用户名: 密码: 验证码:
芸薹素(BR)和赤霉素(GA)对小麦籽粒淀粉积累、粒度分布及加工特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦籽粒中淀粉含量、直支链淀粉比例影响了其加工品质,不同小穗位、粒位的差异影响了小麦的高产和品质均一性。本研究选用花粒发育差异性大的四个小麦品种作为试验材料,于开花当天、花后5 d、花后10 d分别三次喷施BR和GA溶液,对不同小穗位、粒位籽粒同化物分配、直、支链淀粉含量、淀粉粒度分布特征、以及面粉加工品质等项目进行分析,探讨BR和GA对小麦粒重和品质的影响机理,以期为优质高产栽培提供理论依据和技术途径。主要研究结果如下。
     1 BR和GA对小麦不同穗位和粒位籽粒重的调控
     通过对WM8、4072、LM21和YN15四个品种不同小穗位小穗粒重和不同粒位粒重的系统分析表明,不同品种小麦均显示近中优势,中部小穗粒重最高,下部次之,顶部最低;对下部小穗1、2粒位,下部小穗3、4粒位,中部小穗1、2粒位,中部小穗3、4粒位和上部小穗1、2粒位籽粒进行比较,中部小穗1、2粒位可以代表最强势粒位,上部小穗粒位可以代表最弱势粒位。喷施BR和GA对不同品种调控效应不同,多穗品种主要通过提高穗粒数,大穗品种主要通过提高粒重和穗粒数,从而提高穗粒重;对不同小穗位和不同粒位影响也不一致,对弱势小穗位的调控效应大于强势小穗位,对弱势粒位的调控效应大于强势粒位。对调控的响应存在基因型差异,BR与GA相比,BR的调控效应大于GA。
     2 BR和GA对小麦不同小穗位和粒位籽粒淀粉粒度分布特征的调控
     成熟期小麦籽粒含有2种类型的淀粉粒,粒径≥10μm的A型大淀粉粒,粒径<10μm的B型小淀粉粒。本试验中,淀粉粒的粒径在0.34~43μm之间变化,各品种的淀粉粒分布趋势类似,小麦淀粉粒的体积百分数分布表现为双峰曲线;小麦淀粉粒的表面积百分数分布表现为双峰或三峰曲线,B型淀粉粒的表面积占总数的85%以上;小麦淀粉粒的数目百分数分布表现为单峰分布,其中B型淀粉粒数目占总数的99.9%。
     小麦不同粒位籽粒淀粉粒度结果分析表明,小麦不同粒位之间的体积、表面积分布均存在显著差异,强势粒位具有较高的B型淀粉粒体积、表面积百分数,A型淀粉粒体积、表面积百分数则相对低于弱势位,弱势粒位则相反。多穗品种之间的差异大于大穗。对淀粉粒数目而言,不同粒径范围的B型淀粉粒存在显著差异,总A和B型淀粉粒数目之间差异不显著。
     研究表明,BR和GA均可以有效调控小麦的淀粉粒体积和表面积分布,其调控效应存在基因型差异。BR和GA可以有效调控<0.6μm和0.6~10μm之间的B型淀粉粒数目分布,但都不能改变≥10μm的A型淀粉粒数目百分数。喷施BR和GA可以有效调控不同粒位籽粒中<10μm的小淀粉粒数目百分数,对A和B型淀粉粒数目影响不显著;可以有效调控不同粒位籽粒表面积和体积分布,总体趋势是可以降低强势粒位籽粒<10μm的小淀粉粒表面积和体积百分数,显著提高弱势粒位B型淀粉粒表面积和体积百分数,相对提高强势粒位籽粒A型淀粉粒表面积和体积百分数,降低弱势粒位A型淀粉粒表面积和体积百分数。缩小了不同粒位之间的差异,有利于均质调控。BR和GA的调控效应存在基因型差异。
     3 BR和GA对小麦不同穗位、粒位籽粒淀粉积累和糖含量的调控
     试验表明,不同粒位籽粒中直链淀粉、支链淀粉和总淀粉的积累变化存在显著差异。不同穗型品种均表现出共同的趋势,强势粒位籽粒灌浆前期直链淀粉、支链淀粉和总淀粉积累比弱势粒位快,后期比弱势粒位慢。成熟期强、弱势粒位相比,弱势粒位有较高的直链淀粉和总淀粉含量。不同粒位蔗糖和总糖含量变化趋势基本一致,都是前期高,成熟期最低。不同粒位之间,弱势粒位蔗糖和总糖含量均高于强势粒位。在淀粉快速合成阶段,蔗糖和可溶性总糖迅速下降,表明这个时期淀粉的转化、合成能力强,强势粒位淀粉的合成能力比弱势粒位强。
     BR和GA对不同品种小麦淀粉积累的调控效应不同,对灌浆前期各品种直链淀粉和支链淀粉含量影响不显著,后期含量有所增加,GA显著提高了LM21和4072籽粒中直链淀粉含量,BR和GA均能显著提高后期LM21和4072籽粒中支链淀粉含量,对WM8和YN15影响不显著。BR和GA对总淀粉的影响与直、支链淀粉的影响结果一致,不同品种之间存在差异。
     BR和GA对小麦蔗糖和总糖含量的影响,不同粒位之间存在显著差异,品种之间存在差异。各品种均表现为弱势粒位蔗糖和总糖含量高于强势粒位,大穗品种粒位之间的差异大于多穗品种。处理与对照之间的差异主要在花后5-10 d和15-30 d,在10-15 d淀粉快速合成阶段差异均不显著。BR处理后有降低蔗糖和总糖含量的趋势,GA有提高的趋势。
     4 BR和GA对小麦灌浆期旗叶、茎、鞘中糖的调控
     本试验表明,灌浆期喷施BR和GA可以有效提高旗叶中叶绿素含量,特别是提高了灌浆中后期旗叶中叶绿素含量,从而提高叶片的光合能力,延缓衰老;BR和GA对茎、叶、鞘中蔗糖和总糖含量的调控效应存在基因型差异,总体来说GA有降低茎、叶、鞘中蔗糖和总糖含量的趋势,显著降低了WM8、YN15和4072快速灌浆期茎、叶、鞘中蔗糖和总糖含量,对LM21影响较小;BR有提高茎、叶、鞘中蔗糖和总糖含量的趋势,特别是对茎、鞘中提高作用较大。
     茎、旗叶和鞘中蔗糖、总糖含量与小麦籽粒中淀粉积累速率相关性分析表明,淀粉的积累速率与茎、叶、鞘中蔗糖和总糖含量均呈正相关。与旗叶中蔗糖和总糖含量的相关性最小,与鞘相关性达到显著水平,与茎均达到极显著水平。蔗糖和总糖相比,与总糖含量的相关性大于蔗糖。
     5 BR和GA对小麦加工品质的影响
     BR和GA可以提高小麦籽粒中支链淀粉和总淀粉含量,降低籽粒中直链淀粉含量,提高支/直比,对大穗品种WM8和4072的影响明显大于多穗品种LM21和YN15。可显著提高4072籽粒中蛋白质含量,BR对支/直比的影响小于GA。总体来说BR对淀粉含量的影响大于GA对淀粉含量的影响。
     BR和GA可以有效调控小麦糊化参数和粉质仪参数。BR对RVA参数的影响大于GA对RVA参数的影响,GA对粉质参数的影响大于BR。相关性分析表明,出粉率与支链淀粉和淀粉含量呈极显著正相关;吸水率与支/直比和蛋白质含量呈极显著正相关,与直连淀粉含量呈极显著负相关;悕懈值与直链淀粉含量呈极显著负相关,与蛋白质含量呈显著正相关;低谷黏度、峰值黏度、反弹值和最终黏度与蛋白质和支链淀粉含量呈显著负相关,与直链淀粉含量呈正相关。
     本研究表明,小麦不同小穗位粒重中部小穗最高,下部次之,顶部最低。不同粒位粒重是中部小穗1、2位籽粒最重,可代表最强势粒位,上部1、2位粒重最低,可代表最弱势粒位。喷施BR和GA可以有效提高小麦小穗粒重,对小麦弱势粒位的调控效应大于强势粒位;小麦不同粒位之间的淀粉粒体积、表面积分布均存在显著差异,强势粒位具有较高的B(<10μm)型小淀粉粒体积、表面积百分数,弱势粒位则相反。喷施BR和GA可以有效调控不同粒位籽粒淀粉表面积和体积分布,显著提高弱势粒位B型淀粉粒表面积和体积百分数,缩小了不同粒位之间的差异,有利于籽粒均质调控;小麦强、弱势粒位相比,弱势粒位有较高的直链淀粉和总淀粉含量。喷施BR和GA可以有效调控小麦直/支链淀粉比例,有提高弱势粒位支链淀粉含量的趋势;喷施BR和GA还可有效调控小麦籽粒面粉糊化参数和粉质仪参数,从而改善小麦品质。本研究对小麦育种和高产优质栽培具有理论和实践价值。
Starch content and the proportion of amylose and amylopectin in wheat grain affect the processing quality. The differences among different spike-position and grain-position affect the yield and quality of wheat homogeneity. This study was conducted with four wheat cultivars, two large-spike wheat varieties which were WM8 and 4072, two multi-spike wheat varieties which were LM21 and YN15. BR and GA were sprayed for three times, in the flowering day, after flowering5d, after flowering 10d. Dynamic change of different part’s grain weight, starch particle size distribution, starch accumulation, the change of sugar and the starch processing quality of grain were measured for exploring the effect of BR and GA to starch particle size distribution, the content and composition of starch, and the starch processing quality. In order to provide for the quality and high yielding theoretical basis and technical approach. The main findings are as follows.
     1 The control of BR and GA to grain weight and grain yield of different spike position
     WM8, 4072, LM21 and YN15 were used to analyse the yield of different spike position and the grain weight of five spike grain position. It was found that different wheat cultivars all showed mesial-advantage, midst was the strongest, inferior part was second, top was the weakest. The regulating effect of spraying BR, GA was different in different wheat cultivars. multi-spike wheat varieties increase ear yield mainly by increasing grain number, but large-spike wheat varieties mainly by increasing grain weight and grain number. The effect on different spike position and different spike grain position was different by spraying BR and GA. The regulating effect on the weak spike-position was greater than on the strong spike-position, the regulating effect on the weak grain-position was greater than on the strong grain-position. But the regulating effect of BR was greater than GA.
     2 The control of BR and GA to starch particle size distribution of different spike position
     Mature wheat seed has two types of starch granules, particle size≥10μm called A-type large starch particle and size <10μm called B-type large starch particle. the distribution trend of all varieties of starch granules is similar. The surface area of B-type starch particle was more than 85% of the total. The distribution of the number of wheat starch granule showed single distribution, While the number of B-type starch particles accounted for 99.9% .The study showed that most starch particles of wheat seed were small starch particles.
     Through the analysis of the four species, five grain-positions’starch granularity, the results showed that, The volume, surface area and number distribution all exist significant differences in wheat different grain-positions. The strong grain-position existes high volume, surface area and number distribution of B-type starch grains, but the content of A-type starch grains were lower than the weak grain-positions. The weak grain-positions were contrary to the strong grain-positions. The difference in multi-spike wheat cultivars were greater than the large-spike wheat cultivars.
     The results showed that the two hormones can effectively control both of wheat starch grain volume and surface area distribution, the regulating effect on different wheat cultivars existes genotypic differences. BR and GA can effectively control the number distribution of B-type starch grain which lower than 0.6μm and between 0.6 and 10μm. but can’t change the number of A-type starch grain which greater than or equal to 10μm.
     Through the study on the distribution of grain starch granularity in five grain-positions, the resultsshowed that, spraying BR and GA can effectively control the number percent of grain starch grainwhich were lower than 10μm in different grain-positions. The effect on the number of A-type and B-type starch grains was not significant. But can effectively control the grains’surface area and volume in different grain-positions. The general trend was that it can reduce the starch grains’surface area and volume percent which were lower than 10μm in strong grain-positions grains, it can significantly increase B-type starch grains’surface area and volume percent in weak grain-positions grains, it can relatively increase A-type starch grains’surface area and volume percent in strong grain-positions grains, it can reduce A-type starch grains’surface area and volume percent in weak grain-positions grains. It lessened the difference in different grain-positions, and beneficial to homogeneous regulation. The regulating effect of BR and GA on different wheat cultivars existed genotypic differences.
     3 Effects of BR and GA on starch accumulation and sugar content in wheat’s different spike-position and grain-position
     The test showed that the amylose, amylopectin and starch accumulation in different grain-position were significantly different. Different spike type all showed a common trend. In prophase, the amylose, amylopectin and total starch of strong grain-position accumulated faster than the weak grain-positions, but slower than the weak grain-positions in anaphase. In Maturity, the amylose and total starch content in weak grain-positions was more than the strong grain-positions.
     The trend of sucrose and total sugar content in different grain-positions was consistent, The multi-spike cultivars of LM21 and YN15 showed that first increased to peak point and then rapidly decreased, on 10d reached the maximum, from 10 to 15d decreased rapidly. The large-spike wheat gradually decreased after flowering 5d, the four cultivars all become the lowest in mature. Among different grain-position, the sucrose and total sugar content of weak grain-position were higher than the strong grain-position. In the stage of starch rapid synthesis, sucrose and total soluble sugar decreased rapidly, which indicating that the starch transformation and synthesis were active at this period, the starch synthesis ability in strong grain-positions was better than in weak grain-positions.
     The regulatory of BR and GA on the varieties wheat starch accumulation was different .The influence of the content of amylase and amylopectin in varieties wheat was not significant during the pior period. Later the content have increased. GA improved the content of amylose in lm21 and 4072 significantly. BR and GA could increase the content of amylopectin in lm21 and 4072 significantly during the latter period .But the effect on WM8 and YN15 was not significant. BR. GA to the influence of the whole starch is in accord with the amylase and amylopectin . Different varieties had difference in the genotype.
     BR and GA to the influence of the wheat sucrose and total sugar had the significant difference in different grain-position. Different varieties had difference in the genotype.The content of the wheat sucrose and total sugar in weak wheat grain position is larger than strong grain position. The differences in bike spike grain position were more than multi-spike.The differences in treatment and the control were in 5-10 days and 15-30 days .The differences in the 10-15 days stage that the starch rapid synthesis were non-significant. BR processed was to reduce the content of the wheat sucrose and total sugar.But GA raise. It showed that BR increase yield by promoting the transformation ability ,and GA by promoting accumulating time.
     4 The regulation of BR and GA on sugar at filling stage in wheat flag leaf, stem and sheath
     This experiment showed that spraying BR and GA can improve the chlorophyll content in the flag leaf, in particular increased the chlorophyll content at midanaphase in the flag leaf, thereby enhancing the photosynthetic capacity of leaves and anti-aging; The regulating effect of BR and GA on sucrose and total sugar content in the stem, leaf and sheath exist genotypes differences. In general, GA has decreased trend, significantly reduce the sucrose and total sugar content at filling stage in the three organs of WM8, YN15 and 4072, but less impact on the LM21; BR has the increased trend, especially in the stem, sheath.
     Through the correlation analysis of the sucrose, total sugar and starch accumulation rate of wheat grain in the stem, flag leaf and sheath showed that the starch accumulation rate and the sucrose and total sugar content in the three organs hava positive correlation, the correlation with the sucrose and total sugar content in the flag leaf was the least. But the correlation with the sheath and stems was significant. The correlation with the total sugar was more significant than the sucrose.
     5 Effect of BR and GA on the wheat processing quality
     BR and GA can effectively control wheat pasting parameters and farinograph parameters. In gelatinization parameters, BR has the greatest impact on peak viscosity, GA has the greatest impact on the gelatinization temperature. The effect of BR on RVA parameters was greater than GA; in farinograph parameters, BR has the greatest impact on the water absorption and time of stability, the effect of GA on water absorption, development time, stability time and falling numberwas significant, the effect of GA on farinograms was greater than BR, but the effect on the falling number, GA was greater than BR.
     BR and GA can improve the grain amylopectin and total starch content, decrease amylose content in grains and improve the proportion of amylopectin and amylose. The effect on large-spike cultivars WM8 and 4072 significantly greater than the multi-spike cultivars Lumai 21 and YN15. BR and GA can significantly increase the grain protein content of 4072. The effect of BR on the amylopectin / amylose is less than GA. Overall, the effect of BR on the starch content is greater than the effect of GA on the starch content.
     Through correlation analysis showed that the extraction rate, amylopectin and starch content has a significant positive correlation; water absorption, amylopectin / amylose and protein content has a significant positive correlation, but has a significant negative correlation with amylose content. Name unremitting value has a significant negative correlation with amylose content, but has a significant negative correlation with protein content. Low viscosity, peak viscosity, setback and final viscosity has a significant negative correlation with protein content and amylopectin content, but has a significant positive correlation with the amylose content.
     Through this research showed that the midst spike was the strongest, the inferior spike was second, the top spike was the weakest in wheat different spike-positions. The midst 1 and 2 can represent the strongest grain-position, the top 1 and 2 can represent the weakest grain-position. Spraying BR and GA can increase yield, the regulating effect on the weak grain-position was greater than on the strong grain-position. The volume, surface area and number distribution all exist significant differences in wheat different grain-positions. The strong grain-position existes high volume, surface area and number distribution of B-type starch grains, but the content of A-type starch grains were lower than the weak grain-positions. The weak grain-positions were contrary to the strong grain-positions. Spraying BR and GA can effectively control the grains’surface area and volume in different grain-positions. It can significantly increase B-type starch grains’surface area and volume percent in weak grain-positions grains. It lessened the difference in different grain-positions, and beneficial to homogeneous regulation. The amylose and total starch content in weak grain-positions was more than the strong grain-positions. Spraying BR and GA can effectively control the proportion of amylose and amylopectin, it can increase the amylopectin content in weak grain-positions, and beneficial to homogeneous regulation. Spraying BR and GA can effectively control wheat pasting parameters and farinograph parameters, therefore improve the wheat quality.
引文
白克智.植物生长调节剂实用问答.北京:化学工业出版社, 1998
    曹广才等.小麦品质生态.中国科学技术出版社, 1994
    曹卫星,郭文善,王龙俊,姜东等.小麦品质生理生态及调优技术.中国农业出版社. 2004
    陈晓远,罗远培.开花期复水对受旱冬小麦的补偿效应研究.作物学报, 2001, 27(4): 513-516
    戴忠民,王振林,高凤菊等.两种栽培条件下不同穗型小麦品种籽粒淀粉积累及相关酶活性的变化特征.作物学报, 2007, 23(4): 682-685
    范雪梅,姜东,戴廷波.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响.植物生态学报, 2004, 28(5): 680-685
    郭本森,徐信光.表油菜素内醋对大麦旗叶生理特性及粒重的影响.科技通报, 1996, 12(4): 220-223
    贺明荣,王振林,高淑萍.不同小麦品种千粒重对灌浆期弱光的适应性分析.作物学报, 2001, 27(5): 640-644
    贺明荣,王振林.小麦光合物质在小穗间的分配及与穗粒重的关系.作物学报, 2000, 26: 190-194
    胡廷积,郭天财,王志和.小麦穗粒重研究.中国农业出版社, 1995, 163-176
    黄峻榕. X射线衍射在测定淀粉粒结构中的应用.陕西科技大学学报, 2003, 21(4): 90-93
    黄强,罗发兴,杨连生.淀粉颗粒结构的研究进展.高分子材料科学与工程, 2004, 20(5): 19-22
    姜东,于振文,李永庚.高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化.中国农业科学, 2002, 35(4): 378-383
    姜东,谢祝捷,曹卫星.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报, 2004, 30(2): 175-182
    姜东,于振文,李永庚,余松烈.冬小麦叶茎粒可溶性糖含量及其与籽粒淀粉积累的关系.麦类作物学报, 2001, 21(3): 38-41
    姜东,于振文,李永庚等.冬小麦开花前后茎和叶鞘中贮存的碳水化合物含量的变化.植物生理学通讯, 2000, 36(6): 507-511
    金善宝.中国小麦.中国农业出版社, 1996
    李春喜,石惠恩,姜丽娜.小麦不同种植密度粒重分布特性的研究.西北植物学报, 1999, 19(1): 132-137
    李春燕,封超年,张容等.宁麦9号花后内源激素和蔗糖含量变化及其与籽粒淀粉合成的关系.麦类作物学报, 2007, 27(1): 138-142
    李文阳,尹燕枰,闫素辉等.不同粒型小麦品种籽粒内源激素变化与籽粒灌浆特征的比较.华北农学报, 2007, 22(1): 5-8
    李文阳,尹燕枰,闫素辉等.小麦花后弱光对籽粒淀粉积累和相关酶活性的影响.作物学报, 2008, 34(4): 632-640
    李永庚,于振文,姜东等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究.作物学报, 2001, 27: 658-664
    李友军,熊瑛,吕强等.不同类型专用小麦叶、茎、粒可溶性糖变化与淀粉含量的关系.中国农业科学. 2005,38(11):2219-2226
    李云波,刘晓翠,张伟,赵思明.米粉凝胶形成过程的质构特性及凝胶品质控制研究.食品科技, 2006, (7): 39-42
    梁灵,魏益民,师俊玲.小麦淀粉凝胶质构特性研究.中国食品学报, 2004, 4(3): 33-38
    梁太波,尹燕枰,蔡瑞国等.大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较. 作物学报, 2008, 34(1): 150-156
    梁勇,张本山,高大维.淀粉的结晶性与非晶性研究进展.化学通报, 2002, 65: 009
    刘萍,郭文善,浦汉春等.灌浆期短暂高温对小麦淀粉形成的影响.作物学报, 2006, 32(2): 182-185
    刘霞,穆春华,尹燕枰等.花后高温、弱光及其双重胁迫对小麦籽粒内源激素含量与增重进程的影响.作物学报, 2007 ,33 (4): 677-681
    刘海英,郭天财,朱云集等.开花期外施表油菜素内酯(epi-BR)对小麦籽粒淀粉积累及其关键酶活性的影响.作物学报, 2006, 32(6): 924-930
    刘建军,何中虎,杨金.小麦品种淀粉特性变异及其与面条品质关系的研究.中国农业科学, 2003, 36(1): 7-12
    刘霞,尹燕枰,姜春明等.花后不同时期高温和弱光胁迫对小麦旗叶荧光特性及籽粒灌浆进程的影响.应用生态学报, 2005, 16(11): 2117-2121
    潘洁,姜东,曹卫星等.小麦穗籽粒数、单粒重及单粒蛋白质含量的小穗位和粒位效应. 作物学报, 2005, 31(4): 431-437
    潘瑞炽.植物生理学.北京:高等教育出版社, 2001: 178
    潘晓华,李木英,熊伟等.蔗糖和谷氨酰胺及植物激素对水稻离体培养穗淀粉积累的影响.江西农业大学学报, 2000, 22(1): 1-5
    裴雪霞,王姣爱,党建友等.小麦结实粒数、粒重和品质的小穗位和粒位效应.中国农业科学, 2008, 41(2): 370-380
    彭佶松,郑志仁,刘涤,胡之璧.淀粉的生物合成及其关键酶.植物生理学通讯, 1997, 33: 297-303
    谭周镃,周广洽.水稻结实期光照强度对米质影响的研究,湖南师范大学学报(自然科学版), 1987, (5): 39-43
    田纪春.谷物品质测试理论与方法.北京:科学出版社, 2006
    田建珍.专用小麦粉生产技术.郑州:郑州大学出版社, 2004: 7
    王丰,程方民,刘奕等.不同温度下灌浆期水稻籽粒内源激素含量的动态变化.作物学报, 2006, 32(1): 25-29
    王怀智,刘怒东,王均鉴等.小麦丰产研究论文集.上海:上海科学技术出版社, 1962: 133-141
    王焕民.芸薹素内酯:植物生长发育的一种基本调节物质.农药, 2000, 39 (1): 11-14
    王维,张建华,杨建昌,朱庆森.水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响.作物学报, 2004, 30(3): 196-204
    王晓英,贺明荣,李飞等.水氮耦合对强筋冬小麦子粒蛋白质和淀粉品质的影响.植物营养与肥料学报, 2007, 13(3): 361-367
    王兆龙,曹卫星,戴廷波.小麦小花两极分化中内源植物激素与糖氮含量的变化规律. 作物学报, 2001, 27(4): 447-452
    王振林,贺明荣,傅金民等.源库调节对灌溉与旱地小麦开花后光合产物和分配的影响.作物学报, 1999, 25(2): 162-168
    王志敏.小麦籽粒蛋白质贮积的生理学研究进展.国外农学-麦类作物, 1996(4): 23-26
    武翠,邵国军,吕文彦,马莲菊,崔鑫福,曹萍,侯秀英.不同发育时期水稻强、弱势粒灌浆速率的遗传分析.中国农业科学, 2007, 40(6): 1135-1141
    许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响.作物学报, 2003, 29(4): 595-600
    许智宏,李家洋.中国植物激素研究:过去、现在和未来.植物学通报, 2006, 23 (5): 433-442
    闫素辉,尹燕枰,李文阳等.灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响.作物学报, 2008, 34(6): 1092-1096
    阎隆飞,李启明.基础生物化学.农业出版社, 1985: 21-22
    杨建昌,王国忠,王志琴等.旱种水稻灌浆特性与灌浆期籽粒中内源激素含量的变化. 作物学报, 2002, 28: 615-621
    姚大年,刘广田,朱金宝.基因型和环境对小麦品种籽粒性状及馒头品质的影响.中国粮油学报, 2000, 15(2): 1-5
    余松烈主编.山东小麦.北京:农业出版社, 1990: 101-102
    翟风林.作物品质育种, 1991: 110-113
    张振清.植物生理学实验手册.上海:上海科学技术出版社, 1985: 134-138
    赵辉,戴廷波,荆奇等.灌浆期高温对两种品质类型小麦品种籽粒淀粉合成关键酶活性的影响.作物学报, 2006, 32(3): 423-429
    朱新开,郭文善,王永吉等.大穗型小麦穗粒重分布规律及相互关系探讨.种子, 2004, 23(11): 67-71
    Ahamdi A., Baker D. A.. Effects of abscisic acid (ABA) on grain filling processes in wheat. Plant Growth Regulation, 1999, 28 (3): 187-197
    Ahmadi A., Baker D. A.. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation, 2001, 35: 81-91
    Arnau J. A., Tadeo F. R., Guerri J., Eduardo P. M.. Cytokinins in peach: Endogenous levels during early fruit development. Plant Physiology Biochemistry, 1999, 37(10): 741-750
    Bai X. F., Cai Y. P., Nie F.. Relationship between abscisic acid and grain filling of rice and wheat. Plant Physiology Communication, 1989, 3: 40-41
    Bakhtenko E. Y.U., Platonov A. V.. The effects of flooding and treatment with abscisic acid and cytokinin on the phytohormone dynamics and yield of wheat. Agrokhimiya ,1999 (3): 48-51
    Ball S.G., Visser R. G.. F. Progress in understanding the biosynthesis of amylose. Trends Plant Sci, 1998, 3: 462-467
    Bechtel D. B., Zayas I., Kaleikau L., et al. Size-distribution of wheat starch granules during endosperm development. Cereal Chemistry, 1990, 67: 59-63
    Bhattacharya M. S.. Diversity of starch pasting properties in Iranian hexaploid wheat land race, Cereal Chemistry, 1997, 74(4): 417-423
    Bhattacharya M., Corke H.. Selection of desirable starch pasting properties in wheat for use in white salted or yellow alkaline noodles. Cereal Chemisty, 1996, 73(6): 721-728
    Biliaderis C. G.. Structures and phase transitions of starch polymers. In: Walter R H (Ed). Polysaccharide Association Structures in Foods. Marcel Dekker. New York. 1998: 57-168
    Buléon A., Colonna P., Planchot V., Ball S.. Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 1998, 23: 85-112
    Buttrose B. L.. Ultrastructure of the developing wheat endosperm. Australian Journal Biology Science. 1963, 16: 305-310
    Cabrales L., Niu Y. X., Buriak P., Echkoff S. R.. Effect of laboratory batch steeping pH on starch yield and pasting properties of selected corn hybrids. Cereal Chemistry, 2006, 83(1): 22-24
    Cameron R. E., Durrani C. M., Donald A. M.. Gelation of amylopectin without long range order. Starch, 1994, 46: 285-287
    Cao H., Imparl-Radosevich J., Guan H.. Identification of the soluble starch synthase activities of maize endosperm. Plant Physiology, 1999, 120: 205-216
    Charles S. B., Mabfred S., Lara M. M., Thomas L., Ganasheranee R., Kelvin G., Jacqueline O.. Gel and pasting behaviour of fenugreek-wheat starch and fenugreek - wheat flour combinations. Starch/St?rke, 2006, 58(10): 527-535
    Chen Y., Yuan L. P., Wang X. H., Zhang D. Y., Chen J., Deng Q. Y., Zhao B. R., Xu D. Q.. Relationship between grain yield and leaf photosynthetic rate in super hybid rice. Journal of Plant Physiology and Molecular Biology, 2007, 33(3): 235-243
    Crosbie G. B.. The relationship between starch swelling properties, paste viscosity and boiled noodle quality in wheat flour. Journal of Cereal Science, 1991, 13: 145-150
    Daniel J. M., Gustavo A. S.. Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations. Field Crops Research, 1995, 43: 55-66
    Davis E. A.. Wheat starch. Cereal Foods World, 1994, 39: 34-36
    Dengate H. and Meredith P.. Variation in size distribution of starch granules from wheat grain. Journal of Cereal Science, 1984, 2: 83-90
    Denyer K., Waite D., Motawia S., Moller B. L., Smith A. M.. Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochemisty Journal, 1999, 340: 183-191
    Dubois D., Winzeler M., Nosberger J.. Fructan accumulation and sucrose : sucrose fructosy transferase activity instems of spring wheat genotypes. Crop Science, 1990 ,30: 315-319
    Evers A. D.. Scanning electron microscopy of wheat starch.Ⅲ. Granule development in the endosperm. Starch, 1971, 23: 157-160
    Fisher D. B., Gifford R. M.. Accumulation and conversion of sugars by developing wheat grains. VI, Gradients along the transport pathway from the peduncle to the endosperm cavity during grain filling. Plant Physiology, 1986, 82: 1024-1030
    Fredriksson H., Silverio J., Andersson R., Eliasson A. C., Aman P.. The Influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydrate Polymers, 1998, 35: 119-134
    Fritz B., Walter A., Ottheinrich B.. IAA level and dry matter accumulation a different positions within a wheat ear. Plant Physiology, 1985, 63: 121-125
    Fu B.X., Kovacs M. I. P., Wang C.. A simple wheat flour swelling test. Cereal Chemisty, 1998, 75(4): 566-567
    Gebbing, T., Schnyder H.. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiology, 1999, 121: 871-878
    Gidley M. J.. Molecular mechanisms underlying amylose aggregation and gelation.Macromolecules, 1989, 22: 351-358
    Golay A.. Effect of erestation, an amylose inhibitor and incorporated into bread on glycemia responses in normal and diabetic pations. American Journal of Clinical Nutrution, 1991, 53: 61-65
    Gurbaksh S., Kaur S., Sharma R., Singh G.. Endogenous levels of phytohormones in relation to grain develoment in wheat (Triticum aestivum L ). Annals of Plant Physiology, 1989, 3: 143-145
    Hess J. R., Carman J. G., Banowetz G M. Hormones in wheat kernels during embryony. Journal of Plant Physiology, 2002, 159: 379-386
    Hizukuri S.. Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydrate Research, 1986, 147: 342-347
    Holm J.. Bioavailaity of starch in various wheat-based bread products. American Joural of Clinical Nutrition, 1992, 55: 402-409
    Hoover R.. Composition, structure, functionality and chemical modification of starches. Canadial Journal of Physiology and Phamacology, 1999, 69: 79-92
    Huber K. C., BeMiller J. N., Channels of maize and sorghum starch granules. Carbohydr. Polymers, 2000, 41: 269-276
    Hurkman W. J., McCue K. F., Altenbach S. B.. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 2003, 164: 873-881
    Isabel M., Ann-Charlotte E., Karin P.. Effect of surfactant structure on the pasting properties of wheat flour and starch suspensions. Cereal Chemistry, 2005, 82(1): 44-52
    James M. G, Robertson M. G., Myers A. M.. Characterisation of the maize gene sugary, a determinant of starch composition in kernels. Plant Cell, 1995, 7: 417-429
    Jenkins P. J., Cameron R. E., Donald A. M.. A universal feature in the structure of starch granules from different botanical sources. Starch, 1993, 45: 417-420
    Jenner C. F., Denyer K.. Thermal characteristics of soluble starch syntheses from wheat endosperm, Australian Journal Plant Physiology, 1995, 22: 703-709
    Jenner C. F.. Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. I. Immediate responses, Plant Physiol, 1991, 18: 165-177
    Jiang D., Yu Z. W., Li Y. G., Yu S. L.. Changes of soluble sugar contentsin leaf, sten and grain in winter wheat and its relationship with grain starch accumulation. Journal of Triticease Crops, 2001, 21(3): 38-41
    Keeling P. L., Bacon P. J., Holt D. C.. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 19(1):342-348
    Konik C. M., Mikkelsen L. M., Moss R., Gore P. J.. Relationships between physical starch properties and yellow alkaline noodle quality. Starch/Sta?rke, 1994, 46: 292-299
    Konik C. M., Miskelly D. M., Gras P. W.. Starch swelling power, grain hardness and protein: relationship to sensory properties of Japanese noodles. Starch/Sta?rke, 1993, 45(4): 139-144
    Kuhbauch W., Thome U.. Nonstructural carbohydrates ofwheat stems as influenced by sink source manipulations. Journal Plant Physiology, 1989 ,134: 243-250
    Leloup V. M., Colonna P., Ring S.G., Roberts K., Well B.. Microstructure of amylose gels. Carbohydr Polymer, 1992, 18: 189-197
    Li Z., Chu X., Mouille G., Yan L., The location and expression of the class II starch synthases of wheat. Plant Physiology, 1999a, 120: 1147-1155
    Li Z., Rahman S., Kosar-Hashemi B.. Cloning and characterization of gene encoding wheat starch synthase. Theoretical and Applied Genetics, 1999b, 98: 1208-1216
    Lur H.S., Setter T.L.. Role of auxin in maize endosperm development. Timing of nuclear DNA endoreduplication, zein expression and cytokinin. Plant Physiology, 1993, 103: 273-280
    Mccormick K. M., Panozzo J. F., Hong S. H.. A swelling power test for selecting potential noodle quality wheats. Aust J Agric Res, 1991, 42: 317-323
    Millard M. M., Wolf W. J., Dintzis F. R., Willett J. L.. The hydrodynamic characterization of waxy maize amylopectin in 90% dimethyl sulphoxide-water by analytical ultracentrifugation, dynamic and static light scattering. Carbohydr Polym., 1999, 39: 315-320
    Miura H., Tanii S., Nakamura T., Watanabe N.. Genetic control of amylose content in wheat endosperm starch and differential effects of three Wx genes. Theor. Appl. Genet., 1994, 89:276-280
    Morris C. F., Shackley B. J., King G. E., Kidwell K. K. Genotypic and environmental variation for flour swelling volume in wheat. Cereal Chem, 1997, 74(1): 16-21
    Morris R. D., Blevins D. G., Dietrich J. T.. Cytokinins in plant pathogenic bacteria and developing cereal grains. Aust. J. Plant Physiol, 1993, 20: 621-637
    Morrison W. R., Karkalas J.. Starch. In: Dey P M (Ed). Methods in Plant Biochemistry. Vol. 2. Academic Press. London, 1990: 323-352
    Mouille G., Maddelein M. L., Ball S.. Preamylopectin processing: A mandatory step for starch biosynthesis in plants. Plant Cell, 1996, 8: 1353-1366
    Mua J. P., Jackson D. S.. Fine structure of corn amylose and amylopectin fractions with various molecular weights. Journal of Agricultural and Food Chemistry, 1997, 45:3840-3847
    Myers A. M., Morell M. K., James M. G., Ball S.G.. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol, 2000, 122: 989-997
    Nakamura Y., Umemoto T., Ogata N., Kuboki Y., Yano M., Sasaki T.. Starch debranching enzyme (R-enzyme or pullulanase) from developing rice endosperm: purification, cDNA and chromosomal localization of the gene. Planta, 1996a, 199: 209-218
    Nakamura Y., Umemoto T., Takahata Y., Komae K., Amano E., Satoh H.. Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm: possible role of starch debranching enzyme (R-enzyme) in amylopectin biosynthesis. Physiol Plant, 1996b, 97: 491-498
    Nakamura Y.. Some properties of the starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Sci, 1996, 121: 1-18
    Noda T., Tohnooka T., Taya S., Suda I.. Relationship between physicochemical properties of starches and white salted noodle quality in Japanese wheat flours. Cereal Chem, 2001, 78: 395-399
    Oda M., Yasuda Y., Okazaki S., Yamauchi Y., Yokoyama Y.. A method for flour quality assessment for Japanese noodles. Cereal Chemistry, 1980, 57: 253-254
    Okita, T. W., Is there an alternative pathway for starch synthesis? Plant Physiol, 1992, (100): 560
    Pal M. S., Zhang G. P., Chen J. X.. Influence of genotypes and nitrogen fertilization on leaf morphogenesis and tillering behaviors in winter wheat. Journal of Triticeae Crops, 2000, 20(1): 28-33
    Panozzo J. F., Eagles H. A.. Cultivar and environmental effects on quality characters in wheat. I Starch. Australian Journal of Agricultural Research, 1998, 49: 757-766
    Parker M. L.. The relationship between A-type and B-type starch granules in the developing endosperm of wheat. J. Cereal Sci., 1985, 3: 271-278
    Peng M. M., Gao E. S., Abdel-Aal M., et al. Separation and characterization of A- and B-type starch granules in wheat endosperm. Cereal Chem, 1999, 76: 375-379
    Pheloun P. C., Siddique K.H.M., Contribution of stem dry matter to grain yield in wheat cultivars. Aust J Plant Physiol, 1991, 18: 53-64
    Pollock C. J.. Fructans and the metabolism of sucrose in vascular plants. New Phytol, 1986 ,104: 1-24
    Preiss J., Miflin B. J.. Biology and molecular biology of starch synthesis and its regulation. Oxford surveys of plant molecular and cell biology. Oxford University Press, 1992, 7: 59-114
    Raeker M., Gaines C. S., Finney P. L., Donelson T.. Granule size distribution and chemicalcomposition of starches from 12 soft wheat cultivars. Cereal Chem, 1998, 75(5): 721-728
    Rahman S., Li Z., Batey I., Cochrane M. P.. Genetic alteration of starch functionality in wheat. J Cereal Sci, 2000, 31(1): 91-110
    Rahman,A.. Characterization of SU1 isoamylase, a determent of storage starch structure in maize. Plant Physiol, 1998, 117: 425-435
    Rahman S.. Genetic manipulation of starch properties in wheat. Chem in Aust, 1994, 61(9): 517-518
    Reeves C. D.. Gene expression in developing wheat endosperm. Plant physio., 1986, 82, 34-40
    Rook F., Corke F., Card R., Munz G., Smith C., Bevan M. W.. Impairedsucrose-induction mutants reveal the modulation of sugar-induced starchbiosynthetic gene expression by abscisic acidsignalling. Plant J., 2001, 26: 421-433
    Ross A. S., Quail K. J., Crosbie G. B.. Physicochemical properties of Australian flours influencing the texture of yellow alkaline noodles. Cereal Chem, 1997, 74(6): 814-820
    Sasaki T., Yasui T., Matsuki J., Satake T.. Comparison of physical properties of wheat starch gels with different amylose content. Cereal Chem, 2002, 79(6): 861-866
    Smith A. M.. Making starch. Curr. Opin. Plant Biol., 1999, 2: 223-229
    Smith S. M., Denyer K., Martin C.. The synthesis of starch granule. Ann Rev Plant Physiol Plant Mol Biol, 1997, 48: 67-87
    Smith A. M.. Evidence that the waxy protein of pea (pisum sativum L.) is not the major starch-granule-bound starch synthase. Planta, 1990, 182: 599-604
    Stone P. J., Nicolas M. E.. A survey of the effect of high temperature during grain filling on yield and quality of 75 wheat cultivars. Aust J Physiol, 1994, 21: 887-900
    Tang H., Ando H., Watanade K., et al. Some physiological properties of small, medium and large granule starches in fractions of waxy barley grain. Cereal Chem., 2000, 77(1): 27-31
    Toyokawa H., Rubenthaler G. L., Powers J. R., Schanus E. G.. Japanese noodle qualities. II. Starch components. Cereal Chem., 1989b, 66(5): 387-391
    Wang, F., Cheng, F., Zhang G.. The relationship between grain filling and hormone content as affected by genotype and source-sink relations. Plant growth regul., 2006, 49: 1-8
    Wang Z., Yin Y., He M., Zhang Y., Lu S., Li Q., Shi S.. Allocation of photosynthates and grain growth of two wheat cultivars with different potential grain growth in response to pre- and post-anthesis shading. J. Agron. Crop Sci. 2003, 189: 280-285
    Wheeler A. W.. Changes in growth substance content s during growth of wheat grains. Annals of Applied Biology, 1972, 72: 327-334
    William J., Hurkman, Kent F., Mccue. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 2003, (164): 873-881
    Winzeler M., Dubois D., Nosberger J.. Absence of fructandegradation during fructan accumulation in wheat stems. J. Plant Physiol., 1990, 136: 324-332
    Xie Z. J., Jiang D.. Effects of post-anthesis soil water status on the activities of key regulatory enzymes of starch and protein accumulation in wheat grains. Journal of Plant Physiology and Molecular Biology, 2003, 29(4): 309-316
    Yang J. C.. Activities of key enzymes in sucrose-to-starch conversion in wheat grain subjected to water deficit during grain filling. Plant Physiol., 2004, 135: 1621-1629
    Yang J. C.. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci., 2000, 40: 1645-1655
    Yin Y., Wang Z., He M., Fu J., Lu S.. Postanthesis allocation of photosynthates and grain growth in wheat cultivars as affected by source/sink change. Biol. Plant., 1998, 41: 203-209
    Wang Z., Yin Y., He M., et al. Allocation of photosynthates and grain growth of two wheat cultivars with different potential grain growth in response to pre- and post-anthesis shading. J. Agron. Crop Sci., 2003, 189: 280-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700