用户名: 密码: 验证码:
高速铁路综合接地系统参数计算及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速铁路建设的全面展开,其接地安全问题已提上日程,必须开展深入研究才能满足应用需要。高速铁路由于列车运行速度高和行车密度大,牵引负荷电流和故障短路电流均较既有普速铁路显著增大,从而造成钢轨电位急剧增高。如不采取相应的措施,将危及人身和设备安全,并可能影响轨旁信号设备的正常工作。
     本文主要研究高速铁路综合接地系统的参数计算问题,以及在此基础上的优化设计问题。论文从接地设计首先考虑的土壤问题入手,介绍了两层土壤参数模型的建立及计算方法,在此基础上推导了不均匀土壤接地系统接地电阻的计算模型,为分析工频电流下接地网的性能奠定了理论基础。接下来分析了接地系统的工频参数,讨论了接地系统的电压分布、接地系统故障电流、接地安全要求。
     为了降低接地系统的接地电阻,引入了长垂直接地电极与接地网组成的复合接地网来降低接地电阻的措施,并对这种接地网性能进行了验证;为了使地表面的电位均匀分布,引入了接地网不等间距布置方案,并对这种方案进行了验证;针对全并联AT供电方式的特点引入了几种降低轨道电位措施的方案,并运用Matlab/Simulink,根据实际全并联AT供电牵引网的参数和接地系统的参数建立了综合接地系统的仿真模型。最后在这个模型下,对各种接地措施进行了仿真,并通过仿真验证其可行性。
With the construction of the high-speed railway lines in our country, their grounding safe operation have been on the agenda, and must be lucubrate to meet the development. Compared to the traditional railway, high running speed, high running density, strong traction load current, strong short current lead to steep rail potential rise. If we don't take corresponding measures for the high rail potential, it may imperil human and machine safety and influence the trackside signal equipment work properly.
     Aiming to integrated grounding system of high-speed railway, Parameters Calculation of integrated grounding system and its optimum design are studied in this paper. The paper is begin with consideration of soil problems in grounding design, introduced a two-layer soil model and its calculation method and a grounding resistance calculation model of uneven soil grounding system is proposed. Both of them provide theoretical foundation for analyzing performance of grounding grids in power current. Next analyzed the parameters of grounding system on the industry frequency, discussed the voltage distribution of grounding system, fault current of grounding system, grounding safety requirements.
     In order to reduce the grounding resistance of grounding system, made a measure of composite grounding grid which is composed with a long vertical grounding electrode and level grounding grid, and validate the performance of the composite grounding grid; In order to make uniform distribution of the surface potential, uneven space layout of grounding grid is proposed, and validate its performance. According to the characteristics of all-parallel AT power supply system, effective methods to reduce rail potential are proposed, a integrated grounding system simulation model is built with the real parameters of all-parallel AT power supply system traction network and grounding system by Matlab / Simulink,which is validated by simulation.
引文
[1]李国斌.世界高速铁路概况及京沪高速铁路的建设准备[J].铁道通信信号,1999,03:1-5
    [2]钱仲候.高速铁路概论[M].中国铁道出版社,1994
    [3]川濑太郎等.图解接地技术[M].北京:科学出版社,2003
    [4]何金良等.电力系统接地技术[M].北京:科学出版社,2007
    [5]曹建猷.电气化铁道供电系统[M].北京:中国铁道出版社,1993
    [6]谭秀炳等.交流电气化铁道牵引供电系统[M].西南交通大学出版社,2002
    [7]苏鹏程.客运专线电气化铁道的综合接地技术[J].电气化铁道,2005:39-42
    [8]李红梅.客运专线接触网回流接地系统的优化设计[J].中国铁路,2005,11:41-43
    [9]唐伟,李西歧.交流电气化铁道牵引系统接地问题浅谈[J].铁道机车车辆,2006,(10):69-70
    [10]毕红军.电气化铁道牵引回流分布的理论分析.北京交通大学学报,1994,18(2):251-25
    [11]鲁志伟,常树生,张久禄.大型变电站接地网的网内电位差[J].电力建设,2004,09:39-40
    [12]徐华,文习山,黄玲.大型变电站接地网的优化设计[J].高电压技术,2005,12:63-65
    [13]鲁志伟,文习山等.大型变电站接地网工频接地参数的数值计算[J].中国电机工程学报,2003,12:89-92
    [14]刘春,何俊佳等.复合接地网接地电阻的计算机仿真[J].中国电机工程学报,2003,6:159-163
    [15]徐华,文习山等.大型变电站钢材和铜材接地网的性能比较[J].高电压技术,2004,7:18-19
    [16]王洪泽.复合接地网接地电阻的简化计算[J].电力建设,1996,5:20-23
    [17]王洪泽.双层土壤中复合接地网接地电阻的新解析计算法[J].广东电力,2005,8:7-12
    [18]王洪泽,杨丹.论水平接地网最大接触电位差的解析计算法[J].广东电力.2006,12:4-9
    [19]王洪泽.双层土壤中打入下层土壤内的垂直电极接地电阻的简化计算.广西电力,2004(4):24-28
    [20]黄丽英,颜怀梁,屠幼萍等.不等间距接地网的设计[J].四川工业学院学报,1990,9:162-164
    [21]黄丽英,李新达.均压接地网设计新方法[J].海南大学学报,1990,9:45-51
    [22]程辉海等.牵引变电所地网腐蚀与改造研究[J].电气化铁道,2006,1:16-18
    [23]张波.变电站接地网频域电磁场数值计算方法研究及其应用[D].华北电力大学,2003
    [24]袁中平.高速客运专线地电位影响计算与防护探讨[J].中国水运,2006,4:96-97
    [25]解绍锋等.高速铁路钢轨电位计算及限制方案研究.电气化铁道,客运专线技术研讨会论文集:318-322
    [26]吴命利,黄足平,辛成山.降低电气化铁道钢轨电位技术措施的研究.铁路客运专线建设技术交流会论文集:504-516
    [27]缪耀珊.交流电气化铁道的钢轨对地电位问题.电气化铁道,2007,4:1-6
    [28]罗利平,张华志.客运专线牵引变电所接地设计研究.[J].电气化铁道,2007,5:5-8
    [29]吕永宏,姜贺彬.客运专线牵引供电综合接地系统仿真研究.[J].甘肃科技,2007,12:85-88
    [30]杨岗.客运专线综合接地系统方案研究.[J].中国铁路,2006,8:53-55
    [31]刘荣洲,刘力,陶相普.多层土壤接地系统设计的简化和综合[J].广西电力,2006,5:10-15
    [32]陈晶晶,马德明.高速铁路常用供电方式接地回流研究[J].铁道技术监督,2007,10:24-27
    [33]S.T.Sobral,V.G.P.Fleury,J.R.Villalba and D.Mukhedkar.Decoupled Method for Studying Large Interconnected Grounding Systems Using Microcomputers.IEEE Transactions on Power Delivery,1988,3(4):1536-1552
    [34]R.Natarajan,A.F.Imece,J.Popoff,K.Agarwal,P.S.Meliopoulos.Analysis of grounding systems for electric traction.IEEE Transactions on Power Delivery,2001,16(3):389-393
    [35]Chen Jiancheng.Analysis of the earth potential problems of the electrified railway.Environmental Electromagnetics,2000:222-225
    [36]唐元方.客运专线无碴轨道桥梁综合接地及其必要性.铁道工程学报,2006(5):63-66
    [37]王国英,彭为民.关于牵引轨道及其关联设施在牵引网中重要性的探讨.太原铁道科技,2005:1-3
    [38]Rodrigues,Melville,Aziz,Imtithal,Bansal,Parvinder.Earthing and Bonding Strategy for a Large Distributed System.EMC in Railways,2006:127-136
    [39]A.Mariscotti,P.Pozzobon,M.Vanti.Distribution of the traction return current in AT electric railway systems.IEEE Transactions on Power Delivery,2005,20(3):2119-2128
    [40]Chih-Ju Chou,Ying-Tong Hsiao,Chin-Cheng Hsu.Distribution of earth leakage currents in railway systems with drain auto transformers.Transmission and Distribution Conference,1999 IEEE1,11-16 1999:223-227
    [41]苏光辉.钢轨电位过高的原因分析及解决措施.电气化铁道,2007(1):38-40
    [42]藏其吉.德国高速列车技术的发展.机车电传动.2003(5):10-14
    [43]解广润.电力系统接地技术.北京:水利电力出版社[M],1991:105-115
    [44]A.Mariscotti.Distribution of the Traction Return Current in AC and DC Electric Railway Systems.IEEE Transactions on Power Delivery,2003,18(4):1422-1432
    [45]K.S.Bahra,P.G.Batty.Earthing and bonding of electrified railways.Developments in Mass Transit Systems,1998:296-302
    [46]辛成山.AT供电系统等值电路推导方法.电气化铁道,1999:1-3
    [47]李中新.基于复镜像法的变电站接地网模拟计算[D].北京:清华大学,1999
    [48]R.J.Hill,S.Brillante,P.J.Leonard.Railway track transmission line parameters from finite element field modelling:series impedance.Electric Power Applications,IEE Proceedings,1999,146(6):647-660
    [49]A.Pleym,Jinxi Ma.A study of interference from AC electrified railway systems to nearby earth return circuits. Electromagnetic Compatibility, 1999: 531-536
    [50] N. Nedelchev. Influence of earth connection on the operation of railway track circuits. Electric Power Applications, IEE Proceedings, 1997, 144(3): 215-219
    [51] D. L. Garrett, K. A. Wallace. A critical analysis of grounding practices for railroad tracks in electric utility stations. IEEE Transactions on Power Delivery, 1993, 8(1): 90-96
    [52] S. T. Sobral , C. A. O. Peixoto and D. Mulhedkar. Ground Potential Distribution in the Neighborhood of the Itaipu Generation Complex. IEEE Transactions on Power Delivery, 1986, PWRD-I(1): 85— 91
    [53] Shi-Lin Chen, Hsu, S. -C., Chin-Tien Tseng, Kun-Hong Yan, Huang-Yu Chou, Tong-Ming Too. Analysis of rail potential and stray current for Taipei Metro. IEEE Transactions on Vehicular Technology, 2006, 55(1): 67-75
    [54]B.Mellit , J.Allan , Z.Y.Shao , W.B.Johnston , C. J. Goodman. Computer-based methods for induced-voltage calculations in AC railways. Electric Power Applications, IEE Proceedings B, 1990, 137(1): 59-72
    [55] Chien-Hsing Lee. Evaluation of the maximum potential rise in Taipei rail transit systems. IEEE Transactions on Power Delivery,2005,20(2): 1379-1384
    [56] R. I. Hill , D. C. Carpenter. In situ determination of rail track electrical impedance and admittance matrix elements. IEEE Transactions on Instrumentation and Measurement, 1992, 41 (5): 666— 673
    [57] F. Dawalibi, D.Mukhedkar. Resistance Measurement of Large Grounding Systems. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(6): 2348-2354
    [58] J. G. Sverak, W. K. Dick, T. H. Dodds, R. H. Heppe, Safe Substation Grounding Part I, IEEE Trans, on PAS, 1981,100(9)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700