用户名: 密码: 验证码:
激光光致热塑成型效应及三维微结构制备新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米技术代表着未来科技的发展趋势,被越来越多的国家列为优先发展的前沿领域。微纳结构与器件制备技术是微纳米技术的重要基础,而激光微加工技术是这类制备技术的一个重要分支。光刻、准分子激光微加工及飞秒激光加工等现有的激光微加工技术,其共同的特点是基于激光对材料表面的刻蚀实现凹进的微纳结构加工。为了直接实现凸起的微结构制备,本文首次提出了一种基于激光光致热塑成型的微结构制备新方法,可实现各种形式及尺寸的点、线、面、体等微结构的实时制备。该方法具有原理新颖、系统简洁、操作方便、无需掩模、可进行实时制备等特点,不仅具有重要的科学意义,而且在微纳米技术等领域具有广阔的实际应用前景。
     本课题首先对激光光致热塑成型机制进行了完整系统的理论研究,揭示了三维微结构热塑成型的动态平衡条件及规律。分析了激光照射在基底材料表面所引起的光热效应,建立了表面温度升高分布的二维数值模型;讨论在此温度分布情况下的物质相变过程,与环境界面的表面张力方向以及熔体内部环流的形成,进而导致基底材料表面的微结构光致热塑成型。进一步研究了热塑成型过程中的熔体内部环流变化规律,揭示了熔体环流的熔化上升速度与冷却凝固速度的相互关系;建立光致热塑成型过程的动态平衡方程,表明满足动态平衡条件是获得连续稳定成型效果的基础;分析了制备过程中影响动态平衡情况的主要因素,并对它们的影响规律进行了探讨。
     在理论研究的基础上,提出和发展了基于激光光致热塑成型的微结构制备新方法。围绕这一方法,本文设计研究了基于光致热塑成型的微结构制备总体方案。针对热塑性材料、制备环境及温度、热塑成型时间等微结构成型过程中的重要影响因素,开展了系统的研究,包括热塑性材料的选择和制备基底的准备、制备环境温度和光致热塑成型时间的有效控制等;并利用步进扫描控制方法实现基底与激光光斑之间的三维相对位移,以获得与扫描路径一致的图形化微结构,并为制备更为复杂的微结构甚至微器件奠定基础。
     研制了三维微结构的光致热塑成型制备系统。整个系统主要包括激光及其光路、基底材料、液体环境及液体池、CCD显微监控单元、步进扫描微动台以及计算机软硬件系统。激光光路部分实现制备激光束的输出和调节,通过快门进行光束的开启和闭合控制。当聚焦光斑照射在放置于液体环境中的基底材料上时,可在光斑处制备得到点状或柱状微结构;利用步进扫描微动台带动基底相对于激光光斑做横向平移,即可制备得到各种所需的复杂微结构。为了监控激光束的聚焦情况并实时观测制备成型效果,引入CCD显微监控单元,以获得基底表面被照射区域的显微画面。激光束的快门控制信号及微结构制备过程中的扫描路径控制信号,由计算机系统输出。
     利用上述系统广泛开展了基于光致热塑成型的三维微结构制备实验研究,实现了点、柱、线、面、体及其它复杂微结构的制备成型。证明了液体环境对微结构形貌的决定性影响;进行了半导体激光器与固体激光器两种光源的制备成型比较实验,分析了不同光源对微结构制备效果的影响;在不同的热塑性基底上,黑色聚乙烯塑料可以实现微米级结构成型,而石蜡混合物材料获得的成型结构在形貌参数上更具优势;实验探索光致热塑成型的微结构形貌与激光照射时间的关系。开展柱型微结构的制备优化研究,针对提高高宽比和缩小直径两种应用需求,分别获得了高宽比约为8和直径约为50μm的柱型微结构。进行阵列微结构制备实验,完成点阵微结构和柱阵微结构的制备成型。在线型微结构制备研究中,分析激光功率和步进扫描速度等主要参数设置对制备效果的影响。进行了复杂微结构的制备实验探索,实现了多种复杂微结构的光致热塑成型。
     最后对本课题的研究成果进行总结:从理论和实验两方面研究了激光光致热塑成型效应,证明了基于光致热塑成型的微结构制备的可行性,针对制备参数优化和多种微结构制备开展了实验研究。此外提出了课题研究工作中的不足和需要改进之处,对未来的研究提出了方向性的建议。
Micro/nano-technique represents the research tendency of future science and technology; it has been counted as the advanced field for priority development by more and more countries. One of the micro/nano-technique development foundations is micro/nano structures and devices fabrication, which has the laser-induced fabrication technique as an important branch. The common feature of current laser-induced microfabrication, like photolithography, excimer laser technology, femtosecond pulse microfabrication etc, is utilizing laser-induced etching effect on material surface to perform the depressed microstructure fabrication. In order to get a convex micro-projection, a novel microstructure fabricating method based on laser-induced thermoplastic formation is introduced in this dissertation for the first time. It can complete real-time fabrication of micro-dot,-pillar,-line,-wall,-bulk etc in various forms and sizes. It has advantages of novel principle, simple equipment, easy operation, no masking, and real-time manufacture. It has an extraordinary scientific meaning and comprehensive application prospect in micro/nano-technique field.
     This dissertation carries out complete and systematic research on laser-induced thermoplastic formation mechanism, discloses the qualification of dynamic balance in three-dimensional (3D) microstructure manufacturing process. We analyze the photo-thermal effect on material surface generated by laser irradiation, and build a two-dimensional (2D) static model of temperature rising distribution on material surface. This temperature rising distribution generates phase change process, surface tension towards particular direction and circulation inside melt material. These end up with thermoplastic formation above material surface. Then we study the variation of melt material circulation; discuss the balance between melting velocity and solidifying velocity of melt circulation. An equation of dynamic balance in thermoplastic formation process is provided, which has been proved to be the foundation of getting a continuous and stabile thermoplastic formation results. We analyze the main fabricating parameters, and discuss their influences to the thermoplastic formatted microstructures.
     According to above theoretical analyses, we present and develop the micro-fabrication method based on laser-induced thermoplastic formation. Revolving around this method, an overall scheme of microstructure fabrication based on laser-induced thermoplastic formation is designed. About important influences in microstructure formation process, such as thermoplastic material, temperature of liquid environment and laser irradiation time, systematic researches has been carried out, including selecting thermoplastic material, preparing samples, controlling the temperature of distilled water and manipulating the proper time of thermoplastic formation. Scanning control method is employed to move the sample in three dimensional relatively to laser beam, in order to get microstructures corresponding to the scanning route, and make preparations for fabricating graphic or more complicated microstructures.
     A 3D microstructure fabricating system based on laser-induced thermoplastic formation has been built up. It consists of laser and its beam path, substrate material, liquid environment and its container, microscopy monitor unit with charged couple device (CCD), step scanning stage. and computer hardware with dependent program. The laser beam path is responsible for laser beam adjusting and focusing, with a shutter to control the fabricating laser beam on and off. As the focal spot irradiated on the substrate material placing in liquid environment, a micro-dot or-pillar is fabricated there. While laterally moving the substrate relatively to the focal spot by a step scanning stage, desire shapes of microstructures can be obtained. To monitoring the laser focusing and observing the formation results instantly, we modify a microscopy monitor unit, displaying the lateral view of laser irradiated zone on substrate surface. The controlling message of laser shutter and scanning path in microstructure fabrication process is output from the computer system.
     We carry out experimental study of laser-induced thermoplastic micro-fabrication, complete the fabrication of micro-dot,-pillar,-line,-wall,-bulk and other kinds of complicated microstructures. The liquid environment has been proved to be determinant for fabricating results through experiment. Laser diode source and solid laser source have been compared on thermoplastic formation effects. We carry out fabrication experiments on different thermoplastic materials. Micro scale structures can be obtained on polythene (PE) material, while microstructures with better appearance can be obtained on paraffin mixture. The relation between microstructure shape and laser irradiation time has been studied through experiments. We carry out the fabricating parameter optimization study for micro-pillar. For the requirements of high height-width (HW) ratio and small diameter, micro-pillar with HW ratio of 8 and micro-pillar with diameter of 50μm has been achieved. Microstructure arrays have been fabricated, including dot array and pillar array. We study the thermoplastic formation of micro-lines with different laser power and different scanning velocity, analyzing their influences for fabrication results. We also explore the fabrication of complicated microstructures; complete the laser-induced thermoplastic formation of various kinds of complicated microstructures.
     The achievements of this whole subject are concluded at the end:studying the mechanism of laser-induced thermoplastic formation in both theoretical and experimental ways, approving feasibility of microstructure fabrication based on laser-induce thermoplastic formation, optimizing the fabricating parameters and accomplishing fabricating experiments of different types of microstructures. Besides, we point out some inadequacy of this work, and give some advices on the future research.
引文
[1]黄德欢,纳米技术与应用,上海,中国纺织大学出版社,2001
    [2]王永康,王立,纳米材料科学与技术,杭州,浙江大学出版社,2002
    [3]Zheng C, Overview of Micro/Nanofabrication Technologies and Applications. Physics 35(1):34-39
    [4]V. I. Kondratyev, et al., Preliminary testing of microstructured imaging plates with improved resolution, Nucl. Instrum. Meth.,2000,448:207-210
    [5]S. Shoji, M. Esashi, Microflow devices and system, J. Micromech. Microeng.1994,4:157-171
    [6]Yasunori Saotome, Hiroyuki Iwazaki, Superplastic backward microextrusion of micropart for micro-mechanical systems, Journal of Materials Processing Technology,2001,119:307-311
    [7]C. Thueringen, et al., Construction and manufacturing of a microgearhead with 1.9 mm outer diameter for universal applications, SPIE Proc,1999,360:526-533
    [8]E. J. O'Sullivant, et al., Future directions in electroplated materials for thin-film recording heads, IBM J. Res. Dev.,1998,42(5):1-12
    [9]白春礼,中国纳米科技研究的现状及思考,物理,2002,31:65-70
    [10]陈军伟,激光微加工技术纵览:基本原理、实际应用及未来展望,光机电信息,2001,11:15-21
    [11]张凯锋,需鹃,面向微细制造的微成形技术,中国机械工程,2004,15:1121-1127
    [12]Ruprecht R, Gietzelt T, Muller K, et al., Injection Molding of Microstructured Components from Plastics, Metals and Ceramics, Microsystem Technologys,2002,8:351-358
    [13]S. M. Ford, et al., Rapid fabrication of embossing tools for the production of polymeric microfluidic devices for bioanalytical applications, SPIE Proc,2001,4560:207-216
    [14]J. T. Rantala, et al., Fabrication and packaging of optical components and Microsystems, SPIE Proc,2000, 4075:140-149
    [15]E. C. Harvey, T. R. Mackin, B. C. Dempster, et al., Micro-optical structures for atom lithograph studies, Proc. SPIE,1999,3892:266-273
    [16]J. Mohr, Micro-optical and optomechanical systems fabricated by the LIGA technique, Proc. SPIE,1997, 3008:273-278
    [17]M. S. Talary, J. P. H. Burt, N. H. Rizvi, et al., Microfabrication of biofactory-on-a-chip device using laser ablation technology, Proc. SPIE,1999,3680:572-580
    [18]P. K. Ajmera, I.-H. Song, Laterally movable gate (LMGFET) for on-chip intergration of MEMS with electronics, SPIE Proc,2001,4334:30-37
    [19]B. He, N. Tait, F. Regnier, Fabrication of nanocolum for liquid chromatography, Anal. Chem,1998,70: 3790-3797
    [20]E. Sutcliffe, R. Srinivasan, Dynamics of UV laser ablation of organic polymer surface, J. Appl. Phys., 1986,60:3315-3322
    [21]W. Ehrfeld, A. Schmidt, Recent development in deep X-ray lithography, J. Vac. Sci. Technol. B,1998,6: 3526-3534
    [22]K. Schumacher, et al., Micromechanical LIGA gyroscope, Transducer'99, Sendai, Proceedings,1999,1: 1574-1577
    [23]S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization, Opt. Lett.,1997.22:132-134
    [24]B. H. Cumpston, S. P. Ananthavel, S. Barlow, et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature,1999,398:51-54
    [25]M. Deubel, G. von Freymann, M. Wegener, et al., Direct laser writing of three-dimensional photonic-crystal templates for telecommunications, Nature Mat.,2004,3:444-447
    [26]Jong Min Kim, Hiroshi Muramatsu, Two-photon photopolymerized tips for adhesion-free scanning-probe microscopy,2005,5(2):309-314
    [27]J. Skardon, M. Vandenberg, Developing new markets for high aspect ratio micro-machined devices, Microsyst. Technol.,1998,5:65-68
    [28]T. R. Christenson, et al., Micromechanics for actuators, SPIE Proc,1994,2220:39-47
    [29]C. H. Robinson, Mininature, planar, inertially-actuated delay slider actuator, US patent,1998,5,705,767
    [30]M. Nienhaus, et al., Design and realization of a penny-shaped micromotor, SPIE Proc,1999,3680: 592-600
    [31]罗元,李向东,付红桥等,MEMS工艺中TMAH湿法刻蚀的研究,半导体光电,2003,24(2):127-130
    [32]Tabate O, Asahi R, Funabashi H, et al., Anisotropic etching of silicon in TMAH solutions, Sensors and Actuators A,1992,34:51-57
    [33]谢海波,傅新,刘玲等,基于玻璃湿法刻蚀的微流控器件加工工艺研究,机械工程学报,2003,39(11):123-129
    [34]Nakanishi H, Nishimoto T, Nakamura N, et al., Fabrication for electrophoresis devices on quartz and glass substrates using a bonding with hf solution, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS),1997,299-304
    [35]周健,闫桂珍,Pyrex玻璃的湿法刻蚀研究,微细加工技术,2004,4:41-44
    [36]Thierry Corman, Peter Enoksson, Goran Stemme, Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask, Journal of Micromechanics and Microengineering,1998,8: 84-87
    [37]罗飚,陈永诗,沈坤等,光栅干法刻蚀与湿法刻蚀的研究,光学与光电技术,2003,1(1):54-56
    [38]Yoshiaki Watanabe, Nong Chen, et al., Later all coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid hybrid etching process, IEEE Photonics Technology Letter,1998,10(12),1688-1690
    [39]Chang C Y, Sze S M, VLSI Technology, McGrawHill Publication Inc,1996
    [40]温梁,汪家友,刘道广等,MEMS器件制造工艺中的高深宽比硅干法刻蚀技术,微纳电子技术2004,41(6):30-34
    [41]陈媛媛,夏金松,樊中期等,热氧化方法改善硅干法刻蚀波导的表面粗糙度,半导体学报,2004,25(11):1544-1548
    [42]敬小成,姚若河,吴纬国,二氧化硅干法刻蚀参数的优化研究,半导体技术,2005,30(6):37-40
    [43]胡树兵,李志章,物理气相沉积TiN复合涂层研究进展,材料科学与工程,2000,18(2):1]0-115
    [44]谢致薇,蒙继龙,物理气相沉积薄膜的界面与附着力,真空科学与技术,2001,21(3):203-209
    [45]马李,孙跃,赫晓东等,电子束物理气相沉积工艺制备超薄高温结构材料的研究,2006,20(11):100-103
    [46]梁博,黄政仁,化学气相沉积法制备SiC纳米粉,无机材料学报,1996,11(3):441-447
    [47]王升高,汪建华,微波等离子体化学气相沉积法低温合成纳米碳管,2002,60(5):957-960
    [48]叶志镇,徐伟中,曾昱嘉等,MOCVD法制备ZnO同质发光二极管,半导体学报,2005,26(11),2264-2266
    [49]X.Li, Y. Yan, T. A. Gessert, et al., Chemical vapor deposition-formed p-type ZnO thin films, Journal of Vacuum Science & Technology A,2003,21:1342-1346
    [50]Wu X. H., Brown L. M., Kapolnek D., et al., Defect structure of metal-organic chemical vapor deposition-grown epitaxial (0001) GaN/A 1203, Journal of Applied Physics,1996,80:3228-3237
    [51]S J Rosner, EC Carr, MJ Ludowise, et al., Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition, Applied Physics Letters,1997,70(4):420-422
    [52]PJ Hansen, YE Strausser, AN Erickson, et al., Scanning capacitance microscopy imaging of threading dislocations in GaN films grown on (0001) sapphire by metalorganic chemical vapor deposition, Applied Physics Letters,1998,72:2247-2249
    [53]Nakamura Shuji, Harada Yasuhiro, Seno Masayuki, Novel metalorganic chemical vapor deposition system for GaN growth, Applied Physics Letters,1991,58:2021-2023
    [54]E. R. Glaser, T. A. Kennedy, K. Doverspike, et al., Optically detected magnetic resonance of GaN films grown by organometallic chemical-vapor deposition, Phys. Rev. B.,1995,51:13326-13336
    [55]Tevye Kuykendall, Peter Pauzauskie, Sangkwon Lee, et al., Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections, Nano Letters,2003,3(8):1063-1066
    [56]Cheng-Yin Wang, Liang-Yi Chen, Cheng-Pin Chen, et al., GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength, Optics Express,2008,16:10549-10556
    [57]冯伯儒,张锦,微光刻技术的发展,微细加工技术,2000,1:1-9
    [58]杨国光,近代光学测试技术,杭州,浙江大学出版社,1997
    [59]罗先刚,姚汉民,纳米光刻技术,物理,2000,29(6):358-360
    [60]陈献忠,姚汉民等,纳米光刻技术的现状和未来,物理,2002,31(11):691-695
    [61]王阳元,康晋锋,硅集成电路光刻技术的发展与挑战,半导体学报,2002,23(3):225-237
    [62]朱吉牧,章海军,张冬仙,AFM在纳米结构加工中的应用研究,激光与红外,2003,33(4):283-284,296
    [63]Snow ES, Campbell PM, Ferkin FK, et al., Nanofabrication with proximal probes, Proceedings of IEEE, 1997,85(4):601-611
    [64]Brandon L Weeks, Antjie Vollmer, Mark E Welland, et al., High-pressure nanolithography using low-energy electrons from a scanning tunneling microscope, Nanotechnology,13(1):38-42
    [65]Diego J. Diaz, Jamie E. Hudson, Gregory D. Storrier, Lithographic applications of redox probe microscopy, Langmuir,2001,17(19):5932-5938
    [66]宫建茹.万立骏,扫描探针纳米加工技术的现状与发展趋势,大学化学,2003,18(1):7-11
    [67]Ihlemann J, Rubahn K, Excimer Laser Micro Machining:Fabrication and Applications of Dielectric Masks. Applied Surface Science 154:587-592.
    [68]Hashioka S, Matsumura H,10 nm Size Fabrication of Semiconductor Substrates and Metal Thin Lines by Conventional Photolithography. Microprocesses and Nanotechnology Conference.2000 International. 184-185.
    [69]Fourrier T, Schrems G, Muhlberger T, et al., Laser cleaning of polymer surface. Appl. Phys. A 72:1-6.
    [70]Solak H, He D, Li W, et al., Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography. Appl. Phys. Lett 75(15):2328-2330.
    [71]Hector S, Mangat P, Review of progress in extreme ultraviolet lithography masks. J. Vac. Sci. Technol. B 19(6):2612-2616.
    [72]Korte F, Koch J, Serbin J, et al., Three dimensional nanostructuring with femtosecond laser pulses. IEEE Trans. Nanotechnol 2004,3(4):468-471.
    [73]Lim T, Park S, Yang D, et al., Direct single-layered fabrication of 3D concavo-convex patterns in nano-stereolithography. Appl. Phys. A 84:379-383.
    [74]Chen S, Costas P, Photothermal displacement measurement of transient melting and surface deformation during pulsed laser heating. Appl. Phys. Lett.73(15):2093-2095.
    [75]Day D, Gu M, Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses. Optics Express 13(16):5939-5946.
    [76]Yang D, Park S, Lim T, et al., Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization. Appl. Phys. Lett.90,013113.
    [77]贾威,王清月,傅星,胡小唐,飞秒激光在材料微加工中的应用,量子电子学报,21(2),2004:194-201
    [78]梁静,吴志华,杨秀峰,吕福云,用飞秒激光制作高精度微光学器件的研究进展,激光与红外,37(6):493-497
    [79]C. W. Gwyn, R. Stulen, D. Sweeney, et al., Extreme Ultraviolet Lithography, J. Vac. Sci. Technol. B, 1998,16(6):3142-3149
    [80]Kevin Kemp, Stefan Wurm, EUV lithography, C. R. Physique,2006,7:875-886
    [81]A. S. Holmes, S. M. Saidam, Sacrificial layer process with laser-driven release for batch assembly operations, J. Microelectromech. Syst,1998,7:416-422
    [82]Harun H Solak, Nanolithography with coherent extreme ultraviolet light, J. Phys. D:Appl. Phys.2006, 39:171-188
    [83]H. H. Solak, C. David, J. Gobrecht, et al., Sub-50 nm period patterns with EUV interference lithography, Microelectronic Engineering,2003,67:56-62
    [84]Chantal Khan Malek, Volker Saile, Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems:a review, Microelectronics Journal,2004,35: 131-143
    [85]B. L. Dearth, R. G. Steinhoff, LIGA measurement and acceptance evaluation, Microsyst. Technol.,2003, 9(3):197-203
    [86]A. Cox, E. Garcia, Development of a LIGA-based elastodynamic flying mechanism, SPIE Proc,1998, 3329:2-8
    [87]R. K. Kupka, F. Bouamrane, C. Cremers, et al., Microfabrication:LIGA-X and applications, Applied Surface Science,2007,164:97-110
    [88]P. Rai-Choudhury, Handbook of Microlithography, Micro-machining and Microfabrication 1-2 SPIE Optical Engineering Press,1997
    [89]Hans-Dieter Bauer, Wolfgang Ehrfeld, Michael Harder, et al., Polymer waveguide devices with passive pigtailing:an application of LIGA technology, Synthetic Metal,2000,115:13-20
    [90]T. Klotzbucher, T. Braune, S. Sigloch, et al., Polymer Microsystems by excimer laser ablation:from rapid prototyping to large number fabrication, Proc. SPIE,2001,4274:307-315
    [91]Joohan Kim, Xianfan Xu, Excimer laser fabrication of polymer microfluidic devices, Journal of Laser Applications,2003,15:255-260
    [92]王乐妍,刘超,章海军,利用准分子激光微加工技术的微型器件制作及研究,仪器仪表学报,2007,28(s5):471-474
    [93]J. E. Andrew, P. E. Dyer, D. Forster, et al., Direct etching of polymer materials using a XeCl Laser, Appl. Phys. Lett.,1983,43:717-719
    [94]S. Lazare, J. Lopez, F. Weisbuch, et al., High-aspect-ratio microdrilling in polymeric materials with intense KrF laser radiation, Appl. Phys. A:Mater. Sci. Process,1999,69:sl-s6
    [95]F. Wagner, P. Hoffmann, Novel structure formation in poly(ethylene therephthalate) by scanning excimer laser ablation, Appl. Surf. Sci,2000,154:627-632
    [96]F. Wagner, P. Hoffmann, Structure formation in excimer laser ablation of stretched poly(ethylene therephthalate) (PET):the influence of scanning ablation, Appl. Phys. A:Mater. Sci. Process,69: s841-s844
    [97]R. Srinivasan, V. Mayne-Banton, Self-developing photoetching of poly(ethylene terephthalate) films by far-ultraviolet excimer laser radiation, Appl. Phys. Lett.1982,41:576-578
    [98]C. Momma, S. Nolte, B. N. Chichkov, et al., Precise laser ablation with ultrashort pulses, Applied Surface Science,1997,109:15-19
    [99]D. Ashkenasi, M. Lorenz, R. Stoian, et al., Surface damage threshold and structuring of dielectrics using femtosecond laser pulses:the role of incubation. Applied Surface Science,1999,150:101-106
    [100]Nadeem H. Riziv, Femtosecond laser micromaching:Current status and applications, Riken Review. 2003,50:107-112
    [101]I. Perez-Arjona, G. J. de Valcarcel, Eugenio Roldan, Two-photon absorption, Rev. Mex. Fis.,2003, 49(1):91-100
    [102]Hong-Bo Sun, Tomokazu Tanaka, Kenji Takada, et al., Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes, Applied Physics Letters,2001, 79(10):1411-1413
    [103]Dong-Yol Yang, Sang Hu Park, Tae Woo Lim, Ulstraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization, Applied Physics Letters,2007,90,013113:1-3
    [104]Jesper Serbin, Aleksandr Ovsianikov, Boris Chichkov, Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties, Optics Express,2004,12(21):5221-5228
    [105]Takuo Tanaka, Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure, Applied Physics Letters,2006,88,081107:1-3
    [106]M. Straub, M. Gu, Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization, Opt. Lett.,2002,27:1824-1826
    [107]J. E. G. J. Wijnhoven, L. Bechger, W. L. Vos, Fabrication and characterization of large macroporous photonic crystals in titania, Chem. Mater.,2001,13:4486-4499
    [108]S. Kawata, H.-B. Sun, T. Tanaka, et al., Finer features for functional microdevices, Nature,2001,412: 697-698
    [109]R. Vaidya, L. M. Tender, G. Bradley, et al., Computer-controlled laser ablation:a convenient and versatile tool for micropatterning biofunctional synthetic surfaces for applications in biosensing and tissue engineering, Biotechnol. Prog.1998,14:371-377
    [110]Puliaifto CA, Steinert RF, Short-pulsed Nd:YAG laser microsurgery of the eye:biophysical considerations, IEEE J Quant Electon,1984,20:1442-1448
    [111]Loesel FH, Niemz MH, Horva HC, et al., Experimental and theoretical investigations on threshold parameters of laser-induced optical breakdown on tissues, Proc SPIE,2923:118-126
    [112]Remmel M, Dardenne CM, Bille JF, et al., Intrastromal tissue removal using an infrared picosecond Nd:YLF ophthalmic laser operating at 1053 nm, Lasers Opthalmol 4:169-173
    [113]Holger Lubatschowski, Gero Maatz, Alexander Heisterkamp, et al., Application of ultrashort laser pulses for intrastromal refractive surgery,2000,238:33-39
    [114]F. Korte, J. Koch, B. N. Chichkov, Formation of microbumps and nanojets on gold targets by femtosecond laser pulses, Applied Physics A,2004,79:879-881
    [115]郁道银,谈恒英,工程光学,北京,机械工业出版社,1999
    [116]F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, New York, Wiley,1996
    [117]Rolle, Kurt C, Heat and Mass Transfer, Upper Saddle River, N. J., Prentice Hall,2000
    [118]俞佐平,陆煜,传热学,北京,高等教育出版社,1995
    [119]Kays W. M., Convective Heat and Mass Transfer, New York, McGraw-Hill,1993
    [120]曾攀,有限元分析及应用,北京,清华大学出版社,2004
    [121]蔡燧林,常微分方程,杭州,浙江大学出版社,1988
    [122]潘祖梁,陈仲慈,工程技术中的偏微分方程,杭州,浙江大学出版社,1995
    [123]王家金,激光加工技术,北京,中国计量出版社,1992
    [124]Hudson John B, Surface Science:An Introduction, Boston, Butterworth-Heinemann,1992
    [125]Bauerle D, Laser processing and chemistry. Springer, Berlin Heidelberg,2000.
    [126]Wang Leyan, Zhang Dongxian, Wen Zhenghu, Zhang Haijun, Micro-Fabrication and Monitoring of Three-Dimensional Microstructures Based on Laser-induced Thermoplastic Formation, Microscopy Research and Technique,72(10):717-722
    [127]Wang Leyan, Zhang Dongxian, Zhang Haijun, Jiang jianzhong, Fabrication of Micropillars by Laser-induced Thermoplastic Method, Applied Physics Letters,97(13),131905:1-3
    [128]Wang Leyan, Zhang Dongxian, Zhang Haijun,3D Microstructures manufacture based on laser-induced thermoplastic expansion, Proceedings of International Symposium on Biophotonics, Nanophotonics and Metamaterials 2006:314-317
    [129]王乐妍,张冬仙,温正湖,章海军,利用1064nm激光的热塑膨胀式三维微结构制备,中国激光,2008,35(s2):60-63
    [130]王乐妍,张冬仙,章海军,利用808nm半导体激光的三维微结构热塑成型方法研究,仪器仪表学报,2010,31(s8)
    [131]WW Duley, Laser Welding, New York, Wiley,1999
    [132]李椿,章立源,钱尚武,热学,北京,高等教育出版社,2008
    [133]苗恩铭,材料热膨胀系数影响因素概述,工具技术,2005,39(5):26-29
    [134]刘建中,热膨胀现象的微观本质,青海师范大学学报,1995,3:29-31
    [135]姚允斌,解涛,高英敏等,物理化学手册,上海,上海科学技术出版社,1985
    [136]范承志,江伟桂,孙士乾,电路原理,北京,机械工业出版社,2003
    [137]郑家龙,王小海,章安元,集成电子技术基础教程,北京,高等教育出版社,2002
    [138]王乐妍,张冬仙,章海军,王晓萍,基于激光光致发光光谱的果实成熟度测试方法研究,光谱学与光谱分析,2008,28:2772-2776
    [139]王乐妍,刘超,章海军,张冬仙,激光光热控制触点开关式微驱动机构及实验研究,光电子激光.2008,19:1450-1453
    [140]H Shinohara, Excimer laser scanning system, US Patent,5708252,1998
    [141]王小妮,朱林泉,半导体激光器光束特性的研究,红外,2007,3:28-31
    [142]董洪舟,石顺祥,李家立等,半导体激光器远轴光束的准直特性研究,光学学报,2006,26(6):851-853
    [143]李晓彤,岑兆丰,几何光学·像差·光学设计,杭州,浙江大学出版社,2003
    [144]章海军,视觉及其应用技术,杭州,浙江大学出版社,2004
    [145]罗惕乾,流体力学,北京,机械工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700