用户名: 密码: 验证码:
装配式钢箱—预应力混凝土组合梁性能试验与设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在开展国家自然科学基金资助项目“钢箱一砼组合拱结构性能与分析方法研究”(51078373)的过程中,本文提出装配式钢箱—预应力混凝土组合连续刚构桥的构想,可望克服预应力混凝土连续刚构桥主梁开裂和后期挠度过大的病害隐患,针对装配式钢箱—预应力混凝土(SB-PC)组合梁的结构性能和设计原理开展了探索性的试验和理论研究,主要研究内容和结论如下:
     ①提出根据主梁不同区段受力需要选用与之相适应的钢箱-砼组合截面的SB-PC组合连续刚构桥的构想,完善了其总体构造,研究了关键部位的细节构造,初步探索了其主要施工步骤和方法。分析表明,SB-PC组合连续刚构桥可望克服常规混凝土连续刚构桥主梁开裂和后期挠度过大的主要病害,且能够显著降低桥梁自重,为连续刚构桥向更大跨径发展提供了可行途径;
     ②针对SB-PC组合连续刚构的结构和工艺特点,构造了通过后浇剪力键预留孔混凝土使预制桥面板与钢箱梁联结为一体的S-PC剪力键,开展了两类共5个S-PC剪力键的推出试验研究,结合对S-PC剪力键试件的有限元分析,认识了S-PC剪力键受载全过程的力学行为,揭示了S-PC剪力键的传力机制和不同部位及方向的应力分布规律;根据对试验数据的统计分析建立了S-PC剪力键的荷载—滑移本构方程;
     ③结合有限元分析方法,研究了剪力键的抗剪面积和高度对S-PC剪力键结构行为的影响,探讨了上、下剪力键各自分担剪力比例随总剪力变化的规律性;发现S-PC剪力键主要表现为剪力键承压面局部混凝土受压破坏,剪力键根部焊缝受剪破坏,以及因剪力键弯曲变形过大而丧失承载力三类破坏形态,据此提出了避免S-PC剪力键破坏的承载力计算公式;
     ④开展了两片SB-PC组合试验梁制作工艺和受载性能研究,对每片试验梁进行了在不同荷载上限下的多次静力循环荷载试验:结果表明SB-PC组合试验梁混凝土顶板的开裂荷载随着混凝土有效预应力度的增加而增大;在0.5Pu范围内作静力循环加载时,试验梁表现为弹性性能;由于预应力的作用,SB-PC组合试验梁顶板混凝土裂缝在卸载后尚能闭合,至重新加载到0.33Pu时再次张开成为可见裂缝;梁顶板混凝土裂缝的宽度和条数随着荷载的增加而增加,当荷载超过0.8pu后,基本无新裂缝产生,但已有裂缝长度和宽度随着荷载的增加而不断扩展;SB-PC组合试验梁加载至临近破坏时,钢箱上翼缘钢板和下底板实测应变均超过钢材屈服应变,试验梁最终表现为钢箱底板受压局部凸屈,相应底板混凝土被压碎而丧失承载能力,具有明显的塑性破坏特征;
     ⑤借助钢-混凝土组合结构已有研究成果,结合SB-PC组合梁的结构特点和试验结果,提出了计入顶、底板滑移的开裂前刚度计算公式;在现有预应力混凝土梁开裂弯矩计算公式中带入考虑顶、底板滑移影响的开裂前截面抵抗矩建立了SB-PC组合梁的抗裂计算公式;利用全截面工作和不计顶板混凝土两种极端状况下的截面刚度,将顶板混凝土开裂逐步退出工作的组合梁刚度实际渐变过程转化为解析几何中曲线的简化描述,建立了开裂后SB-PC组合梁的刚度计算公式;依据简化塑性理论建立了SB-PC组合梁的极限承载力计算公式;
     ⑥以主跨为148m的SB-PC组合连续刚构桥的最大负弯矩梁段(墩顶截面)设计计算为例,应用本文提出的计算公式给出了S-PC剪力键设计、抗裂弯矩和极限抗弯承载能力验算示例。
Based on the "Performance and Analysis Research on Steel Box-Concrete Arch Structure" of the National Natural Science Foundation of China (51078373), the conception of prefabricated steel box-prestressed concrete continuous rigid frame bridge is proposed, which can overcome the distresses of cracking and excessive deflection in the main girder of prestressed concrete continuous rigid frame bridge. Aimed at the structural performance and design principle of prefabricated steel box-prestressed concrete(SB-PC) composite beam, the exploratory test and theoretical research are carried on. The main research contents and conclusions are as follows:
     ①The idea that the steel box-concrete composite sections shall be selected according to the different stress condition along the main girder is put forward, the overall configuration optimized, the connector detailing studied and the construction procedure preliminarily explored. The analysis shows that the SB-PC composite continuous rigid frame bridge can overcome the distresses of cracking and excessive deflection in the main girder of prestressed concrete continuous rigid frame bridge and significantly reduce the bridge deadweight, promising a feasible way for the continuous rigid frame bridge to expected longer spans.
     ②According to the structural and technical characteristics of the SB-PC composite continuous rigid frame bridge, the S-PC shear connection linking the bridge deck with the steel box girder is realized with post-cast concrete to fixate the shear connectors in prefab holes. Through the push-out tests of five S-PC shear connectors of two types combined with finite element analysis, the mechanical behavior of the connectors'full loading process is understanded, the force-transferring mechanism and the stress distribution law in different parts and directions are revealed. Based on statistical analysis of the test data, the load-slip constitutive equation of the S-PC shear connectors is established.
     ③The influence of shear connectors'sectional area and height to the structural behavior of S-PC shear connectors is studied. The rule about the proportions of shear force shared by the upper and the lower shear connectors vary with the total shear force is also investigated. The S-PC shear connectors mainly present three failure modes: crush of the local concrete face in compression by the shear connector, shear failure of the welding seam at the root of the shear connector and excessive bending deformation of the shear connector. According to that, the bearing capacity formula avoiding the failure of S-PC shear connectors is proposed in this paper.
     ④Fabrication process and mechanical behavior research of two SB-PC composite test beams are conducted, in which multiple static cyclic loading tests of each test beam are carried on under different upper loading limit. The results show that the critical load corresponding to the cracking of the SB-PC composite test beam's concrete top slab increases with the effective concrete prestress. During static cyclic loading within the0.5Pu range, the test beam presents elastic behavior. Due to prestressing effect, the cracks in the concrete top slab of SB-PC composite test beam can close after unloading, but open again to be visible while it's reloaded to0.33PV The crack width and number in the concrete top slab increase with the load. New cracks can hardly be seen after the load is over0.8Pu, but the existing cracks'length and width continuously grow with the load. When the load is close to the failure point, the read strain of the steel box's top flange plate and bottom plate is higher than steel yield strain. The test beam finally failures as the steel box bottom plate is compressed to convex bucking and the bottom plate concrete is crushed showing obvious plastic failure characteristics.
     ⑤Based on the existing research results of steel-concrete composite structure, and combined with the structural characteristics and test results of the SB-PC composite beam, the calculation formula for pre-cracking stiffness is proposed with the slippage effect of the top flange and bottom concrete slabs considered. The cracking moment calculation formula for the SB-PC composite beam is established through substituting the pre-cracking sectional resistance moment into the existing cracking moment calculation formula for the prestressed concrete beam, also with the slippage effect of the top flange and bottom concrete slabs considered. The post-cracking rigidity calculation formula for the SB-PC composite beam is established through simplification of the degrading law of the beam section rigidity as an analytical geometry curve, in which the two extreme cases of full-section work and work without the top flange concrete slab are made the boundary of the curve.
     ⑥As an application example, the maximum negative moment beam segment (pear-top segment) of an SB-PC composite continuous rigid frame bridge with a main span of148m is tentatively designed, in which the calculation formulae proposed in the paper are used to determine the S-PC shear connector's design, the cracking moment and the ultimate flexural bearing capacity of the main girder.
引文
[1]王海良,刘永前.体外预应力混凝土结构在我国桥梁建设中的应用现状及急需解决的问题[J].工程力学.1998(A02).362-365.
    [2]蔚建华主编.预应力混凝土桥梁施工技术要点[M].北京:人民交通出版社,2004.2-11.
    [3]赵霞.预制节段体外预应力混凝土梁桥设计中有关问题的研究[D].武汉理工大学.2006.
    [4]张艳.体外预应力法在连续刚构桥加固中的应用研究[D].西南交通大学.2008.
    [5]马保林编著.高墩大跨连续刚构桥[M].北京:人民交通出版社,2001.18-27.
    [6]曾宪武,王永珩.桥梁建设的回顾和展望[J].公路.2002,(1):28-33.
    [7]方绪华,宗周红.红毛里Ⅱ号桥施工线形控制及精度分析[J].福州大学学报(自然科学版).2010,38(2):247-251.
    [8]中国公路学会桥梁和结构工程分会.面向创新的中国现代桥梁[M].北京:人民交通出版社,2009.261-298.
    [9]文武松.苏通大桥辅桥连续刚构施工控制[J].桥梁建设,2008(4).65-68.
    [10]卫星,李小珍.钢—混凝土混合结构在大跨度连续刚构桥中的应用.中国铁道科学,2007,28(5):43-46.
    [11]马雅林,张立江.红河高墩连续刚构桥的优化设计[J].兰州交通大学学报,2009,28(6).55-58.
    [12]刘玉兰.福建下白石大桥主桥施工关键技术[J].公路.2006,(6).125-128.
    [13]李黎,彭元诚.龙潭河大桥风致抖振时域分析[J].公路.2005,(11).59-62.
    [14]章曾焕,臧瑜.重庆嘉华嘉陵江大桥设计[J].预应力技术,2010(5).3-6.
    [15]方萍,张天明.重庆鱼洞长江大桥主桥上部结构设计和计算[J].公路交通技术2005(7).34-38.
    [16]庄卫林.泸州长江二桥主桥结构技术特点[J].桥梁建设,2001(5):30-32.
    [17]孙涛,袁明.大跨度PC连续刚构桥混凝土收缩和徐变影响分析[J].中外公路,2010,30(5):136-139.
    [18]何钦象,田小.高墩大跨径连续刚构桥抗震性能评估[J].振动与冲击,2009,28(1):68-71.
    [19]戴竞,凤悉润.我国预应力混凝土公路桥的发展与现状[J].土木工程学报,1997,30(3):3-10.
    [20]周军生,楼庄鸿.大跨径预应力混凝土连续刚构桥的现状和发展趋势[J].中国公路学报,2000,13(1):31-37.
    [21]楼庄鸿.国内外大跨径桥梁的现状和发展趋势(续三)[J].中南公路工程,1994,(1):62-66.
    [22]顾凯锋,彭卫.预应力混凝土连续箱梁桥腹板裂缝研究[J].公路,2004(7):35-38.
    [23]林新元,张峰.基于混合有限元理论的连续刚构底板崩裂分析[J].山东大学学报(工学版),2009,39(6):125-129.
    [24]杨鸿波.连续刚构施工过程中腹板斜裂缝成因分析[J].中外公路,2010,30(5):197-199.
    [25]李胜华.周志祥.墩顶横隔板对连续刚构箱梁顶板力学性能的影响[J].重庆交通大学学报(自然科学版)2007,26(4):3-5.
    [26]陈文瑜,黄小清.混凝土连续刚构箱梁桥的温度场分析[J].中山大学学报(自然科学版),2008,47(Sup.2):114-116.
    [27]何畅.竖向接缝对连续刚构桥后期挠度的影响[J].重庆交通大学学报(自然科学版),2009,28(3):480-483.
    [28]潘钻峰,吕志涛.苏通大桥连续刚构收缩徐变效应的不确定性分析[J].工程力学,2009,26(9):67-73.
    [29]In Hwan Yanga. Uncertainty and sensitivity analysis of time-dependent effects in concrete structures[J].Engineering Structures,2007,29(7):1366-1374.
    [30]詹建辉,陈卉.特大跨度连续刚构主梁下挠及箱梁裂缝成因分析[J].中外公路,2005(25):56-57.
    [31]王法武,石雪飞.大跨径预应力混凝土梁桥长期挠度控制分析[J].上海公路,2006(1):29-32.
    [32]陈梅.大跨径预应力混凝土箱梁桥腹板斜裂缝研究[D].长安大学.2002.
    [33]张树仁,王宗林.桥梁病害诊断与改造加固设计[M].北京:人民交通出版社,2006:77-78.
    [34]王首绪,詹建辉.特大跨度连续刚构主梁下挠及箱梁裂缝的体外预应力处治[J].中外公路,2007(3):146-148.
    [35]孙东方.连续刚构桥箱梁腹板开裂原因分析[J].山东交通学院学报,2006(1):46-48.
    [36]孙海林,叶列平.城市轨道交通预应力混凝土连续梁桥的收缩和徐变分析[J].公路交通科技,2005,22(1):89-92.
    [37]Nomura K.et al.Hybrid structure for bridges[M].Gihodo Shuppan,1994.
    [38]Tamura Y.et al.Design of Chidorinosawa River Bridge[J].Japanese Bridge and Foundation Engineering,1998,9.
    [39]Japan Society of Civil Engineers,Bridges in Japan,2001-2002.
    [40]Hosaka T.et al.Continuous Composite Girder Using Steel fiber light concrete[J].Joural of Japan Concrete Institute,Vol.41,No.1,2003.
    [41]王喜军,中全增.秦沈客运专线桥梁新结构综述[J].铁道标准设计,2002(1):1-7.
    [42]张鹏,薛伟辰,韦树英.预应力组合梁工程应用进展[J].建筑科学.2005(3):26-28.
    [43]Saadatmanesh H,Albrecht P,Ayuub B M.Experimental Study of Prestressed Composiet Beams[J].J.Struct.Div.ASCE,1989,115(9):2364-2381.
    [44]Troitsky M S.Presstressed Steel Bridges,Theory and Design[M].New York,van Nostrand Reinhold Company,1990.
    [45]Johnson R P.Composite Structures of Steel and Concrete,Vol 2:Bridges[M].Oxford:Blackwell Scientific,1994.
    [46]Wulin Li,Pedro Albrecht,Saadat manesh H.Strengthing of Composite Steel-Concrete Bridges[J].J.Struct.Div.,ASCE,1995,121(12):1842-1849.
    [47]邵长宇.主跨105m连续组合箱梁桥的技术特色与创新[J].桥梁建设,2008(3):33-36.
    [48]方志禾,陈桂英.预应力钢与混凝土组合连续梁桥的设计实践—44m+64m+44m阜成路立交主桥[J].北京建筑工程学院学报,1995(3):68-78.
    [49]刘玉擎.组合结构桥梁[M].北京:人民交通出版社,2000.165-174.
    [50]Jean-Paul Lebet.Composite Bridges in Switzerland[J]. Japanese Bridge and Foundation Engineering,2003,(3):37-46.
    [51]Jacques Brozzetti.Design Development of Steel-Concrete Composite Bridges in France[J].Journal of Constructional Steel Research,2000,55(1-3):229-243.
    [52]Millanes F.Outstanding Composite Steel-Concrete Bridges in the Spanish[C] HSRL.7th International Conference on Steel Bridges,Portugal,2008:1-13.
    [53]张联燕,李泽生,程懋方.钢管混凝土空间桁架组合梁式结构[M].北京:人民交通出版社,2000.98-120.
    [54]楼庄鸿.几种有特色的组合梁桥[J].交通科技,2001(5):5-6.
    [55]周胜利,林亚超.日本北陆新干线犀川桥[J].国外桥梁,1996(3):1-11.
    [56]张晔芝.下承式铁路钢桁结合桥的桥式结构比较[J].铁道学报,2005,27(5):107-110.
    [57]陈开利.法国Boulonnais高架桥简介[J].国外桥梁,1999,(1):15-17.
    [58]Nagayama H.et al.Design of a Steel/Concrete Composite Truss Bridge[R].Miyaji Technical Report,No.17,2001.
    [59]Iwasawa H.et al.Design of a Continuous Composite Truss Girder Bridge Stiffened with External Cables[J]. Japanese Journal of Structural Engineering,48(A),2002.
    [60]王倩,刘玉擎,黄生富.桁腹式组合梁桥节点构造研究[C].第十八届全国桥梁学术会议论文集(下),2008:1030-1034.
    [61]Sato Masakatsu,Kawashige Takayuki.Construction of Kita Chikumagawa Bridge(Phase II Line) on Joshinetsu Expressway(Rigid Frame Structure,Composite Slab)[R].Miyaji Technical Report,2005,20(l):67-89.
    [62]文曙东,卫星,李俊.重庆石板坡长江大桥钢-混凝土结合段疲劳试验荷载研究[J].世界桥梁,2007(2):51-54.
    [63]Hiroshi H,Katsuyoshi A,Yasutaka S, et al.Construction of Steel Girder Bridge Rigidly Connected to Concrete Piers with Perforbond Plates,Current and Future Trends in Bridge Desing[M],Construction and Maintenance 2,Thomas Telfor,London.2001:166-174.
    [64]Takeshi Yamada,Katsu Numata,Bunkichi Haru.Two-girder Rigid Frame Bridge Combining Girders and RC Pier[R].Kobe Steel Engineering Reports,2003,53(1):166-174.
    [65]Shun-ichi Nahamura,Yoshiyuki Momiyama,Tetsuya Hosaka,et al.New Technologies of Steel/Concrete Composite Bridges[J].Journal of Constructional Steel Research,2002,58:99-130.
    [66]The Society of Research for Composite Structure with Corrugated Steel Web[M].Manual for Planning of Corrugated Steel Web Bridges.1998.
    [67]Combault J.The Maupre Viaduct Near Charolles[J] Japanese Journal of PC,Vol.34,No.1,1992.
    [68]Helmut Roesler,Gundolf Denzer.The Prestressed Concrete Bridge Altwipfergrund with Corrugated Steel Webs[C].Proceedings of the 1st fib Congress.2002.
    [69]刘岚,崔铁万.本谷桥的设计与施工—采用悬臂施工法的波形钢腹板预应力混凝土箱梁桥[J].国外桥梁,1999(3):15-25.
    [70]Moriyama Y.Design of Nabeta Viaduct-PC Bridge with Corrugated Steel Web[J].Japanese Journal of PC,1999,41(2).
    [71]Azeta M.Design and Construction of PC Bridge with Corrugated Steel Web[J].Joural of Japan Concrete Institute,2003,41(1).
    [72]胡旭辉,顾安邦,罗玲.大堰河桥设计与施工荷载试验研[J]究.重庆交通大学学报.2008,27(6):1024-1026.
    [73]陈忠汉,胡夏闽.组合结构设计[M].北京:中国建筑工业出版社,2000.10-20.
    [74]聂建国,刘明,叶列平.钢-混凝土组合结构[M].北京:中国建筑工业出版社,2005.5-20.
    [75]聂建国,王洪全.钢-高强混凝土组合梁的试验研究[J].建筑结构学报,2004,25(1):58-62.
    [76]聂建国,余志斌.钢-混凝土组合梁在我国的研究及应用[J].土木工程学报,1999,32(2):3-8.
    [77]朱聘儒.钢-混凝土组合梁设计原理[M].北京:中国建筑工业出版社,2006.5-11.
    [78]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.1-4.
    [79]樊健生,聂建国.钢-混凝土组合桥梁研究及应用新进展[J].建筑钢结构进展,2006,8(5):35-39.
    [80]聂建国,吴丽丽.槽形钢-混凝土组合梁及其应用前景初探[J].土木工程学报,2008,41(11):78-84.
    [81]马怀忠,王天贤.钢-混凝土族合结构[M].北京:中国建材工业出版社.2006.1-4.
    [82]D.Lam.Composite steel beams with precast hollow core slabs:behavior and design[J].Compostite structure,2002,11-4:179-185.
    [83]Ansourian,Peter.On the design of continuous composite beams[C].ASCE,1985,1-12.
    [84]Fabbrocino,G.,Manfredi,G.,Cosenza,E.Analysis of continuous composite beams including partial interaction and bond[J]Journal of structural engineering New York, N.Y.,2000,126(11):1288-1294.
    [85]Basu,Prodyot K.,Sharif,Alfarabi M.,Ahmed,Nesar U.Partially prestressed continuous composite beams[J] Journal of structural engineering New York,N.Y.,113(9):1909-1925.
    [86]Kemp,Alan R,Nethercot,David A.Required and available rotations in continuous composite beams with semi-rigid connections[J]. Journal of Constructional Steel Research, 2001,57(4):375-400.
    [87]GILBERT R L, BRADFORD M A. Time-dependent behavior of continuous composite beams at service loads[J]. J Struct Engrg, ASCE,1995,121(2):319-327.
    [88]Bradford,M.A.,Manh,H.Vu,Gilbert,R.l."21.Numerical"analysis of continuous composite beams under service loading[J].Advances in Structural Engineering,2002,5(l):1-12.
    [89]Amadio C,Fragiacomo M.Effective width evaluation for steel-concrete composite beams[J].Journal of Constructional Steel Research,2002,58,373-388.
    [90]Bradford,M.A.Restrained distortional buckling in continuous composite beams[C]Proceedings of the 3rd International Conference on Steel and Composite Structures,ICSCS07-Steel and Composite Structures,2007,37-47.
    [91]Weil,T.,Schnell,J.Continuous composite beams with large web openings[C]. Proceedings of the 3rd International Conference on Steel and Composite Structures, ICSCS07-Steel and Composite Structures,2007,171-176.
    [92]Chaudhary,Sandeep,Pendharkar,Umesh,Nagpal,A.K.Time-dependent behavior of continuous composite beams[C]Proceedings of the 3rd International Conference on Steel and Composite Structures,ICSCS07-Steel and Composite Structures,2007,323-328.
    [93]Ranzi,G.,Zona,A.A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component[C].Proceedings of the 3rd International Conference on Steel and Composite Structures,ICSCS07-Steel and Composite Structures,2007,231-236.
    [94]Ranzi,G.,Bradford,M.A.Nonlinear analysis of composite beams with partial shear interaction by means of the direct stiffness method[J].Steel and Composite Structures,2009,9(2):131-158.
    [95]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11-17.
    [96]聂建国,崔玉萍.部分剪力连接钢-混凝土组合梁受弯极限承载力的计算[J].工程力学.2000,17(3).
    [97]孙文彬.部分剪力连接钢-混凝土组合梁的滑移及曲率分析[J].力学与实践,2001,23(6):44-47.
    [98]蒋丽忠,余志武,李佳.均布荷载作用下钢-混凝土组合梁滑移及变形的理论计算[J].工程力学,2003,20(2):133-137.
    [99]余志武,蒋丽忠,李佳.集中荷载作用下钢-混凝土组合梁界面滑移及变形[J].土木工程学报,2003,36(8):1-6.
    [100]聂建国,秦凯等.预应力钢-混凝土组合梁的刚度[J].工业建筑,2003,33(1):6-8.
    [101]聂建国,周天然等.预应力钢-混凝土组合梁的抗弯承载力研究[J].工业建筑,2003,33(12):1-4.
    [102]周凌宇,余志武,蒋丽忠.钢-混凝土组合梁界面滑移剪切变形的双重效应分析[J].工程力学,2005,22(2):104-109.
    [103]LIU Han-bing,LIU Wen-hui,ZHANG Yun-long.calculation analysis of shearing slip for steel-concrete composite beam under concentrated load[J].Applied Mathematics and Mechnics,2005,26(6):735-740.
    [104]孙飞飞,李国强.考虑滑移、剪力滞后和剪切变形的钢-混凝土组合梁解析解[J].工程力学,2005,22(2):96-103.
    [105]聂建国,田春雨.考虑剪力滞后的组合梁极限承载力计算[J].中国铁道科学,2005,26(4):16-21.
    [106]胡少伟,聂建国,熊辉.钢-混凝土组合梁的受扭试验与分析[J].建筑结构学报,2006,27(4):103-108.
    [107]毛学明,赵人达,万臻.同时考虑滑移和纵向剪力重分布时组合梁挠度变形的理论分析[J].公路交通科技,2007,24(1):55-59.
    [108]孙小菲,吴春生.界面滑移效应下钢-混凝土组合梁总剪力和挠度[J].南昌大学学报(工科版),2007,29(4):390-394。
    [109]童根树,夏骏.考虑滑移影响的钢-混凝土组合梁的刚度[J].建筑钢结构进展,2008,10(6):1-7.
    [110]付果,赵鸿铁.钢-混凝土组合梁掀起力的理论计算[J].西安建筑科技大学学报(自然科学版),2008,40(3):335-339.
    [111]胡少伟,涂启华,陈亮.考虑栓钉滑移效应及钢筋作用的组合梁受力分析[J].钢结构.2008,23(8):43-51.
    [112]沈小冬,胡夏闽,于天泓,张琪.滑移效应对组合梁弹性受弯承载力的影响分析[J].南京工业大学学报(自然科学版),2008,30(5):68-72.
    [113]聂建国,王宇航.钢-混凝土组合梁在疲劳荷载作用下的变形计算[J].清华大学学报(自然科学版),2009,49(12):1915-1924.
    [114]毛学明,万臻,赵人达.考虑纵向剪力重分布影响时组合梁界面滑移及挠度变形的理论分析[J].铁道学报,2009,31(3):69-74.
    [115]熊志斌,刘波涛.不同剪力连接钢-混凝土组合梁试验及有限元分析[J].南昌大学学报(工科版),2010,32(1):61-64.
    [116]吴献,回国臣,王庆利,刘之洋.钢与混凝土连续组合梁的塑性性能[J].东北大学学报(自然科学版),2002,23(6):599-601.
    [117]郭风琪,余志武.预应力钢-混凝土连续组合梁抗裂度计算[J].钢结构,2003,18(64):21-24.
    [118]余志武,周凌宇,蒋丽忠.钢-混凝土连续组合梁滑移与挠度耦合分析[J].工程力学,2004,21(2):76-83.
    [119]聂建国,温凌燕.体外预应力加固钢-混凝土连续组合梁的承载力分析[J].工程力学,2006,23(1):81-86.
    [120]辛学忠,蒋丽忠,曹华.钢-混凝土连续组合梁的恢复力模型[J].建筑结构学报,2006,27(1):83-89.
    [121]聂建国,陶慕轩.预应力钢-混凝土连续组合梁的变形分析[J].土木工程学报,2007,40(12):38-44.
    [122]王刚,王福建,中永刚,曾进忠.双层连续组合梁弹塑性状态的界面滑移[J].浙江大学学报(工学版),2008,43(11):2023-2027.
    [123]蒋丽忠,曾丽娟,孙林林.钢-混凝土连续组合梁腹板局部屈曲分析[J].建筑科学与工程学报,2009,26(3):27-31.
    [124]聂建国,陶慕轩.预应力钢-混凝土连续组合梁的承载力分析[J].土木工程学报,2009,42(4):38-47.
    [125]范亮.钢箱-混凝土组合拱截面受力行为与设计原理研究[D].西南交通大学博士学位论文,2010.
    [126]中华人民共和国交通部标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTGD62-2004)[S].北京:人民交通出版社,2004.9.
    [127]李宏江,叶见曙.波形钢腹板预应力混凝土箱梁的试验研究[J].中国公路学报,2004,17(4):31-36.
    [128]刘磊,钱冬生.波纹钢腹板预应力结合梁桥.国外公路[J].1999,19(1):26-30.
    [129]J.da.C.Vianna et al.Structural behaviour of T-Perfobond shear connectors in composite girders An experimental approach.Engineering Structures,2008,30:2381-2391.
    [130]J.G.S. da Silva, L.R.O. de Lima, P.C.G. da S. Vellasco, S.A.L. de Andrade, R.A. de Castro.Nonlinear dynamic analysis of steel portal frames with semi-rigid Connections. In:Engineering Structures,2008,30:2566-2579.
    [131]P.C.G. da S. Vellasco, S.A.L. de Andrade, L.T.S. Ferreira, L.R.O. de Lima.-Part 1:Semi-rigid composite frames with perfobond and T-rib connectors. Journal of Constructional Steel Research,2007,63:263-279.
    [132]张清华,李乔,唐亮.桥塔钢-混凝土结合段剪力键破坏机理及极限承载力[J].中国公路学报,2007,20(1):85-90.
    [133]胡建华,叶梅新,黄琼.PBL剪力连接件承载力试验[J].中国公路学报,2006,19(6):65-72.
    [134]胡建华,侯文崎,叶梅新.PBL剪力键承载力影响因素和计算公式研究[J].铁道科学与工程学报,2007,4(6):12-18.
    [135]单炜,李玉顺等.异形截面斜拉桥索塔锚固区节段足尺模型试验研究[J].中国公路学报,2005,18(3):60-65.
    [136]Youn-Ju Jeong,Hyeong-Yeol Kim, Hyun-Bon Koo. Longitudinal shear resistance of steel-concrete composite slabs with perfobond shears connectors.Journal of Constructional Steel Research,2009,65:81-88.
    [137]S.A.L. de Andrade, P.C.G. da S. Vellasco, L.T.S. Ferreira, L.R.O. de Lima.-Part 2:Semi-rigid composite frames with perfobond and T-rib connectors. Journal of Constructional Steel Research,2007,63:280-292.
    [138]周安等.栓钉在混凝土受拉状态中的抗剪试验研究[J].公路交通科技,2007,24(12):89-92.
    [139]刘玉擎,周伟翔,蒋劲松.开孔板连接件抗剪性能试验研究[J].桥梁建设.2006(6):1-4.
    [140]聂建国.钢-混凝土组合结构桥梁.北京:人民交通出版社,2011.
    [141]肖林,李小珍,卫星.PBL剪力键静载力学性能推出试验研究[J].中国铁道科学.2010,31(3):15-20.
    [142]周志祥.高等钢筋混凝土结构[M].北京:人民交通出版社,2002.
    [143]中华人民共和国国家标准.混凝土结构设计规范(G850010—2002)[S].北京:人民交通出版社,2002.4.
    [144]朱伯龙,董振祥.钢筋混凝土非线性分析[M].同济大学出版社.1985:13-15.
    [145]张丽梅.高效预应力混凝土粱受力性能及延性研究[D].大连理工大学博士论文,2003.
    [146]国土交通省铁道局,铁道総合技衍研究所.铁道构造物等设计标准·同解说 铜·合成构造物[S].凳行元:丸善出版(株),2000.7.
    [147]Jianguo Nie, Chun S. Cai.Steel-concrete composite beams considering shear slip effects[J], JOURNAL OF STRUCTURAL ENGINEERING-ASCE, Vol.129, No.4, April,2003,495-506.
    [148]聂建国,沈聚敏,余志武.考虑滑移效应的钢—混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11-17.
    [149]聂建国,李勇等.钢—混凝土组合梁刚度的研究[J].清华大学学报(自然科学版),1998,38(10):38-41.
    [150]Jianguo Nie, Jiansheng Fan, C. S. Chun, Stiffness and Deflection of Steel-Concrete Composite beams under Negative Bending[J], JOURNAL OF STRUCTURAL ENGINEERING-ASCE,2004,130(11):1842-1851.
    [151]王清湘,牟晓光等.三种预应力钢筋粘结性能试验研究[J].大连理工大学学报,2004,44(6):848-853.
    [152]Esfahani M R, Rangan B V. Local bond strength of reinforcing bars in normal strength and high-strength concrete [J]. ACI Structural Journal,1998,95(2):96-106.
    [153]Eray Baran, Tolga Akis, Seda Yesilmen.Pull-out behavior of prestressing strands in steel fiber reinforced concrete[J].Construction and Building Materials,2012(28):362-371.
    [154]Girgis AFM, Tuan CY. Bond strength and transfer length of pretensioned bridge girders cast with self-consolidating concrete[J]. PCI Journal,2005,50(6):72-87.
    [155]宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究[J].大连工学院学报,1987,26(2):93-99.
    [156]赵国藩,李树瑶等.钢筋混凝土结构的裂缝控制,北京:海洋出版社.1991.176-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700