journal of Impact Engineering, 1987, 6(2):109-127.
    [10]Signorelli J. , von Flotow A.H.. Wave propagation, power flow, and resonance in a trus beam[J]. Journal of Sound and Vibration, 1988, 126(1): 127-144.
    [11]Abhyankar N. S.. Flexural waves in beams with geometrical and material lougitudinal discontinnities[J]. Journal of Impact Engineering, 1990, 9(2): 205-222.
    [12]Kraut hammer T., Assadi Eamouki A., Shanaa H. M.. Analysis of impulsively loaded reinforced conerete elements i, theory[J]. Computers and Structures, 1993, 48(5): 851-860.
    [13]Yu T. X., Yang J. L., Reid S. R.. Dynamic behaviour of elastic plastic free free beams subjected to impulsive loading[J]. Journal of Solids structures, 1996, 33(18): 2659-2680.
    [14]Laier J. E. Dispersive and spurious reflections of Timoshenko' s flexural waves in numerical simulations[J]. Advances in Engineering Software. 2002, 33(7-10): 605-610.
    [15]Chakraborty A., Gopalakrishnan S.. A spectrally formulated finite element for wave propagation analysis in functionally graded beams[J]. Journal of Solids and Structures, 2003, 40(10): 2421-2448.
    [16]Wang M., Fang Z. C.. Spectral strip-element method for beams treated with active constrained layer damping[J]. Mechanics Research Communications, 2005, 32(6): 704-716.
    [17]Mitra M. , Gopalakrishnan S.. Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides[J]. Journal of Solids and Structures, 2005, 42(16-17): 4695-4721.
    [18]Mitra M., Gopalakrishnan S.. Wavelet based spectral finite element for analysis of coupled wave propagation in higher order composite beams[J]. Composite Structures, 2006, 73(3): 263-277.
    [19]Pao Y. H., Yu Y. Y.. Attenuation and damping of multireflected transient elastic waves in a pile[J]. Journal of Engineering Mechanics (ASCE), 2011, 137(8): 571-579.
    [20]陈镕,力春风,薛松涛,等.无约束修正Timoshenko梁的冲击问题[J].力学学报,2006,38(2):262-269.
    [21]Kudela P., Krawczuk M., Ostaehowicz W.. Wave propagation modeling in 1D structures using spectral finite elements[J]. Journal of Sound and Vibration, 2007, 300(1-2): 88-100.
    [22]Mahapatra D.R., Gopalakrishnan S.. Spectral finite element analysis of coupled wave propagation in composite beams with multiple delaminations and strip inclusions[J]. Journal of Sol ids and Structures, 2004,41(5-6): 1173-1208.
    [23]Palacz M., Krawczuk M. . Anslysis of longitudinal wave propagation in a cracked rod by the speetral element method[J]. Computers and Structures, 2002, 80(24): 1809-1816.
    [24]Krawczuk M., Grabowska J., Palacz M. . Longitudinal wave propagation. Part Ⅱ: Analysis of crack influence [J]. Journal of Sound and Vibration, 2006, 295: 479-490.
    [25]Sridhar R., Chakraborty A., Gopalakrishnan S. . Wave propagation analysis in anisotropic and inhomogeneous uncracked and cracked structures using pseudospectral finite element methon[J]. Journal of Sol ids and Structures, 2006, 43(16): 4997-5031.
    [26]Li Z., Xia S. M., Wang J., et al. Damage detection of cracked beams based on wavelet transform[J]. International Journal of Impact Engineering, 2006, 32(7): 1190-1200.
    [27]Halkyard C. R., Mace B. R.. Adaptive active control of flexural waves in a beam in the presence of a nearfield[J]. Jourmal of Sound and Vibration, 2005, 285: 149-171.
    [28]Lee J. P., Kolsky H. . The generation of stress pulses at the junction of two noncollinear rods[J]. Journal of Applied Mechanics, 1972, 39: 809-813.
    [29]Desmond T. P.. TheoretieaI and experimental investigation of stress waves at a junetion of three bars[J]. Journal of AppIied Mechanies (ASME) 1981, 48: 149-153.
    [30]Yong K. H., Atkins K. J.. Generation of elastie stress waves at a corner junetion of square rods[J]. Journal of Sound and Vibration, 1982, 84(3): 431-441.
    [31]Simha K. R. Y., Fourney W. L.. Investigation of stress wave propagation through Interseet ing bars[J]. Journal of Applied Medianies, 1984, 51(2): 345-353
    [32]DoyIe J F. An experimental study of the refleetion and transmission of flexural wave at an arbitrary T-joint[J]. Journal Applied Mechanics, 1987, 54: 136-140. [33] Gopa lakr ishnan S., Doyle J. F.. Spectral super elements for wave propagation in struetures with local non uniformities[J]. Computer Methods in Applied Mechanies and Engineering, 1995, 121(14) : 77-90.
    [34]Mahapatra D. R., Gopalakrishnan S., Sankar T. S.. Speetral element based soIu tions for wave propagation analysis of multiply conneeted unsymmetrie laminated composite beams[J]. Journal of Sound and Vibration, 2000, 237(5): 819-836.
    [35]邢誉峰,王丽娟.(?)梁和梁,梁组合结构中的波动现象[J].北京航空航天大学学报,2004,30(6):520-523.
    [36]Bo ley B. A.. An approximate theory of lateral impact on beams[J]. Journal of Applied Mechanies (ASME) 1954, 69-76.
    [37]Von Flotow A H. Traveling wave control for large spaceeraft struetures[J]. Journal Guidance, Control, and Dynamies, 1986, 9(4): 462-468.
    [38]S ignorelle J., Von Flotow A. H.. Wave propagation, power flow, and resonance in a trus, beam[J]. Journal of Sound and Vibration. 1988, 126(1): 127-144.
    [39]Miller D. W., Von Flotow A.H.. A traveling wave approach to power flow in struetural. networks[J]. Journal of Sound and Vibration, I989, 128(1): 145-162.
    [40]Miller D.W., Hall S. R., Von Flotow A. H.. Optimal control of power flow at struetural junetions[J]. Journal of Sound and Vibration, 1990, 140(3): 475-497.
    [41]Cai G.Q., Liu Y. K.. Wave propagation and seattering in sirueturaI net works[J]. Journal of Engineering Mechanies, (ASCF), 1991b, 117(7): 1555-1574.
    [42]Yong Y., Lin Y.K.. Dynamies response analysis of truss type struetural networks: A wave propagation approach[J]. Journal of Sound and Vibration, 1992, 156(1): 27-45.
    [43]Beale L. S., Accorsi M. L.. Power flow in two and three dimensional frame struetures[J]. Journal of Sound and Vibration, 1995, 185(4): 685-702.
    [44]朱桂东,郑钢铁,邵成勋.基于波动模型的框架结构被动阻尼减振分析[J].航空学报,1997,18(6):670-675.
    [45]朱桂东,郑钢铁,邵成勋.框架结构模态分析的行波方法[J].宇航学报.199.9,20(3):1-6.
    [46]郭永强.回传射线矩陈法的理论及其应用[D].杭州:浙江大学博士学位论文,2008.
    [47]缪馥星.框架振动和瞬态响应的回传射线矩阵法研究[D].上海:上海交通大学博士学位论文,2009.
    [48]Gopalakrishnan S., Martin M., Doyle J. F.. A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beams[J]. Journal of Sound and Vibration, 1992, 158(1): 11-24.
    [49]Doyle J. F., Farris T. N.. A spectrally formulated finite element for wave propagation in 3-D frame structures[J]. Journal of Analytical and Experimental Modal Analysis, 1990, 5: 223-237.
    [50]Igawaa H., Komatsu K., Yamaguchi I., et al. Wave propagation analysis of frame structures using the spectral element method[J]. Journal of Sound and Vibration 2004, 277: 1071 - 1081.
    [51]张俊兵,朱宏平,閤东东,等.基于波谱单元法的结构动力响应分析[J].华中科技大学学报,2010,38(7):6265.
    [52]Howard S. M., Pao Y. H.. Analysis and experiments on stress waves in planar trusses[J]. Journal of Engineering Mechanics (ASCE) 1998, 124(8): 884-891.
    [53]Pao Y. H., Keh D. C., Howard S. M.. Dynamic response and wave propagation in plane trusses and frames[J]. AIAA Journal, 1999, 37(5): 594-603.
    [54]Pao Y. H., Sun G.. Dynamic bending strains in planar trusses with pinned or rigid joints[J]. Journal of Engineering Mechanics (ASCE), 2003, 129(3): 324-332.
    f55]徐剑锋,杜晓伟,涂振国,等.钢屋架瞬态动力响应的弹性波分析[J].上海交通大学学报,2002,36(3):432435.
    [56]涂振国,范志华,孙国钧.粘弹性框架瞬态响应的回传波射矩阵法研究[J].合肥工业大学报,2007,30(11):14941497.
    [57]余云燕.有损伤框架结构中的波动分析[J].振动工程学报,2004,17(1):20-24.
    [58]余云燕,鲍亦兴,陈云敏.基于回传射线矩阵法框架结构的损伤检测研究[J].土木工程学报,2005,38(:3):53-69.
    [59]余云燕.有损伤连续梁的瞬态响应[J].爆炸与冲击,2009,29(1):61-66.
    [60]余云燕.多缺陷框架结构的波动响应[J].振动工程学报,2009,21(5):511-515.
    [61]曹连伟.三维杆系结构回传波射矩阵法及其应用[D].上海:同济大学博士学位论文,2007.
    [62]Safak E.. Wave-propagation formulation of seismic response of multistory buildings [J]. Journal of Structural Engineering, 1999, 125(4): 426-437.
    [63]Gicev V., Trifunac M. D. . Energy and power of nonlinear waves in a seven-story reinforced concrete building[J]. Journal of Earthquake Technology, 2007, 44(1): 305-323.
    [64]Doebling SW, Farrar CR, Prime MB, Shevitz DW. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristies: a literature reviow[R]. Report LA 13070 MS, Los Alamos National Laboratory, Los Alamos, NM, 1996.
    [65]Ivanovie S. S., Trifunae M. D. , Todorovska M. I.. On identification of damage in struetures via wave travel times[C]. NATO Advanced research workshop on sirong motion instrumentation for civil engineering struetrues. June 2 5, 1999, Istanbul, Turkey. Dordecht: Kluwer, 2001, 447-467.
    [66]Snieder R. , Sherman J. , Calvert R. . Equivalenee of the virtual souree method and wave field deconvolution in seismie interferometry[J]. Phys. Rev. , 2006, E73: 066620 (9 pages).
    [67]陈玲俐,王灵,朱伯龙.高层建筑地震反应时程分析中的时滞问题[J].工业建筑,2000,30(8):5-8.
    [68]Iwan W. D.. Drift spectrum: Measure of demand for earthquake ground motions[J]. Journal of Struetural Engineering (ASCE) 1997, 123(4), 397-404.
    [69]Todorovska M. I., Trifunac M. D.. Antiplane earthquake waves in long struetures[J]. Journal of Engineering Mechanies, 1989, 115(12): 2687-2708.
    [70]Todorovska M. I., Lee, V. W.. Seismie waves in huildiugs with shear walls or central core[J]. Journal of Engineer ing Meehanics (ASCE) 1989, 115(12): 2669-2686.
    [7l]Todorovska M. I., Trifunac M. D.. Propagation of earthquake waves in buildings with soft first floor[J]. Journal of Engineering Mechanies, 1990, 116(4): 892-900.
    [72]Safak E.. New approach to analyzing soil building systoms[J]. Soil Dynamics and Earthquake Engineering, 1998, 17(7 8): 509-517.
    [73]Todorovska M. I., Ivauovie'S. S. , Trifunae M. D.. Wave propagation in a seven story reinforeed conerete building Ⅱ. Observed wavenumbers[J]. Soil Dynamics and Earthquake Engineering, 2001, 21: 225-236.
    [74]Trifunac M. D., Ivanovie'S. S., Todorovska M. I.. Wave propagation in a seven story reinforeed conerete building: Ⅲ. Damage deteetion via changes in wavenumbers[J]. Soil Dynamies and Earthquake Engineering, 2003, 23(1): 65-75.
    [75]Todorovska M. I., Trifunae M. D.. Earthquake damage deteetion in the Imperial County Services Building Ⅱ: Analysis of novelties via wavelets[J]. Struetural Control and Health Monitoring, 2010, 17: 895-917.
    [76]Snieder R., Safak E.. Extraeting the huilding response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California[J]. Bulletin of the Seismologiesl Society of America, 2006, 96(2): 586-598.
    [77]Todorovska M. I., Trifunae M.D.. Impulse response analysis of the Van Nuys 7 storey hotel during Ⅱ earthquakes and earthquake damage detection[J]. Struetural control and health monitoring, 2008, 15(1): 90-116.
    [78]Gicev V., Trifunac M. D.. Transient and permanent shear strains in a building excited by strong earthquake pulses[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(10): 1358-1366.
    [79]Kawakami H. , Haddadi H. R. Modeling wave propagation by using normalized input - output minimization (NIOM)[J]. Soil Dynamic and Earthquake Engineering, 1998, 17(2): 117-126.
    [80]Haddadi H.R., Kawakami H. . Modeling wave propagation by using normalized input -output minimization (NIOM) method for multiple linear systems[J]. Journal of Structural Mechanics and Earthquake Engineering, 1998, 15(1): 29-39.
    [81]Kawakami H., Oyunchimeg M.. Normalized input -output minimization analysis of wave propagation in buildings[J]. Engineering Structures, 2003, 25(11): 1429-1442.
    [82]Kawakami H., Oyunchimeg M.. Wave propagation modeling analysis of earthquake records for buildings[J]. journal of Asian Architecture and Building Engineering, 2004, 3(1) : 33-40.
    [83]Oyunchimeg M., Kawakami H.. A new method for propagation analysis of earthquake waves in damaged buildings evolutionary normalized input-output minimization[J]. Journal of Asian Architecture and Building Engineering, 2003, 2(1): 9-16.
    [84]Jun Ma, Pines D. J.. Damage detection in a building structure model under seismic excitation using dereverberated wave mechanics[J]. Engineering Structures, 2003, 25(3): 385 396.
    [85]Jala1i R. S., Trifunac M.D.. A note on t he wave-passage effects in out of-plane response of long structures to strong earthquake pulsesi[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(4): 640647.
    [86]Mei V.. Wave control of vibrations in multistory planar frame structures based on classical vibration theories[J]. Journal of Sound and Vibration, 2011, 330(23): 5530-5544.
    [87]钱培风,苏文藻,张悉德,等.烟囱在地震作用下的纵波应力[J].力学学报,1978(2):125-134.
    [88]王阜,廖振鹏.烟囱竖向地震反应的波动分析[J].土木工程学报,1984,17(1):1426.
    [89]朱宏平,唐家祥.高层建筑结构振动的行波控制[J].土木工程学报,1995,28(4):41-45.
    [90]朱宏平,唐家祥.高层建筑被动混合控制的波动分析[J].地震工程与工程振动,1998,18(3):56-66.
    [91]朱宏平,唐家祥.高层建筑结构的波传播及其振动功率流[J].华中理工大学学报,1995,23(3):78-81.
    f92]张俊兵.基于波谱单元法的结构动力分析[D].武汉:华中科技大学博土学位论文,2008.
    [93]李东升,贾辉,李宏男,等.论高耸结构地震动响应的时延性[J].建筑结构,2010,40(S2):119-123.
    [94]陈富生,邱国桦,范重.高层建筑钢结构设计[M].北京:中国建筑工业出版社,2000.
    [95]白晓红.钢筋混凝土框排架结构的平扭耦联多维地震反应分析[D].西安:西安建筑科技大学博士学位论文,2008.
    [96]屈铁军,王前信.多点输入地震反应分析研究的进展[J].世界地震工程,1993,1:30-36.
    [97]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报2001,29(10):12131219.
    [98]白凤龙.空间变化地震动激励下大跨度结构的反应研究[D].大连:大连理工大学博士学位论文,2010.
    [99]Kiureg H. A. D.. A Coherency modell for spatiailly varying ground motions[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(1): 99-111.
    [100]Chopra A. K.. Dynamics of struetures: Theory and applications to earthquake engineering[M]. 2nd edition, Beijing: Tsinghua Iniversity Press, 2005, P384-386.
    [101]Clough R. W., Penzien J.. Dynamics of sructures[M], 3 edition, Berkeley: Computers and Struetures, Inc. 2003, P644-647.
    [102]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展,2001,31(3):350-360.
    [103]李宏男.结构多维抗震理论[M].北京:科学出版社,2006.
    [104]Trifunac M. D., Ivanovie'S. S., Todorovska M. I., et al. Experimental evidence for flexibility of a building foundation supported by conerete frietion piles[J]. Soil Dynamics and Earthquake Engineering, 1999, 18(3) : 169-187.
    [105]Trifunae M. D.. Review: Rotations in struetural response[C]. Bulletin of the Seismological Soeiety of America, 2009, 99(2B): 968-979.
    [106]Bogdanoff J. L., Goldberg J. E., Schiff A.J.. The effeet of ground transmission time on the response of long struetures[J]. Billetin of the Seismologieal Society of America, 1965, 55(3) : 627-640.
    [107]李正农,楼梦麟.大跨度桥梁结构地震动输入问题的研究现状[J].同济大学学报,1999,27(5):592-597.
    [108]Ghobarah A., Aziz T.S., El Altar M.. Response of transmission lines to multiple support exeitation[J]. Engineering Struetures, I996, 18(12): 936-946.
    [109]田利,李宏男.地震动差动下压输电塔线体系的纵向反应[J].地震工程与工程振动,2008.28(1):117-122.
    [110]田利.输电塔线体系多维多点地震输入的试验研究与响应分析[D].大连:大连理工大学博士学位论文,2011.
    [111]丁阳,王波.大跨度空间网格结构在地震行波效应作用下的响应[J].地工程与工程振动,2002,22(5):71 76.
    [112]张文首,林家浩.大跨度结构考虑行波效时平衡随机地震响应的闭合解[J].固体力学报,2004,25(4):446-450.
    [113]丁阳,张笈玮,李忠献.行波效应对大跨度空间结构随机地震响应的影响[J].地震工程与工程振动,2008,28(1):24-31.
    [114]Xia H., Han Y., Zhang N., et al. Dynamic analysis of train bridge system subjected to non-uniform seismic excitations[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(12): 1563-1579.
    [115]Van J.D., Fr'yba L., Response of suspended beams due to moving loads and vertical seismic ground excitations[J]. Engineering Structures, 2007, 29(12): 3255-3262.
    [116]Van J. D.. Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations[J]. Journal of Sound and Vibration, 2009, 325(4-5): 907-922.
    [117]楼梦麟,兰岚,黄明开.多点地震激励对大跨度结构抗震设计的影响[J].世界地震工程,2010,26(1):1-6.
    [118]何庆祥,沈祖炎.结构地震行波效应分析综述[J].地震工程与工程振动,2009,29(1):5057.
    [119]张亚辉,林家浩.多点非均匀调制演变随机激励下结构地震响应[J].力学学报,2001,33(1):87-95.
    [120]张亚辉,林家浩.香港青马桥抗震分析[J].应用力学学报,2002,19(3):2530.
    [121]张亚辉,赵岩,张春宇.大跨度桥梁抗震分析的空间效应[J].中国铁道科学,2002,23(6):9094.
    [122]李忠献,史志利.行波激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动,2003,23(2):68-76.
    [123]Lin J.H., Zhang Y. H., Li Q. S. , et al. Seismic spatial effects for long-span bridges, using the pseudo excitation method[J]. Engineering Structures, 2004, 26(9): 1207-1216.
    [124]Soylnk K.. Comparison of random vibration methods for multi-support seismic excitation analysis of long-span bridges[J]. Engineering Structures, 2004, 26(11): 1573-1583.
    [125]Zhang Y. H., Li Q. S., Lin J. H., et al. Random vibration analysis of long-span structures subjected to spatially varying ground motions[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(4): 620-629.
    [126]Newmark N. M.. Torsion in symmetrical buildings[C]. Proceedings 4 th World Conference Earthquake Engineering, 1969, 2: 19-32.
    [127]Hahn G. D., Liu X. . Torsional response of unsymmetrie buildings to incoherent ground motions[J]. Journal of Structural Engineering(ASCE), 1994, 120(4):1158-1181.
    [128]Hao H., Member, Duan X. N.. Seismic response of asymmetric structures to multiple ground motions[J]. Journal of Structural Engineering(ASCE), 1995, 121(11):1557-1564.
    [129]Hao H., Duan X. N.. Multiple exeitation effects on response of symmetrie buildings[J]. Engineering Structures, 1996, 18(9): 732-740.
    [130]Hao H.. Torsional response of building structures to spatial random ground exeitations[J]. Engineering Structures, 1997, 19(2): 105-112.
    [131]Heredia Zavoni E., Federico B.. Torsion in symmetrie structures due to ground motion spatial vihration[J]. Journal of Engineering Mechanies, 1996, 122 (9): 834-843.
    [132]Heredia Zavoni E., Leyva A.. Torsional response of symmetrie buildings to ineoherent and phase-delayed earthquake ground motion[J]. Earthquake Engineering and Struetural Dynamics, 2003, 32(7): 1021-1038.
    [133]Jeng V., Kasai K.. Spectral relative motion of two structures due to seismic travel waves[J]. Journal of Structural Engineering. 1996, 122(10): 1128-1135.
    [134]Hao H., Liu X.Y. Estimation of required separations between adjacent structures under spatial ground motions[J]. Journal of Earthquake Engineering, 1998, 2(2): 197-215.
    [135]Hao H., Zhang S. R.. Spatial ground motion effect on relative displacement of adjacent building struetures[J]. Marthquake Engineering and Structural Dynamics, 1999, 28(4) : 333-349.
    [136]姜忻良,严宗达,李忠献.考虑地面差动的相邻结构地基上相互作用[J].地震工程与工程振动,1997,17(2):67-73.
    [137]姜忻良,严宗达.结构地枯结构相互作用地震反应分析[J].振协工程学报,1998,11(1):31-37.
    [138]Behnamfar F., Sugimura Y.. Dynamic response of adjacent structures under spatially variable seismic waves[J]. Probabilistic Engineering Mechanies, 1999, 14(1-2):33-44.
    [139]桂国庆,李永华,李思明.复杂高层连体结构多点激励地震反应分析[J].工程力学,2009,26(10):95-101.
    [140]何庆祥.门式超高层结构抗震性能研究[D].上海:同济大学博士学位论文,2008.
    [141]Rambabu K. V., Allam M. M.. Response of an open plane frame to multiple support horizontal seismie exeitations with soil-structure interaetion[J]. Journal of Sound and Vibration, 2007, 299(1-2) 388-396.
    [142]Allam M. M.. Multiple support exeitations of open plane frames by a filtered white noise and soil structure interaction[J]. Journal of Sound and Vibration, 2010, 329(20): 4212-4226.
    [143]C.T.E.鲁斯著.吴德心译.结构力学的有限元法[M].北京:人民交通出版社,1991,P308.
    [144]孙焕纯,曲乃泗.林家浩.高等计算结构动力学[M].北京:大连理工大学出版社,1982,
    [145]徐次达,华伯浩.固体力学有限元理论·方法及程序[M].北京:水利电力出版社,1983,12.
    [146]裴星洙,张力,任正权.高层建筑结构地震响应的时程分析方法[M].中国水利电出版社,2006.
    [147]Kolsky H.. Stress wave in solids[M]. Oxford: Clarendons Press, 1953, P72.
    [148]Wu J. R., Li Q. S.. Finite element model upctating for a high-rise structure based on ambient vibration measurements[J]. Engineering Structures, 2004, 26(7): 979-990.
    [149]建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2002.
    [150]Feng M. Q., Kim J. M., Xue H.. Identification of a dynamic system using ambient vibration measurements[J]. Journal of Applied Mechanics, 1998, 65: 1010-1021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700