用户名: 密码: 验证码:
基因修饰成肌细胞结合可注射温敏凝胶支架构建组织工程骨的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:骨缺损修复是骨科临床实践中常见难题之一,新兴的骨组织工程研究为解决该项难题提供了全新的思路。肌卫星细胞(muscle satellite cells, MSCs)是骨骼肌内最主要的干细胞成分,MSCs及其体外培养的子细胞---成肌细胞(myoblast)具有中胚层谱系内的可塑性,尤其具备较强的成骨分化能力。此外,成肌细胞还具有来源丰富、取材容易创伤小及培养方便等优势,且常被用作重要的基因载体,因而成为一种极具应用前景的骨组织工程种子细胞。但成肌细胞应用于骨组织工程尚面临一些问题:1.对成肌细胞适宜的支架材料研究不多,尤其是对以壳聚糖温敏凝胶为代表的可注射支架缺乏相应研究;2.成肌细胞体外扩增时其干性(stemness)会迅速丢失,将严重影响细胞的成骨分化潜能及移植效率。因此,本实验的研究目的包括:1.制备一种新型的可注射温敏凝胶支架---壳聚糖/β-甘油磷酸钠/胶原(C/GP/Co),观察它对成肌细胞增殖分化的影响,探讨其作为成肌细胞运载支架的可行性;2.在成肌细胞中通过逆转录病毒转染msx1基因(肌节同源盒基因-1),观察msx1短暂表达对成肌细胞培养过程中“干性”保持的影响;3.通过体外成骨分化诱导实验和体内异位成骨实验,检验经msx1基因修饰后成肌细胞的成骨效能。
     方法:1.分离培养成肌细胞并观察制备的C/GP/Co凝胶支架对成肌细胞生长分化的影响:(1)采用差速贴壁结合克隆分选法从绿色荧光蛋白(GFP)转基因小鼠骨骼肌中分离出成肌细胞并通过结蛋白染色、成肌分化、肌球蛋白重链染色加以鉴定;(2)以5:1:6体积比将2.0wt%的壳聚糖溶液(C)、50wt%的β-甘油磷酸钠(GP)及2mg/mL的I型胶原蛋白溶液(Co)配置成C/GP/Co凝胶,通过扫描电镜观察其超微结构;(3)制备不同浓度凝胶浸提液进行细胞培养,以CCK-8试剂盒测定细胞活力,并以此计算相对增殖率(RGR)评价支架毒性;(4)成肌细胞在二维培养条件下的生长情况通过细胞活力实验进行观察,在三维培养条件下的细胞形态则通过激光共聚焦显微镜和扫描电镜进行观察;(5)用液态的C/GP/Co复合物包裹成肌细胞,注射移植到裸鼠背部皮下组织。通过小动物活体荧光成像系统观察裸鼠体内移植物荧光信号的变化情况。4w后处死裸鼠,通过组织学观察了解成肌细胞在凝胶内的存活情况;(6)评价凝胶介质对成肌细胞向成肌、成骨、成脂方向分化能力的影响。以常规胶原包被表面培养的成肌细胞为对照组,C/GP/Co凝胶表面上进行培养的成肌细胞为C/GP/Co组。成肌分化通过融合指数(FI)和肌管大小进行评价;成骨分化通过碱性磷酸酶(ALP)活性、茜素红染色进行评价,成脂分化通过油红O染色进行评价。2.利用逆转录病毒载体将msx1转染到成肌细胞,并评价经基因修饰后的成肌细胞后是否能保持“干性”:(1)逆转录病毒转染msx1基因到成肌细胞并采用免疫印迹实验(WB)予以鉴定;(2)比较经msx1基因修饰(实验组)和未经该基因修饰的成肌细胞(对照组)在细胞形态、衰老细胞比例、增殖能力、分化相关标记分子表达、迁移能力等指标上的差异。细胞形态通过透射电镜(TEM)进行观察,衰老细胞比例通过β-半乳糖苷酶染色实验获取相关数据,增殖能力通过细胞增殖实验、增殖指数(PI)、Ki67指数及集落形成率进行评价,分化相关标记包括myoD(成肌分化因子)、Pax-7(配对盒转录因子-7)和SSEA-1(阶段特异性胚胎抗原-1),迁移能力通过Transwell实验进行评价;(3)比较同代实验组与对照组成肌细胞在scid/mdx小鼠模型中的移植效率以及不同代次的实验组细胞在该模型中的移植效率;3.评价经msx1基因修饰后成肌细胞的成骨效能:(1)通过成骨诱导分化实验比较实验组与对照组成肌细胞碱性磷酸酶(ALP)活性、钙盐沉积面积及成骨分化相关基因表达水平;(2)将成肌细胞与C/GP/Co凝胶复合构建可注射组织工程复合物,在裸鼠体内进行异位成骨实验,通过大体观察、骨密度检测、组织切片H&E染色以及骨钙素免疫组织化学染色等方法比较对照组与实验组成骨质量。
     结果:1.从小鼠骨骼肌内分离出带有GFP标记的成肌细胞并进行培养、传代;成功地制备了C/GP/Co凝胶支架并观察了该材料的超微结构;该支架材料无毒,并且对成肌细胞具有良好的生物相容性,对成肌细胞体外扩增期间多向分化能力的保持具有促进作用:(1)培养的成肌细胞结蛋白染色阳性,成肌诱导条件下能形成肌管,肌球蛋白重链染色阳性;(2)制备的C/GP/Co复合物在37℃时约10min内由液体形成水凝胶,扫描电镜下该凝胶为蜂窝状均质多孔结构;(3)浸提液培养实验中支架毒性分级为0到1级,说明该材料无毒;(4)成肌细胞在凝胶二维及三维培养时均生长良好;(5)凝胶携带成肌细胞移植到裸鼠皮下4w后仍可观察到绿色荧光,组织学检查发现支架上有大量成肌细胞存活;(6)凝胶介质对成肌细胞的成肌、成骨及成脂分化均有增强作用。在成肌分化实验中,C/GP/Co组细胞分化后的融合指数及肌管大小均显著增加(p<0.05);在成骨分化实验中,C/GP/Co组细胞在各检测时相点的ALP活性均显著增强(p<0.05),在分化21d时的矿化面积百分比也显著增加(p<0.05);在成脂分化实验中,C/GP/Co组细胞内油红O染色阳性区域面积显著增加(p<0.05)。2.Msx1转染成肌细胞后能有助于细胞保持“干性”:(1)逆转录病毒成功转染成肌细胞并使后者异位表达msx1蛋白;(2)实验组成肌细胞较对照组成肌细胞相比:在TEM镜下具有更小而圆的外型及更年轻化的超微结构;衰老细胞百分比显著降低(p<0.05);具有更高的增殖指数(p<0.05)、Ki67指数(p<0.05)及集落形成率(p<0.05);在免疫荧光阳性率和平均光密度值两项评价指标中,SSEA-1和Pax-7表达水平均上调而myoD表达水平下调(p<0.05);Transwell实验中表现出更强的迁移能力(p<0.05),且该能力与SDF-1/CXCR4(基质细胞衍生因子-1/细胞表面趋化因子受体4)轴有关;(3)移植到scid/mdx小鼠模型后实验组细胞存活率更高,随时间推移有更多细胞在宿主体内增殖并分化融合并表达肌营养不良蛋白(p<0.05),并且这种高移植效率在细胞培养传代过程中能有效保持。3.实验组成肌细胞与对照组相比具有更高的成骨效能:(1)体外成骨诱导实验中,各检测时相点实验组的ALP活性、矿化面积百分比均显著高于对照组,成骨相关基因的表达水平也显著高于对照组(p<0.05);(2)异位成骨实验中实验组可注射组织工程复合物:大体观察中形成的骨样组织体积及硬度更大,骨密度(p<0.05)、新生骨小梁面积百分比(p<0.05)以及骨钙素染色阳性区域面积均显著高于对照组。
     结论:1.C/GP/Co是一种可注射的温敏凝胶支架,制备简便,在体内外实验均表现出对成肌细胞具有良好的生物相容性,且有助于体外扩增培养期间保持成肌细胞的多向分化潜能,是成肌细胞理想的支架材料。2.Msx1基因修饰成肌细胞将有助于促使成肌细胞在体外培养过程中保持“干性”,增强成肌细胞的移植效率,并且该能力在传代过程中能够有效保持。3.经msx1基因修饰的成肌细胞具有更强的成骨效能,与C/GP/Co凝胶构建可注射温敏支架用于骨组织工程确实可行。
Background and objectives: The repairing of bone defect is one of the toughest tasksin clinical orthopedics. The emergent bone tissue engineering provides a new method tosolve this problem. Muscle satellite cells (MSCs) serve as the main source of stem cells inskeletal muscles. MSCs and their cultivating progenies---myoblasts, possess the plasticityto give rise to all the mesodermic lineages, especially a high potential of osteogenicdifferentiation. MSCs have remarkable advantages such as: rich source, harvest withminimal invasion, easy to culture and identify. Moreover, they are frequently used ascarriers for gene delivery. Therefore, MSCs become an attractive candidate for seed cells inbone tissue engineering with broad prospect. However, there remain a couple of problemsin myoblasts’ application in bone tissue engineering:1. There are very limited studies onscaffold materials suitable for myoblasts, especially lack of studies on chitosan derivedthermosensitive hydrogels as injectable scaffolds.2. During the cell expansion in vitro,myoblasts lose their stemness rapidly, resulting in severe impairment in their potential ofosteogenic differentiation and transplantation efficacy. Based on these facts, the objectivesof this study include:1. Fabricating a novel injectable thermosensitive hydrogel scaffold-chitosan/β-glycerophosphate/collagen (C/GP/Co), to observe its effect on myoblasts’growth and proliferation, to investigate the feasibility of its application as a scaffoldmaterial for myoblasts.2. By modifying myoblasts with msx1(muscle segmenthomeobox-1) gene via retroviral transfection, to study the effect of msx1on maintaining thestemness of myoblasts during the in vitro expansion process.3. Through experiment ofosteogenic induction in vitro and ectopic bone formation in vivo, to evaluate the osteogenicefficacy of myoblasts with msx1gene modification.
     Methods:1. Myoblasts were isolated and cultured in vitro, then the influences offreshly fabricated C/GP/Co scaffold on myoblasts’ growth and differentiation were investigated.(1) Through differential adhesion method combined with clones isolating,myoblasts from green fluorescent protein (GFP) transgenic mouse (C57BL/Ka-βactin-EGFP) were obtained then cultured and passaged. They were identified byimmuno-staining of desmin, myogenic induction and myosin heavy chain (MHC)immuno-staining;(2) C/GP/Co hydrogel was fabricated by mixing2.0wt%chitosan (C)solution,50wt%β-glycerophosphate (GP) and2mg/mL collagen (Co) solution at avolume ratio of5:1:6, then its ultrastructure was observed under a scanning electronmicroscopy (SEM);(3) C/GP/Co hydrogel extraction fluids with various concentrationswere prepared and then used as medium for myoblasts’ culture. To assess the cytotoxicityof this scaffold, cell viability was determined by cell counting kit-8(CCK-8), the relativegrowth rate (RGR,%) was calculated;(4) The growth of myoblasts in two-dimensionalculture was examined by cell viability assay and that in three-dimensional culture wasexamined by laser scanning confocal microscopy (LSCM) and SEM, respectively;(5)Myoblasts were encapsulated in liquid C/GP/Co compound, then injected into thesubcutaneous dorsum of nude mice. The change of GFP signal was monitored by smallanimal in vivo living fluorescent imaging system. The mice were sacrificed4weeks aftercell transplantation and the survival of myoblasts was verified by histological examination;(6) The influences of hydrogel substrate on capability of myoblasts toward myogenic,osteogenic and adipogenic differentiation were evaluated. In control group myoblasts werecultured on collagen-coated dishes while in C/GP/Co group myoblasts were cultured onC/GP/Co gel-coated dishes. Myogenic differentiation was assessed by fusion index (FI) andmyotube size. Osteogenic differentiation was assessed by Alizarin Red staining andadipogenic differentiation by Oil Red O staining.2. Msx1gene was transfected intomyoblasts via retrovirus vector, then whether msx1-modified myoblasts can help maintaintheir stemness was investigated:(1) Myoblasts were transfected by msx1gene viaretrovirus, and then identified by western blot.(2) The following features betweenmsx1-modified myoblasts (experimental group) and non-modified myoblasts (control group)were compared: cell morphology, the ratio of senescent cells, the capability of proliferation,the expression level of differentiation-related markers and migration capability. Cellmorphology was observed under a transmission electron microscopy (TEM), the ratio ofsenescent cells was calculated in myoblasts stained by β-D galaetosidase, the proliferation capability was assessed by cell proliferation assay, proliferation index(PI), Ki67index andcolony forming frequency, the differentiation-related markers include myoD(myogenicdifferentiation factor), Pax7(paired box transcription factor-7) and SSEA-1(stage specificembryonic antigen-1), the cell migration capability was assessed by transwell experiment;(3) The transplantation efficacy of myoblasts in the same generation between control groupand experimental group, and myoblasts in different generation from experimental groupwas compared in scid/mdx mice through transplantated into tibilias anterior muscles;3. Theosteogenic efficacy of msx1-modified myoblasts was evaluated through the followingaspects:(1) After osteogenic induction in vitro, the following indicators were employed toassess the osteogenic efficacy: ALP activity, area of mineralization and mRNA expressionlevel of osteogenesis-related genes;(2) Myoblasts were embedded with C/GP/Co hydrogelto fabricate an injectable tissue engineered bone(TEB), then TEB was transplanted intonude mice to perform an experiment of in vivo ectopic bone formation. Bone quality wasassessed by the following methods: gross observation of dissected implants, bone mineraldensity, H&E staining and immunohistochemical staining for osteocalcin etc.
     Results:1. GFP-labeled myoblasts were isolated from GFP-transgenic murine skeletalmuscles, then cultured and passaged. C/GP/Co hydrogel scaffold was successfullyfabricated and its ultrastructure was observed. This scaffold material was non-cytotoxic andexhibited good biocompatibility to myoblasts. Moreover, it demonstrated a remarkablecapability to enhance the potential of multilineage differentiation during the period of cellexpansion in vitro.(1) The fluorescent staining for desmin was positive in culturedmyoblasts. In myogenic assay, the cultured myoblasts differentiated into myotubes and thelatter was positive in immuno-staining of myosin heavy chain (MHC);(2)The preparedC/GP/Co solution gelated into hydrogel around10min. Under SEM, it exhibited a porouscobweb-like homogenous structure;(3) In the culture with extraction fluids, cytotoxic gradeof the scaffold material was0~1, indicating it was non-cytotoxic;(4) Myoblasts grew wellboth in two-dimensinal and three-dimensional hydrogel culture;(5) Hydrogel embeddedwith GFP-labeled myoblasts was transplanted into subcutaneous dorsum of nude mice.Green fluorescence was visible4weeks after implantation and histological examinationrevealed that a large number of myoblasts still survived in the scaffold;(6) The myoblastsexhibited an enhanced myogenic, osteogenic and adipogenic differentiation on the hydrogel surface. In myogenic assay, both the fusion index (FI) and size of myotube increasedsignificantly in C/GP/Co group (p<0.05). In osteogenic assay, the ALP activity at everytime point and the percentage of mineralization at day21were significantly higher inC/GP/Co group than that of control (p<0.05). In adipogenic assay, the area of positive OilRed O staining within cytoplasm was significantly larger in C/GP/Co group (p<0.05).2.Msx-1modified myoblasts maintained their stemness better in culture.(1) Myoblasts weresuccessfully transfected with msx1gene via retrovirus vector containing a doxycline tet-offsystem and the expression of msx1was verified by western blot analysis.(2) Compared tocontrol group, the myoblasts in experimental group: showing a smaller, more roundedcontour and more rejuvenized ultrastructue under TEM; the percentage of senescent cellsdecreased significantly (p<0.05); the proliferation index (PI), Ki67index and colonyforming frequency was significantly higher (p<0.05); the expression level of SSEA-1andPax-7increased significantly (p<0.05) while the expression level of myoD decreasedsignificantly (p<0.05), measured by either percentage of positive staining and mean opticaldensity; they exhibited a stronger capability of migration in transwell experiment (p<0.05)and this capability was proved to be correlated to SDF-1/CXCR4(stromal cell-derivedfactor-1/C-X-C chemokine receptor type4) axis.(3) Myoblasts in experimental groupexhibited a higher engraftment efficiency in scid/mdx mice. Much more myoblasts survivedand new myofibers expressing dystrophin formed in the host tibilias anterior muscle(p<0.05). Moreover, the high transplantation efficiency could be effectively maintained incell passaging process.3. The myoblasts in experimental group exhibited a higherosteogenic efficacy compared to myoblasts in control group:(1) In osteogenic assay in vitro,ALP activity, percentage of mineralization area and mRNA expression level of someosteogenesis-related genes were higher in experimental group at examined time point(p<0.05).(2) In the process of ectopic bone formation in vivo, the new-forming tissueengineered bones exhibited a better quality in experimental group: they were larger andstiffer in gross examination, they possessed greater bone mineral density (p<0.05), higherpercentage of new-formed trabecula area (p<0.05) and larger area of positive staining forosteocalcin.
     Conclusions:1. As an injectable thermosensitive hydrogel scaffold, C/GP/Co is easyto fabricate and biocompatible to myoblasts both in vitro and in vivo. It demonstrated a remarkable capability to maintain the plasticity of myoblasts during the period of in vitrocell expansion. Therefore, it could serve as an ideal scaffold to carry myoblasts.2. Msx1modification is helpful to maintain the stemness of myoblasts during cell culture, and themodified myoblasts acquire a high engrafting efficiency which can be preserved during theprocess of cell passaging.3. Msx1-modified myoblasts possess an improved osteogenicefficacy. It is feasible to combine them with C/GP/Co hydrogel to fabricate an injectablethermosensitive scaffold which can be used in bone tissue engineering.
引文
[1] Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG. Evolution of bonetransplantation: molecular, cellular and tissue strategies to engineer human bone.Biomaterials.1996.17(2):175-85.
    [2] Chimutengwende-Gordon M, Khan WS. Advances in the use of stem cells andtissue engineering applications in bone repair. Curr Stem Cell Res Ther.2012.7(2):122-6.
    [3] Fernandes AM, Fernandes TG, Diogo MM, da SCL, Henrique D, Cabral JM. Mouseembryonic stem cell expansion in a microcarrier-based stirred culture system. JBiotechnol.2007.132(2):227-36.
    [4] Brack AS, Rando TA. Tissue-specific stem cells: lessons from the skeletal musclesatellite cell. Cell Stem Cell.2012.10(5):504-14.
    [5] Asakura A, Komaki M, Rudnicki M. Muscle satellite cells are multipotential stemcells that exhibit myogenic, osteogenic, and adipogenic differentiation.Differentiation.2001.68(4-5):245-53.
    [6] Huang S, Wang Z. Influence of platelet-rich plasma on proliferation and osteogenicdifferentiation of skeletal muscle satellite cells: an in vitro study. Oral Surg OralMed Oral Pathol Oral Radiol Endod.2010.110(4):453-62.
    [7] Rao RD, Gourab K, Bagaria VB, Shidham VB, Metkar U, Cooley BC. The effect ofplatelet-rich plasma and bone marrow on murine posterolateral lumbar spinearthrodesis with bone morphogenetic protein. J Bone Joint Surg Am.2009.91(5):1199-206.
    [8] Redshaw Z, McOrist S, Loughna P. Muscle origin of porcine satellite cells affects invitro differentiation potential. Cell Biochem Funct.2010.28(5):403-11.
    [9] Hashimoto N, Kiyono T, Wada MR, et al. Osteogenic properties of human myogenicprogenitor cells. Mech Dev.2008.125(3-4):257-69.
    [10] Wu X, Wang S, Chen B, An X. Muscle-derived stem cells: isolation,characterization, differentiation, and application in cell and gene therapy. CellTissue Res.2010.340(3):549-67.
    [11] Lu HH, Kofron MD, El-Amin SF, Attawia MA, Laurencin CT. In vitro boneformation using muscle-derived cells: a new paradigm for bone tissue engineeringusing polymer-bone morphogenetic protein matrices. Biochem Biophys ResCommun.2003.305(4):882-9.
    [12] Sun JS, Wu SY, Lin FH. The role of muscle-derived stem cells in bone tissueengineering. Biomaterials.2005.26(18):3953-60.
    [13] Liu R, Birke O, Morse A, et al. Myogenic progenitors contribute to open but notclosed fracture repair. BMC Musculoskelet Disord.2011.12:288.
    [14]王韵晴,卢婷利,赵雯,惠倩倩,孔丹凤,陈涛.骨组织工程支架材料的研究进展.材料导报.2011.(03):125-131.
    [15] Lemons ML, Howland DR, Anderson DK. Chondroitin sulfate proteoglycanimmunoreactivity increases following spinal cord injury and transplantation. ExpNeurol.1999.160(1):51-65.
    [16] Bonzani IC, Adhikari R, Houshyar S, Mayadunne R, Gunatillake P, Stevens MM.Synthesis of two-component injectable polyurethanes for bone tissue engineering.Biomaterials.2007.28(3):423-33.
    [17] Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogelsinitiated with beta-glycerophosphate for bone tissue engineering. Biomaterials.2010.31(14):3976-85.
    [18] Song K, Qiao M, Liu T, et al. Preparation, fabrication and biocompatibility of novelinjectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. JMater Sci Mater Med.2010.21(10):2835-42.
    [19] Sun B, Ma W, Su F, et al. The osteogenic differentiation of dog bone marrowmesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/beta-glycerophosphate hydrogel: in vitro and in vivo. J Mater Sci Mater Med.2011.22(9):2111-8.
    [20] Gilbert PM, Havenstrite KL, Magnusson KE, et al. Substrate elasticity regulatesskeletal muscle stem cell self-renewal in culture. Science (80-).2010.329(5995):1078-81.
    [21] Montarras D, Morgan J, Collins C, et al. Direct isolation of satellite cells for skeletalmuscle regeneration. Science (80-).2005.309(5743):2064-7.
    [22] Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM. Self-renewal and expansionof single transplanted muscle stem cells. Nature.2008.456(7221):502-6.
    [23] Huang S, Jia S, Liu G, Fang D, Zhang D. Osteogenic differentiation of musclesatellite cells induced by platelet-rich plasma encapsulated in three-dimensionalalginate scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2012.
    [24] Huang S, Wang Z. Platelet-rich plasma-derived growth factors promote osteogenicdifferentiation of rat muscle satellite cells: in vitro and in vivo studies. Cell Biol Int.2012.36(12):1195-205.
    [25]张风河,黄萍,魏奉才,孙树洋.腺病毒介导的骨形态发生蛋白2基因转染肌卫星细胞诱导成骨的动物实验研究.华西口腔医学杂志.2007.(05):504-507.
    [26] Young BH, Peng H, Huard J. Muscle-based gene therapy and tissue engineering toimprove bone healing. Clin Orthop Relat Res.2002.(403Suppl): S243-51.
    [27] Gersbach CA, Byers BA, Pavlath GK, Guldberg RE, Garcia AJ.Runx2/Cbfa1-genetically engineered skeletal myoblasts mineralize collagenscaffolds in vitro. Biotechnol Bioeng.2004.88(3):369-78.
    [28] den Boogaard MJ v, Dorland M, Beemer FA, van AHK. MSX1mutation isassociated with orofacial clefting and tooth agenesis in humans. Nat Genet.2000.24(4):342-3.
    [29] Orestes-Cardoso S, Nefussi JR, Lezot F, et al. Msx1is a regulator of bone formationduring development and postnatal growth: in vivo investigations in a transgenicmouse model. Connect Tissue Res.2002.43(2-3):153-60.
    [30] Bendall AJ, Ding J, Hu G, Shen MM, Abate-Shen C. Msx1antagonizes themyogenic activity of Pax3in migrating limb muscle precursors. Development.1999.126(22):4965-76.
    [31] Han M, Yang X, Farrington JE, Muneoka K. Digit regeneration is regulated byMsx1and BMP4in fetal mice. Development.2003.130(21):5123-32.
    [32] Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration.Physiol Rev.2004.84(1):209-38.
    [33] Lee H, Habas R, Abate-Shen C. MSX1cooperates with histone H1b for inhibitionof transcription and myogenesis. Science (80-).2004.304(5677):1675-8.
    [34] Wang J, Abate-Shen C. The MSX1homeoprotein recruits G9a methyltransferase torepressed target genes in myoblast cells. PLOS ONE.2012.7(5): e37647.
    [35] Odelberg SJ, Kollhoff A, Keating MT. Dedifferentiation of mammalian myotubesinduced by msx1. Cell.2000.103(7):1099-109.
    [36] Meech R, Gomez M, Woolley C, et al. The homeobox transcription factor Barx2regulates plasticity of young primary myofibers. PLOS ONE.2010.5(7): e11612.
    [37] Hu G, Lee H, Price SM, Shen MM, Abate-Shen C. Msx homeobox genes inhibitdifferentiation through upregulation of cyclin D1. Development.2001.128(12):2373-84.
    [38] Song YJ, Lee H. YB1/p32, a nuclear Y-box binding protein1, is a novel regulator ofmyoblast differentiation that interacts with Msx1homeoprotein. Exp Cell Res.2010.316(4):517-29.
    [39] Hashimoto N, Murase T, Kondo S, Okuda A, Inagawa-Ogashiwa M. Musclereconstitution by muscle satellite cell descendants with stem cell-like properties.Development.2004.131(21):5481-90.
    [40] Corbu A, Scaramozza A, Badiali-DeGiorgi L, et al. Satellite cell characterizationfrom aging human muscle. Neurol Res.2010.32(1):63-72.
    [41]梁妍,殷君,王永兰,姚芳莲.聚乳酸-壳聚糖-明胶梯度孔径支架的细胞毒性研究.天津医科大学学报.2010.(04):594-597.
    [42] Lafuste P, Sonnet C, Chazaud B, et al. ADAM12and alpha9beta1integrin areinstrumental in human myogenic cell differentiation. Mol Biol Cell.2005.16(2):861-70.
    [43] Horsley V, Friday BB, Matteson S, Kegley KM, Gephart J, Pavlath GK. Regulationof the growth of multinucleated muscle cells by an NFATC2-dependent pathway. JCell Biol.2001.153(2):329-38.
    [44] Wang G, Zheng L, Zhao H, et al. In vitro assessment of the differentiation potentialof bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugationscaffold with surface hydroxyapatite nanostructure for bone tissue engineering.Tissue Eng Part A.2011.17(9-10):1341-9.
    [45] Zhi L, Chen C, Pang X, Uludag H, Jiang H. Synergistic effect of recombinanthuman bone morphogenic protein-7and osteogenic differentiation medium onhuman bone-marrow-derived mesenchymal stem cells in vitro. Int Orthop.2011.35(12):1889-95.
    [46] Kim IY, Seo SJ, Moon HS, et al. Chitosan and its derivatives for tissue engineeringapplications. Biotechnol Adv.2008.26(1):1-21.
    [47] Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calciumphosphate composite scaffolds for tissue engineering. J Biomed Mater Res.2001.55(3):304-12.
    [48] Kawakami T, Antoh M, Hasegawa H, Yamagishi T, Ito M, Eda S. Experimentalstudy on osteoconductive properties of a chitosan-bonded hydroxyapatiteself-hardening paste. Biomaterials.1992.13(11):759-63.
    [49] Arpornmaeklong P, Pripatnanont P, Suwatwirote N. Properties of chitosan-collagensponges and osteogenic differentiation of rat-bone-marrow stromal cells. Int J OralMaxillofac Surg.2008.37(4):357-66.
    [50] Di MA, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedictissue-engineering. Biomaterials.2005.26(30):5983-90.
    [51] Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosanform biodegradable gels in situ. Biomaterials.2000.21(21):2155-61.
    [52] Cho MH, Kim KS, Ahn HH, et al. Chitosan gel as an in situ-forming scaffold for ratbone marrow mesenchymal stem cells in vivo. Tissue Eng Part A.2008.14(6):1099-108.
    [53] Ahmadi R, de Bruijn JD. Biocompatibility and gelation of chitosan-glycerolphosphate hydrogels. J Biomed Mater Res A.2008.86(3):824-32.
    [54] Yan J, Yang L, Wang G, Xiao Y, Zhang B, Qi N. Biocompatibility evaluation ofchitosan-based injectable hydrogels for the culturing mice mesenchymal stem cellsin vitro. J Biomater Appl.2010.24(7):625-37.
    [55] Cheng YH, Yang SH, Su WY, et al. Thermosensitive chitosan-gelatin-glycerolphosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitrostudy. Tissue Eng Part A.2010.16(2):695-703.
    [56] Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cellson electrospun type I collagen nanofibers. Stem Cells.2006.24(11):2391-7.
    [57] Hesse E, Hefferan TE, Tarara JE, et al. Collagen type I hydrogel allows migration,proliferation, and osteogenic differentiation of rat bone marrow stromal cells. JBiomed Mater Res A.2010.94(2):442-9.
    [58] Kruger EA, Im DD, Bischoff DS, et al. In vitro mineralization of humanmesenchymal stem cells on three-dimensional type I collagen versus PLGAscaffolds: a comparative analysis. Plast Reconstr Surg.2011.127(6):2301-11.
    [59] Tsai KS, Kao SY, Wang CY, Wang YJ, Wang JP, Hung SC. Type I collagen promotesproliferation and osteogenesis of human mesenchymal stem cells via activation ofERK and Akt pathways. J Biomed Mater Res A.2010.94(3):673-82.
    [60] Heinemann C, Heinemann S, Bernhardt A, Worch H, Hanke T. Novel textilechitosan scaffolds promote spreading, proliferation, and differentiation ofosteoblasts. Biomacromolecules.2008.9(10):2913-20.
    [61] Costa-Pinto AR, Salgado AJ, Correlo VM, et al. Adhesion, proliferation, andosteogenic differentiation of a mouse mesenchymal stem cell line (BMC9) seededon novel melt-based chitosan/polyester3D porous scaffolds. Tissue Eng Part A.2008.14(6):1049-57.
    [62] Chicatun F, Pedraza CE, Ghezzi CE, et al. Osteoid-mimicking densecollagen/chitosan hybrid gels. Biomacromolecules.2011.12(8):2946-56.
    [63] Sakamoto S, Sakamoto M, Goldberg L, Colarusso L, Gotoh Y. Mineralizationinduced by beta-glycerophosphate in cultures leads to a marked increase incollagenase synthesis by mouse osteogenic MC3T3-E1cells under subsequentstimulation with heparin. Biochem Biophys Res Commun.1989.162(2):773-80.
    [64] Bear M, Butcher M, Shaughnessy SG. Oxidized low-density lipoprotein actssynergistically with beta-glycerophosphate to induce osteoblast differentiation inprimary cultures of vascular smooth muscle cells. J Cell Biochem.2008.105(1):185-93.
    [65] Mathews S, Bhonde R, Gupta PK, Totey S. A novel tripolymer coatingdemonstrating the synergistic effect of chitosan, collagen type1and hyaluronic acidon osteogenic differentiation of human bone marrow derived mesenchymal stemcells. Biochem Biophys Res Commun.2011.414(1):270-6.
    [66] Raghunath J, Rollo J, Sales KM, Butler PE, Seifalian AM. Biomaterials and scaffolddesign: key to tissue-engineering cartilage. Biotechnol Appl Biochem.2007.46(Pt2):73-84.
    [67]张文元,杨亚冬,房国坚.壳聚糖-丝素复合支架材料与骨髓间充质干细胞相容性的研究.中国卫生检验杂志.2010.(12):3084-3086.
    [68]王立妍,彭伟,穆玉.壳聚糖温敏凝胶对人牙龈成纤维细胞的毒性研究.军医进修学院学报.2009.(05):715-717.
    [69] Xu Y, Gurusiddappa S, Rich RL, et al. Multiple binding sites in collagen type I forthe integrins alpha1beta1and alpha2beta1. J Biol Chem.2000.275(50):38981-9.
    [70] Kadler KE, Holmes DF, Trotter JA, Chapman JA. Collagen fibril formation.Biochem J.1996.316(Pt1):1-11.
    [71] Rafat M, Li F, Fagerholm P, et al. PEG-stabilized carbodiimide crosslinkedcollagen-chitosan hydrogels for corneal tissue engineering. Biomaterials.2008.29(29):3960-72.
    [72] Ma L, Gao C, Mao Z, et al. Collagen/chitosan porous scaffolds with improvedbiostability for skin tissue engineering. Biomaterials.2003.24(26):4833-41.
    [73] Kaushansky K. Cell expansion and maintenance of stemness. Blood.2008.111(8):3920-1.
    [74] Leychkis Y, Munzer SR, Richardson JL. What is stemness. Stud Hist Philos BiolBiomed Sci.2009.40(4):312-20.
    [75] Hashemi SM, Soudi S, Shabani I, Naderi M, Soleimani M. The promotion ofstemness and pluripotency following feeder-free culture of embryonic stem cells oncollagen-grafted3-dimensional nanofibrous scaffold. Biomaterials.2011.32(30):7363-74.
    [76] Hu X, Park SH, Gil ES, Xia XX, Weiss AS, Kaplan DL. The influence of elasticityand surface roughness on myogenic and osteogenic-differentiation of cells onsilk-elastin biomaterials. Biomaterials.2011.32(34):8979-89.
    [77] Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate.Nature.2009.462(7272):433-41.
    [78] Garry DJ, Masino AM, Meeson AP, Martin CM. Stem cell biology and therapeuticapplications. Curr Opin Nephrol Hypertens.2003.12(4):447-54.
    [79] Li J, Pei M. Cell senescence: a challenge in cartilage engineering and regeneration.Tissue Eng Part B Rev.2012.18(4):270-87.
    [80] Requicha JF, Viegas CA, Albuquerque CM, Azevedo JM, Reis RL, Gomes ME.Effect of anatomical origin and cell passage number on the stemness and osteogenicdifferentiation potential of canine adipose-derived stem cells. Stem Cell Rev.2012.8(4):1211-22.
    [81] Malatesta M, Giagnacovo M, Renna LV, Cardani R, Meola G, Pellicciari C. Culturedmyoblasts from patients affected by myotonic dystrophy type2exhibitsenescence-related features: ultrastructural evidence. Eur J Histochem.2011.55(3):e26.
    [82] Campisi J, d'Adda dFF. Cellular senescence: when bad things happen to good cells.Nat Rev Mol Cell Biol.2007.8(9):729-40.
    [83] Conboy MJ, Karasov AO, Rando TA. High incidence of non-random template strandsegregation and asymmetric fate determination in dividing stem cells and theirprogeny. PLoS Biol.2007.5(5): e102.
    [84] Knoblich JA. Mechanisms of asymmetric stem cell division. Cell.2008.132(4):583-97.
    [85] Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. J Cell Biol.2011.193(2):257-66.
    [86] Ryu BY, Orwig KE, Oatley JM, Avarbock MR, Brinster RL. Effects of aging andniche microenvironment on spermatogonial stem cell self-renewal. Stem Cells.2006.24(6):1505-11.
    [87] Gopinath SD, Rando TA. Stem cell review series: aging of the skeletal muscle stemcell niche. Aging Cell.2008.7(4):590-8.
    [88] Edelberg JM, Ballard VL. Stem cell review series: regulating highly potent stemcells in aging: environmental influences on plasticity. Aging Cell.2008.7(4):599-604.
    [89] Brack AS, Rando TA. Intrinsic changes and extrinsic influences of myogenic stemcell function during aging. Stem Cell Rev.2007.3(3):226-37.
    [90] Sharpless NE, Schatten G. Stem cell aging. J Gerontol A Biol Sci Med Sci.2009.64(2):202-4.
    [91] Jasper H, Jones DL. Metabolic regulation of stem cell behavior and implications foraging. Cell Metab.2010.12(6):561-5.
    [92] Zhang J, Ju Z. Telomere, DNA damage, and oxidative stress in stem cell aging.Birth Defects Res C Embryo Today.2010.90(4):297-307.
    [93] Song K, Wang Y, Sassoon D. Expression of Hox-7.1in myoblasts inhibits terminaldifferentiation and induces cell transformation. Nature.1992.360(6403):477-81.
    [94] Nehlin JO, Just M, Rustan AC, Gaster M. Human myotubes from myoblast culturesundergoing senescence exhibit defects in glucose and lipid metabolism.Biogerontology.2011.12(4):349-65.
    [95] Salisbury E, Schoser B, Schneider-Gold C, et al. Expression of RNA CCUG repeatsdysregulates translation and degradation of proteins in myotonic dystrophy2patients. Am J Pathol.2009.175(2):748-62.
    [96] Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cellsin culture and in aging skin in vivo. Proc Natl Acad Sci U S A.1995.92(20):9363-7.
    [97] Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detectsenescence-associated beta-galactosidase (SA-betagal) activity, a biomarker ofsenescent cells in culture and in vivo. Nat Protoc.2009.4(12):1798-806.
    [98] Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysisof a cell proliferation-associated human nuclear antigen defined by the monoclonalantibody Ki-67. J Immunol.1984.133(4):1710-5.
    [99] Hashemi SM, Soudi S, Shabani I, Naderi M, Soleimani M. The promotion ofstemness and pluripotency following feeder-free culture of embryonic stem cells oncollagen-grafted3-dimensional nanofibrous scaffold. Biomaterials.2011.32(30):7363-74.
    [100] Morrison JI, Borg P, Simon A. Plasticity and recovery of skeletal muscle satellitecells during limb regeneration. FASEB J.2010.24(3):750-6.
    [101] Asakura A, Hirai H, Kablar B, et al. Increased survival of muscle stem cells lackingthe MyoD gene after transplantation into regenerating skeletal muscle. Proc NatlAcad Sci U S A.2007.104(42):16552-7.
    [102] Chong SW, Nguyet LM, Jiang YJ, Korzh V. The chemokine Sdf-1and its receptorCxcr4are required for formation of muscle in zebrafish. BMC Dev Biol.2007.7:54.
    [103] Odemis V, Boosmann K, Dieterlen MT, Engele J. The chemokine SDF1controlsmultiple steps of myogenesis through atypical PKCzeta. J Cell Sci.2007.120(Pt22):4050-9.
    [104] Bae GU, Gaio U, Yang YJ, Lee HJ, Kang JS, Krauss RS. Regulation of myoblastmotility and fusion by the CXCR4-associated sialomucin, CD164. J Biol Chem.2008.283(13):8301-9.
    [105] Melchionna R, Di CA, De Mori R, et al. Induction of myogenic differentiation bySDF-1via CXCR4and CXCR7receptors. Muscle Nerve.2010.41(6):828-35.
    [106] De la Porte S, Morin S, Koenig J. Characteristics of skeletal muscle in mdx mutantmice. Int Rev Cytol.1999.191:99-148.
    [107] Vajda Z, Pedersen M, Doczi T, Sulyok E, Nielsen S. Studies of mdx mice.Neuroscience.2004.129(4):993-8.
    [108] Nakagaki WR, Camilli JA. Bone tissue and muscle dystrophin deficiency in mdxmice. Joint Bone Spine.2012.79(2):129-33.
    [109] Chirieleison SM, Feduska JM, Schugar RC, Askew Y, Deasy BM. Humanmuscle-derived cell populations isolated by differential adhesion rates: phenotypeand contribution to skeletal muscle regeneration in Mdx/SCID mice. Tissue EngPart A.2012.18(3-4):232-41.
    [110] Stolzing A, Sethe S. Watch your notch: a link between aging and stem cell fate.Rejuvenation Res.2004.7(1):9-11.
    [111] Garcia A, Kandel JJ. Notch: a key regulator of tumor angiogenesis and metastasis.Histol Histopathol.2012.27(2):151-6.
    [112] Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control andsignal integration in development. Science (80-).1999.284(5415):770-6.
    [113] Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system.Immunity.2010.32(1):14-27.
    [114] Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cellactivation and cell fate determination in postnatal myogenesis. Dev Cell.2002.3(3):397-409.
    [115] Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA. A temporal switch fromnotch to Wnt signaling in muscle stem cells is necessary for normal adultmyogenesis. Cell Stem Cell.2008.2(1):50-9.
    [116] Carlson ME, Hsu M, Conboy IM. Imbalance between pSmad3and Notch inducesCDK inhibitors in old muscle stem cells. Nature.2008.454(7203):528-32.
    [117] Carlson ME, Suetta C, Conboy MJ, et al. Molecular aging and rejuvenation ofhuman muscle stem cells. EMBO Mol Med.2009.1(8-9):381-91.
    [118] Revet I, Huizenga G, Chan A, et al. The MSX1homeobox transcription factor is adownstream target of PHOX2B and activates the Delta-Notch pathway inneuroblastoma. Exp Cell Res.2008.314(4):707-19.
    [119] Thompson-Jaeger S, Raghow R. Exogenous expression of Msx1renders myoblastsrefractory to differentiation into myotubes and elicits enhanced biosynthesis of fourunique mRNAs. Mol Cell Biochem.2000.208(1-2):63-9.
    [120] Bruder SP, Fox BS. Tissue engineering of bone. Cell based strategies. Clin OrthopRelat Res.1999.(367Suppl): S68-83.
    [121]邢自宝,刘永刚,苏佳灿.骨组织工程种子细胞研究进展.临床医学工程.2010.17(10):152-154.
    [122]刘昊,张永刚.骨组织工程的研究应用与进展.生物骨科材料与临床研究.2012.09(2):32-34,37.
    [123]赖仁发,赵清桐,刘湘宁,沈山.壳聚糖/β-磷酸三钙支架复合骨形态发生蛋白后成骨效能研究.华西口腔医学杂志.2010.28(5):464-467.
    [124] Liu W, Wen Y, Bi P, et al. Hypoxia promotes satellite cell self-renewal and enhancesthe efficiency of myoblast transplantation. Development.2012.139(16):2857-65.
    [125] Gersbach CA, Byers BA, Pavlath GK, Garcia AJ. Runx2/Cbfa1stimulatestransdifferentiation of primary skeletal myoblasts into a mineralizing osteoblasticphenotype. Exp Cell Res.2004.300(2):406-17.
    [126] Weibrich G, Kleis WK, Hafner G. Growth factor levels in the platelet-rich plasmaproduced by2different methods: curasan-type PRP kit versus PCCS PRP system.Int J Oral Maxillofac Implants.2002.17(2):184-90.
    [127] Lo WC, Chiou JF, Gelovani JG, et al. Transplantation of embryonic fibroblaststreated with platelet-rich plasma induces osteogenesis in SAMP8mice monitored bymolecular imaging. J Nucl Med.2009.50(5):765-73.
    [128] Kasten P, Vogel J, Luginbuhl R, et al. Influence of platelet-rich plasma onosteogenic differentiation of mesenchymal stem cells and ectopic bone formation incalcium phosphate ceramics. Cells Tissues Organs.2006.183(2):68-79.
    [129] Kasten P, Vogel J, Beyen I, et al. Effect of platelet-rich plasma on the in vitroproliferation and osteogenic differentiation of human mesenchymal stem cells ondistinct calcium phosphate scaffolds: the specific surface area makes a difference. JBiomater Appl.2008.23(2):169-88.
    [130]赵君,蒋欣泉,张志愿.骨组织工程中基因修饰的种子细胞的研究进展.中国口腔颌面外科杂志.2007.5(2):147-150.
    [131] Kofron MD, Li X, Laurencin CT. Protein-and gene-based tissue engineering inbone repair. Curr Opin Biotechnol.2004.15(5):399-405.
    [132] Kofron MD, Laurencin CT. Bone tissue engineering by gene delivery. Adv DrugDeliv Rev.2006.58(4):555-76.
    [133] Betz VM, Betz OB, Harris MB, Vrahas MS, Evans CH. Bone tissue engineering andrepair by gene therapy. Front Biosci.2008.13:833-41.
    [134] Santos JL, Pandita D, Rodrigues J, Pego AP, Granja PL, Tomas H. Non-viral genedelivery to mesenchymal stem cells: methods, strategies and application in bonetissue engineering and regeneration. Curr Gene Ther.2011.11(1):46-57.
    [135] Hong D, Chen HX, Ge R, Li JC. Genetically engineered mesenchymal stem cells:The ongoing research for bone tissue engineering. Anat Rec (Hoboken).2010.293(3):531-7.
    [136] Shen HC, Peng H, Usas A, Gearhart B, Fu FH, Huard J. Structural and functionalhealing of critical-size segmental bone defects by transduced muscle-derived cellsexpressing BMP4. J Gene Med.2004.6(9):984-91.
    [137]陈晓萍,刘红,刘淑红,吴燕,吴海涛,范明.外源性重组人睫状神经营养因子抑制成人成肌细胞的体外分化.生理学报.2003.55(4):464-468.
    [138]吴海涛,陈晓萍,刘淑红等.重组人睫状神经营养因子对在体和离体大鼠成肌细胞不同作用比较.感染、炎症、修复.2004.5(3):76-78.
    [139]张力,王伟.负载转基因成肌细胞和骨形态发生蛋白组织工程化骨修复骨缺损.中国组织工程研究与临床康复.2011.15(42):7791-7795.
    [140] Liao HT, Chen CT, Chen JP. Osteogenic differentiation and ectopic bone formationof canine bone marrow-derived mesenchymal stem cells in injectablethermo-responsive polymer hydrogel. Tissue Eng Part C Methods.2011.17(11):1139-49.
    [141] Alborzi A, Mac K, Glackin CA, Murray SS, Zernik JH. Endochondral andintramembranous fetal bone development: osteoblastic cell proliferation, andexpression of alkaline phosphatase, m-twist, and histone H4. J Craniofac Genet DevBiol.1996.16(2):94-106.
    [142] Franceschi RT, Ge C, Xiao G, Roca H, Jiang D. Transcriptional regulation ofosteoblasts. Cells Tissues Organs.2009.189(1-4):144-52.
    [143] Ying X, Cheng S, Wang W, et al. Effect of lactoferrin on osteogenic differentiationof human adipose stem cells. Int Orthop.2012.36(3):647-53.
    [144] Bronckers AL, Engelse MA, Cavender A, Gaikwad J, D'Souza RN. Cell-specificpatterns of Cbfa1mRNA and protein expression in postnatal murine dental tissues.Mech Dev.2001.101(1-2):255-8.
    [145] Morinobu M, Ishijima M, Rittling SR, et al. Osteopontin expression in osteoblastsand osteocytes during bone formation under mechanical stress in the calvarialsuture in vivo. J Bone Miner Res.2003.18(9):1706-15.
    [146] Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediatedby bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev.2000.21(4):393-411.
    [147] Luu HH, Song WX, Luo X, et al. Distinct roles of bone morphogenetic proteins inosteogenic differentiation of mesenchymal stem cells. J Orthop Res.2007.25(5):665-77.
    [148]吴沛桥,巴晓革,胡海,赵静.绿色荧光蛋白GFP的研究进展及应用.生物医学工程研究.2009.28(1):83-86.
    [149] Han J, Ishii M, Bringas P Jr, Maas RL, Maxson RE Jr, Chai Y. Concerted action ofMsx1and Msx2in regulating cranial neural crest cell differentiation during frontalbone development. Mech Dev.2007.124(9-10):729-45.
    [150] Koch FP, Weinbach C, Hustert E, Al-Nawas B, Wagner W. GDF-5and BMP-2regulate bone cell differentiation by gene expression of MSX1, MSX2, Dlx5, andRunx2and influence OCN gene expression in vitro. Int J Periodontics RestorativeDent.2012.32(3):285-93.
    [1] Kim IY, Seo SJ, Moon HS, et al. Chitosan and its derivatives for tissue engineeringapplications. Biotechnol Adv.2008.26(1):1-21.
    [2] Bonzani IC, Adhikari R, Houshyar S, Mayadunne R, Gunatillake P, Stevens MM.Synthesis of two-component injectable polyurethanes for bone tissue engineering.Biomaterials.2007.28(3):423-33.
    [3] Lemons ML, Howland DR, Anderson DK. Chondroitin sulfate proteoglycanimmunoreactivity increases following spinal cord injury and transplantation. ExpNeurol.1999.160(1):51-65.
    [4] Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosanform biodegradable gels in situ. Biomaterials.2000.21(21):2155-61.
    [5] Jing B, Wang Z, Jia S, Zhang Z, Memg Z.[Preparation of high viscouschitosan/glycerol phosphate and preliminary studies on its properties]. ZhongguoXiu Fu Chong Jian Wai Ke Za Zhi.2008.22(2):178-82.
    [6] Cho MH, Kim KS, Ahn HH, et al. Chitosan gel as an in situ-forming scaffold for ratbone marrow mesenchymal stem cells in vivo. Tissue Eng Part A.2008.14(6):1099-108.
    [7] Zhang X, Zhu B, Gu Q.[Effect of deacetylation degree of chitosan onthermosensitive hydrogel via rheological characterization]. Zhongguo Xiu FuChong Jian Wai Ke Za Zhi.2008.22(7):861-3.
    [8] Cho J, Heuzey MC, Begin A, Carreau PJ. Physical gelation of chitosan in thepresence of beta-glycerophosphate: the effect of temperature. Biomacromolecules.2005.6(6):3267-75.
    [9] Lavertu M, Filion D, Buschmann MD. Heat-induced transfer of protons fromchitosan to glycerol phosphate produces chitosan precipitation and gelation.Biomacromolecules.2008.9(2):640-50.
    [10] Iliescu M, Hoemann CD, Shive MS, Chenite A, Buschmann MD. Ultrastructure ofhybrid chitosan-glycerol phosphate blood clots by environmental scanning electronmicroscopy. Microsc Res Tech.2008.71(3):236-47.
    [11] Ruel-Gariepy E, Chenite A, Chaput C, Guirguis S, Leroux J. Characterization ofthermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm.2000.203(1-2):89-98.
    [12] Kim GO, Kim N, Kim dY, Kwon JS, Min BH. An electrostatically crosslinkedchitosan hydrogel as a drug carrier. Molecules.2012.17(12):13704-11.
    [13] Khodaverdi E, Tafaghodi M, Ganji F, Abnoos K, Naghizadeh H. In vitro insulinrelease from thermosensitive chitosan hydrogel. AAPS PharmSciTech.2012.13(2):460-6.
    [14] Ruel-Gariepy E, Shive M, Bichara A, et al. A thermosensitive chitosan-basedhydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm.2004.57(1):53-63.
    [15] Shamji MF, Hwang P, Bullock RW, Adams SB, Nettles DL, Setton LA. Release andactivity of anti-TNFalpha therapeutics from injectable chitosan preparations forlocal drug delivery. J Biomed Mater Res B Appl Biomater.2009.90(1):319-26.
    [16] Kim S, Nishimoto SK, Bumgardner JD, Haggard WO, Gaber MW, Yang Y. Achitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acidfor the treatment of brain cancer. Biomaterials.2010.31(14):4157-66.
    [17] Di MA, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedictissue-engineering. Biomaterials.2005.26(30):5983-90.
    [18] Sakamoto S, Sakamoto M, Goldberg L, Colarusso L, Gotoh Y. Mineralizationinduced by beta-glycerophosphate in cultures leads to a marked increase incollagenase synthesis by mouse osteogenic MC3T3-E1cells under subsequentstimulation with heparin. Biochem Biophys Res Commun.1989.162(2):773-80.
    [19] Bear M, Butcher M, Shaughnessy SG. Oxidized low-density lipoprotein actssynergistically with beta-glycerophosphate to induce osteoblast differentiation inprimary cultures of vascular smooth muscle cells. J Cell Biochem.2008.105(1):185-93.
    [20] Ahmadi R, de Bruijn JD. Biocompatibility and gelation of chitosan-glycerolphosphate hydrogels. J Biomed Mater Res A.2008.86(3):824-32.
    [21] Kim KS, Lee JH, Ahn HH, et al. The osteogenic differentiation of ratmuscle-derived stem cells in vivo within in situ-forming chitosan scaffolds.Biomaterials.2008.29(33):4420-8.
    [22] Kwon JS, Kim GH, Kim dY, et al. Chitosan-based hydrogels to induce neuronaldifferentiation of rat muscle-derived stem cells. Int J Biol Macromol.2012.51(5):974-9.
    [23] Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD. Tissue engineering ofcartilage using an injectable and adhesive chitosan-based cell-delivery vehicle.Osteoarthritis Cartilage.2005.13(4):318-29.
    [24] Hoemann CD, Hurtig M, Rossomacha E, et al. Chitosan-glycerol phosphate/bloodimplants improve hyaline cartilage repair in ovine microfracture defects. J BoneJoint Surg Am.2005.87(12):2671-86.
    [25] Hoemann CD, Sun J, McKee MD, et al. Chitosan-glycerol phosphate/blood implantselicit hyaline cartilage repair integrated with porous subchondral bone inmicrodrilled rabbit defects. Osteoarthritis Cartilage.2007.15(1):78-89.
    [26] Chevrier A, Hoemann CD, Sun J, Buschmann MD. Chitosan-glycerolphosphate/blood implants increase cell recruitment, transient vascularization andsubchondral bone remodeling in drilled cartilage defects. Osteoarthritis Cartilage.2007.15(3):316-27.
    [27] Hoemann CD, Chen G, Marchand C, et al. Scaffold-guided subchondral bone repair:implication of neutrophils and alternatively activated arginase-1+macrophages. AmJ Sports Med.2010.38(9):1845-56.
    [28] Chevrier A, Hoemann CD, Sun J, Buschmann MD. Temporal and spatial modulationof chondrogenic foci in subchondral microdrill holes by chitosan-glycerolphosphate/blood implants. Osteoarthritis Cartilage.2011.19(1):136-44.
    [29] Wang CC, Chen CH, Lin WW, et al. Direct intramyocardial injection ofmesenchymal stem cell sheet fragments improves cardiac functions after infarction.Cardiovasc Res.2008.77(3):515-24.
    [30] Zhao Y, Li T, Wei X, et al. Mesenchymal stem cell transplantation improves regionalcardiac remodeling following ovine infarction. Stem Cells Transl Med.2012.1(9):685-95.
    [31] Lu S, Wang H, Lu W, et al. Both the transplantation of somatic cell nuclear transfer-and fertilization-derived mouse embryonic stem cells with temperature-responsivechitosan hydrogel improve myocardial performance in infarcted rat hearts. TissueEng Part A.2010.16(4):1303-15.
    [32] Lu WN, Lu SH, Wang HB, et al. Functional improvement of infarcted heart byco-injection of embryonic stem cells with temperature-responsive chitosan hydrogel.Tissue Eng Part A.2009.15(6):1437-47.
    [33] Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem celllineage specification. Cell.2006.126(4):677-89.
    [34] Gilbert PM, Havenstrite KL, Magnusson KE, et al. Substrate elasticity regulatesskeletal muscle stem cell self-renewal in culture. Science (80-).2010.329(5995):1078-81.
    [35] Crompton KE, Goud JD, Bellamkonda RV, et al. Polylysine-functionalisedthermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials.2007.28(3):441-9.
    [36] Crompton KE, Tomas D, Finkelstein DI, Marr M, Forsythe JS, Horne MK.Inflammatory response on injection of chitosan/GP to the brain. J Mater Sci MaterMed.2006.17(7):633-9.
    [37] Crompton KE, Goud JD, Bellamkonda RV, et al. Polylysine-functionalisedthermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials.2007.28(3):441-9.
    [38]甄勇,许侃,陈学思等.应用组织工程材料栓塞动脉瘤的初步研究.中华医学杂志.2009.89(11):727-731.
    [39] Wu J, Su ZG, Ma GH. A thermo-and pH-sensitive hydrogel composed ofquaternized chitosan/glycerophosphate. Int J Pharm.2006.315(1-2):1-11.
    [40] Sun J, Jiang G, Qiu T, Wang Y, Zhang K, Ding F. Injectable chitosan-based hydrogelfor implantable drug delivery: body response and induced variations of structure andcomposition. J Biomed Mater Res A.2010.95(4):1019-27.
    [41] Molinaro G, Leroux JC, Damas J, Adam A. Biocompatibility of thermosensitivechitosan-based hydrogels: an in vivo experimental approach to injectablebiomaterials. Biomaterials.2002.23(13):2717-22.
    [42] Molinaro G, Leroux JC, Damas J, Adam A. Biocompatibility of thermosensitivechitosan-based hydrogels: an in vivo experimental approach to injectablebiomaterials. Biomaterials.2002.23(13):2717-22.
    [43] Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD. Tissue engineering ofcartilage using an injectable and adhesive chitosan-based cell-delivery vehicle.Osteoarthritis Cartilage.2005.13(4):318-29.
    [44] Hoemann CD, Chenite A, Sun J, et al. Cytocompatible gel formation ofchitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose isdue to the presence of glyoxal. J Biomed Mater Res A.2007.83(2):521-9.
    [45] Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogelsinitiated with beta-glycerophosphate for bone tissue engineering. Biomaterials.2010.31(14):3976-85.
    [46] Song K, Qiao M, Liu T, et al. Preparation, fabrication and biocompatibility of novelinjectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. JMater Sci Mater Med.2010.21(10):2835-42.
    [47]梁杰,崔军,徐欣.壳聚糖温敏凝胶及其在口腔医学中的应用前景.口腔医学.2011.(06):372-374.
    [48] Ji QX, Zhao QS, Deng J, Lu R. A novel injectable chlorhexidine thermosensitivehydrogel for periodontal application: preparation, antibacterial activity and toxicityevaluation. J Mater Sci Mater Med.2010.21(8):2435-42.
    [49] Wu J, Wei W, Wang LY, Su ZG, Ma GH. A thermosensitive hydrogel based onquaternized chitosan and poly(ethylene glycol) for nasal drug delivery system.Biomaterials.2007.28(13):2220-32.
    [50] Sun B, Ma W, Su F, et al. The osteogenic differentiation of dog bone marrowmesenchymal stem cells in a thermo-sensitive injectablechitosan/collagen/beta-glycerophosphate hydrogel: in vitro and in vivo. J MaterSci Mater Med.2011.22(9):2111-8.
    [51] Cheng YH, Yang SH, Su WY, et al. Thermosensitive chitosan-gelatin-glycerolphosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitrostudy. Tissue Eng Part A.2010.16(2):695-703.
    [52] Cheng YH, Yang SH, Lin FH. Thermosensitive chitosan-gelatin-glycerol phosphatehydrogel as a controlled release system of ferulic acid for nucleus pulposusregeneration. Biomaterials.2011.32(29):6953-61.
    [53] Yan J, Yang L, Wang G, Xiao Y, Zhang B, Qi N. Biocompatibility evaluation ofchitosan-based injectable hydrogels for the culturing mice mesenchymal stem cellsin vitro. J Biomater Appl.2010.24(7):625-37.
    [54] Hoemann CD, Chenite A, Sun J, et al. Cytocompatible gel formation ofchitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose isdue to the presence of glyoxal. J Biomed Mater Res A.2007.83(2):521-9.
    [55] Ngoenkam J, Faikrua A, Yasothornsrikul S, Viyoch J. Potential of an injectablechitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocytefunction. Int J Pharm.2010.391(1-2):115-24.
    [56] Faikrua A, Wittaya-Areekul S, Oonkhanond B, Viyoch J. In vivo chondrocyte andtransforming growth factor-beta1delivery using the thermosensitivechitosan/starch/beta-glycerol phosphate hydrogel. J Biomater Appl.2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700