用户名: 密码: 验证码:
城市铁路客运站外部集散网络的脆性理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:交通拥堵已经成为世界各大城市的通病,究其根本原因,除交通能力供给与需求的矛盾之外,交通干扰因素的不确定性和波动性是重要原因之一。如何针对干扰的不确定性对交通网络的特性及动态演化机理进行分析,从而提出解决拥堵的科学措施与对策,是城市交通领域研究面对的一个重大课题。城市对外交通铁路客运站是产生城市交通拥堵的一个重要干扰源,随着我国城市化进程的加快和高速铁路的快速发展,大型客运站的规模的扩大和功能的不断加强,对城市交通拥堵产生的影响越来越大,如何站在提高城市交通系统整体能力的高度,针对大型铁路客运站对城市交通网络的干扰作用,分析研究大型铁路客运站集散网络动态演化机理特性、理论模型与方法,为解决交通拥堵、优化运营组织和应急管理决策提供科学依据,是当前面临的一个重要研究问题。
     大型铁路客运站是集各种运输方式于一体的城市交通枢纽,因此大型铁路客运站集散网络是一个复杂系统。目前,关于复杂系统的脆性理论研究,仍是一个理论研究的前沿课题,我国大型铁路客运站集散网络在干扰作用下的动态演化机理还缺乏系统研究。本文对大型铁路客运站外部集散网络的脆性理论进行了选题研究。
     本文主要从复杂系统脆性理论出发,研究城市铁路客运站外部集散网络的崩溃路径以及脆性产生机理和演化规律,本文的研究工作主要有以下几个方面:
     (1)根据铁路客运站实际的运营组织管理模式,首先分析了铁路客运站空间布局特征,对集散系统进行定义并定义其边界,其次阐述了集散网络的道路网特征和交通流特征,并深刻分析了集散路网交通与一般城市交通的区别和联系,最后,分析了集散网络脆性激发的内部和外部干扰因素,为集散网络设计和脆性研究奠定了基础。
     (2)结合复杂系统适应性理论,建立适应性Agent图的城市铁路客运站外部集散网络的拓扑结构,对其崩溃路径进行定义,建立集散网络的最大/最小崩溃路径模型,然后根据其模型的特殊性,把其转化为最短路问题,并用拉格朗日松弛(Lagrangian Relaxation)算法进行求解,最后以北京南站外部集散网络为例验证算法的实用性和有效性。
     (3)基于复杂系统适应性系统相关理论,针对集散网络的脆性特征,运用脆性熵对其无序度进行描述,考虑到集散网络的崩溃是由各节点(Agent)之间的交互作用产生,应用复杂适应性理论对其进行建模,并运用适应性Agent图对其演化过程进行仿真模拟,并对各节点演化的执行器准则进行分析,以北京南站外部集散网络进行算例分析,得出不同IF/THEN准则下客运站节点状态的变化规律和整个集散网络熵流的变化规律;然后针对非节假日和节假日客运站的客流时间分布规律进行分析,并运用集散网络的脆性特征进行仿真模拟,得出集散网络脆性的时间分布特征;按照铁路客运站与城市空间布局的相对关系,针对城市中心型、城市边缘型和机场地区型三种类型的铁路客运站的集散网络脆性特征进行仿真模拟,得出不同空间布局类型的铁路客运站外部集散网络的脆性时空分布规律,为客运站的运营管理提供理论依据。
     (4)基于自组织临界性理论对集散网络脆性的幂律特性及分形、分维特性进行研究。对自组织临界性理论进行阐述,研究脆性与自组织临界性的关系,以北京南站为例,基于改进的元胞传输模型和自组织临界性的沙堆模型对北京南站外部集散网络的脆性崩溃规模与崩溃频率的幂律特性以及分形、分维特性进行研究。
     (5)建立客运站脆性评价指标体系,运用改进突变级数评价法,对铁路客运站脆性状态进行评价,得出铁路客运站脆性同一、对立和波动的评价值,根据集对理论得出集散网络趋向于崩溃的势值,从而判断各方案下客运站所处的脆性等级,并对北京南站的现状及其2020年北京南站低、中、高四种不同方案的脆性等级进行判别。
ABSTRACT:Traffic congestion has become the common problem in the great cities. It is one of the important reasons that the uncertainty and the volatility of traffic interference factors in addition to the contradiction between traffic capacity supply and demand. How to analyse traffic network characteristics and dynamic evolution mechanism for the uncertainty of interference and proposes the solution congestion scientific measures and countermeasures, which is a major issue of the urban transportation research meeting with. The railway passenger depot is an important source of the disturbance producing urban traffic congestion. With the acceleration of urbanization and the rapid development of high speed railway, the scale is enlarged and the function is strengthened unceasingl, the influence on the traffic congestion is more and more enormous. How to improve the urban transportation system standing in the height of the overall capacity, and aim at the large railway passenger in the urban traffic network interference effect and analyse dynamic evolution mechanism characteristics, theoretical model and the methods of the large railway passenger depot collecting and distributing network. So as to provide scientific basis for solving the problem of traffic congestion, optimizing the operation organization and emergency management decision, which is facing an important research problem currently.
     Large railway passenger depot is the integration of urban traffic hub seting several transport modes, so it is a complex system. At present, the complex system brittleness theory research is still the forefront topic of theoretic research; the action of dynamic evolution mechanism of the railway passenger depot collecting and distributing network under the uncertain interference is still lack of systematic research. The dissertation researches brittleness theory of the large railway passenger depot external distribution network.
     Based on the complex system brittleness theory, the dissertation mainly research on the collapse path model and the brittleness produce mechanism and evolution laws of the external collecting and distributing network of urban railway passenger depot. The main contents of the dissertation summarized as follows:
     (1) According to the actual operation organization management mode of urban railway passenger depot, the dissertation defines the boundary of collecting and distributing network and introduces the complex adaptive brittleness theory to research on the external collecting and distributing network of urban railway passenger depot and defines the collapse of collecting and distributing network. Finaly, it analyses the internal and external factores leading to the network excitation that laid a foundation for the subsequent brittleness research.
     (2) Based on the complex adaptive system theory, the dissertation builds an adaptive Agent topology of the external collecting and distributing network of urban railway passenger depot, and then it defines the collapse path and sets up the maximum/minimum collapse path model. According to the particularity of the model, it converts themodel into the shortest path problem and uses Lagrangian relaxation (Lagrangian Relaxation) algorithm to solve it. Finally, it takes the collecting and distributing network of Beijing south station for an example to verify the practicability and effectiveness.
     (3) Based on the complex adaptive theory, the dissertation builds the adaptability Agent topology structure model with each intersection and railway passenger depot as nodes of the collecting and distributing network and analyzes the IF/THEN evolution rules of each node. It takes the collecting and distributing network of Beijing south station for an example to get the state change of passenger node and the change of entropy of the whole collecting and distributing network under different IF/THEN evolution rules. It sums up four brittleness behaviors of the external collecting and distributing network of urban railway passenger depot. According to the time distribution regularity of the non-holidays and the holiday passenger flow, it gets the brittleness time distribution characteristics. According to the relative relations of spatial distribution between the railway passenger depots and urban, the railway passenger depots are divided into type of urban center, type of urban marginal and type of airport. It simulates the characteristics of brittleness of each type of the external collecting and distributing network of urban railway passenger depot. it concludes the brittleness time distribution rule and the rule in different type of urban railway passenger depot.
     (5) Based on the self-organized criticality theory, the dissertation researches on the brittleness power law characteristics and the fractal dimension characteristic of the collecting and distributing network. It expounds the self-organized criticality theory and the relationship between the brittleness and self-organized criticality. Based on improved cell transmission model and the sand heap, it takes Beijing south station for an example to research the brittleness collapse scale and power law characteristics and fractal dimension characteristic of brittleness collapse frequency.
     (6) The dissertation establishes the brittleness evaluation index system of a railway passenger depot and uses the improved catastrophe progression evaluation method to evaluate the state of the railway passenger station, and it concludes the brittleness identity, the brittleness opposition and the brittleness volatility of the evaluation value. According to the set pair theory, it gets the potential value tend to collapse and judges the brittleness level of each schemes. It takes Beijing south station for an example to discriminates the levels of brittleness of four different schemes including the present situation and the low, medium and high schemes of Beijing south station in2020.
引文
[1]MahmoudS. Parizi, John RBraaksma. Optimum design of airport enplaning curbside areas[J]. Journal of transportation engineering,1994,120(4):536-551
    [2]Pol, P.M.J. A Renaissance of Stations, Railways and Cities[J]. Economic Effects, Development Strategies and Organisational Issues of European High-Speed TrainStations, PhD-thesis, Delft (DUP Science),2002
    [3]Kuo. yang Chang. A simulation model for analyzing airport terminal roadway traffic and curbside parking [D]. University of Maryland,2001
    [4]W.H.K.Lam, Mei-ling Tam, S.C.Wong, S.C.Wirasinghe. Wayflnding in the passenger terminal of Hong Kong International Airport[J]. Journal of air transport management,2003,9:73-81
    [5]Aarati RaoNallamuthu. Principles of design a terminal with intermodal connectivity [D]. University of Texas at ARLINGTON,2003,8
    [6]陈江红,张晓春.基于系统模型的城市交通集散区交通分析[J].中国公路学报,1999.12(4):83-87
    [7]白立琼.铁路客运站地区的城市交通衔接研究[J].交通运输系统工程与信息,2006.4(4):69-75
    [8]刘术红.高速铁路客运枢纽交通规划[J].山西科技,2007(2):27-28
    [9]张玉彪.高速铁路车站片区交通衔接规划研究[D].西南交通大学硕士学位论文,2007
    [10]徐威.成都铁路枢纽与城市交通系统的整合规划研究[D].西南交通大学硕士学位论文,2008
    [11]周凯科.基于交通网络的综合客运交通枢纽对外衔接对策研究[D].长安大学硕士学位论文,2008
    [12]马超,訾海波,过秀成等.高速铁路客运枢纽地区路网服务模式及适用性研究[J].第十六届海峡两岸都市交通学术研讨会论文集:435-440
    [13]唐怀海.高速铁路客运枢纽集疏运系统结构耦合性研究[D].东南大学硕士论文,2009
    [14]杜恒.火车站枢纽地区路网结构研究[D].中国城市规划设计院.2008
    [15]李星,过秀成,马超,任敏.客运枢纽地区路网级配计算方法研究[J].交通信息与安全,2011,29(2):27-31
    [16]秦灿灿.大型机场旅客集疏运体系规划研究[D].同济大学博士学位论文,2007
    [17]吴晓,周一鸣,刘小明.枢纽机场衔接公路网优化理论与方法研究[J].公路交通科技,2009.26(5):123.125
    [18]张国华,郝媛,周乐.大型空港枢纽区域集疏运网络优化方法[J].城市交通,2010,8(4):33.40
    [19]Fouad A A, ZHOU Qin, Vittal V. System vulnerability as a concept to assess power dynamic security[J]. IEEE Transactions on Power Systems,1994,9(2):1009-1015
    [20]Qin Zhou, Davidson J, Fouad A A. Applocation of artificial neural network in power system security and vulnerability assessment J]. IEEE Transactions on Power Systems,1994,9(1):525-532
    [21]Albert R, Barabasi A L, Jeong H. The internet's Achilles Heel:error and attack tolerance of complex networks[M]. Nature,2000, (406):378-382
    [22]Dobson I, Chen JThorp J S, et al. Examining criticality of blackouts in power system models with cascading events[J]. Proceedings of 34th Hawaii International Conference on System Science. Hawaii USA,2002:63-72
    [23]Carreras B A, Lynch V E, Dobson I et al. Dynamics, criticality and Self-organization in a model for blackouts in power transmission systems[J]. Proceedings of 34th Hawaii International Conference on System Science, Hawaii USA,2002:1-9
    [24]Wang X F, Xu J. Cascading Failures in Coupled Map Lattices[J]. Phys. Rev. E,2004,70: 056-113
    [25]Xu J, Wang X F. Cascading Failures in scale-free coupled map lattices[J]. Physica A,2005, 349:685-692
    [26]金鸿章,郭健,韦琦,林德明,吴红梅.基于滑动t检验法的非典型性肺炎疫情的脆性分析[J].哈尔滨工程大学学报,2003,24(6):640-645
    [27]郭健,金鸿章,韦琦.基于脆性势函数对复杂系统的脆性分析[J].自动化技术与应用,2003,22(7):5-8
    [28]韦琦,金鸿章,郭健.基于脆性联系熵的复杂系统崩溃致因研究[J].自动化技术与应用,2003,22(4):1-4
    [29]金鸿章,郭健,韦琦.基于尖点突变模型对复杂系统脆性问题的研究[J].舰船电子工程,2004,140(2):1-3
    [30]荣盘祥,王继尧,金鸿章.复杂系统的脆性与系统演化分析[J].电机与控制学报,2004,8(2):142-144
    [31]韦琦,金鸿章,郭健,吉明.基于脆性的复杂系统研究[J].系统工程学报,2004,19(3):326.328
    [32]闫丽梅,金鸿章,付光杰,张立伟,荣盘祥.复杂系统崩溃机理初探[J].大庆石油学院学报,2004,28(5):68-70
    [33]李琦.复杂系统的脆性模型分析[D].哈尔滨工程大学硕士学位论文,2005
    [34]荣盘祥.复杂系统脆性理论及其理论框架的研究[D].哈尔滨工程大学博士学位论文,2006
    [35]吴红梅,金鸿章,林德明,王辉.复杂系统脆性理论的风险分析[J].系统工程与电子技术,2008,30(10):2019-2022
    [36]林德明,金鸿章,薛萍,吴红梅,王辉.基于适应性Agent图的交通系统脆性研究[J].系统仿真学报,2008,20(3):733-737
    [37]林德明,金鸿章,吴红梅,薛萍,王辉.基于蚁群算法的复杂系统脆性研究[J].系统工程与电子技术,2008,30(4):739-747
    [38]孙庆荣,韩传峰,陈建业,吴启迪.基于FAHP的黄河中下游灾害系统脆性评价[J].自然灾害学报,2005,14(3):104-109
    [39]钟波,谢挺.供应链系统的脆性模型研究[J].中国管理科学,2005,13(专):443-446
    [40]韩传峰,陈建业,孙庆荣,吴启迪.黄河中下游灾害系统的脆性源控制[J].系统工程理论与实践,2006,6:135-140
    [41]曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨识[J].电力自动化设备,2006,26(12):1-5
    [42]荣盘祥,胡林果.脆性理论在煤矿事故系统分析中的应用[J].哈尔滨理工大学学报,2007,12(6):1-3
    [43]王辉,金鸿章.可修复复杂系统脆性故障的研究[J].数学的实践与认识,2007,37(19):105-112
    [44]刁力,刘西林.基于蚁群算法的供应链系统脆性研究[J].华东交通大学学报,2007,24(1):82.84
    [45]荣盘祥,杨晓宇.基于改进FAHP的交通系统脆性分析[J].哈尔滨理工大学学报,2009,14(1):2-15
    [46]张明媛,袁永博,李宏男.基于脆性理论的灾害作用下生命线系统耦联分析[J].防灾减灾工程学报,2009,29(4):462-465
    [47]刘明,周俊.基于博弈论的船舶电力系统脆性负熵流分析[J].船舶工程,2009,31(2):32-34
    [48]Berdica K. An introduction to road vulnerability:What has been done, is done and should be done[J]. Transportation Policy,2002(9):117-127.
    [49]Husdal J. Reliability and vulnerability versus cost and benefits[C]. The 2nd International Symposium on Transportation Network Reliability, Queenstown and Christchurch, New Zealand, 2004:180-186.
    [50]Husdal J. The vulnerability of road networks in a cost benefit perspective[C]. Proceedings of the Transportation Research Board Annual Meeting, Washington DC, USA,2005:1-17.
    [51]Taylor M A P, Sekhar S V C, D'Este G M. Application of accessibility based methods for vulnerability analysis of strategic road networks[J]. Networks and Spatial Economics,2006(6): 267-291.
    [52]Chen A, Yang C, Kongsomsaksakul S, et al. Network based accessibility measures for vulnerability analysis of degradable transportation networks [J]. Networks and Spatial Economics. 2007,7(3):241-256.
    [53]胡一兹,吴勤曼,朱道立.城市道路网络的拓扑性质和脆弱性分析[J].复杂系统与复杂性科学,2009,6(3):69-75
    [54]尹洪英,徐丽群.道路交通网络脆弱性评估研究现状与展望[J].交通运输系统工程与信息,2010,10(3):7-12
    [55]尹洪英,徐丽群,权小锋.基于解释结构模型的路网脆弱性影响因素分析[J].软科学,2010,24(10):122.126
    [56]尹洪英,徐丽群.基于贝叶斯网络的路网脆弱路段识别模型[J].系统管理学报,2010,19(6):656.661
    [57]来学权.道路交通运输网络脆弱性研究[J].城市道桥与防洪,2010,6:69.73
    [58]涂颖菲,杨超,陈小鸿.路网拓扑脆弱性及关键路段分析[J].同济大学学报(自然科学版),2010,38(3):364-368
    [59]Jenelius E, Petersen T, Mattsson L G. Road network vulnerability:Identifying important links and exposed regions[J]. Transportation Research A,2006, (40):537-560.
    [60]王继尧.基于熵和集对分析理论的复杂系统的脆性研究[D].哈尔滨理工大学硕士学位论文,2005
    [61]邢修三.物理熵、信息熵及其演化方程[J].中国科学(A辑),2001,31(1):77.84
    [62]田玉楚,席裕庚.复杂系统与宏观信息熵方法[J].系统工程理论与实践,1995(8):62.68
    [63]郭健.基于突变理论的复杂系统的脆性研究[D].哈尔滨工程大学博士论文,2002,6:32.34
    [64]范恩源.共享负熵,寻求新的有序[J].天津教育学院学报:自然科学版,1991(3):10.14
    [65]赵克勤.集对分析与熵的研究[J].浙江大学学报:社科版,1992(2):65-72
    [66]吴红梅.基于熵理论的复杂系统的脆性[J].中南大学学报(自然科学版),2009,40(1): 347-350
    [67]谈晓洁,周晶.城市交通拥挤特征及疏导决策分析[J].管理工程学报,2003,17(1):56:59
    [68]杜恒.火车站枢纽地区路网结构研究[D].中国城市规划设计研究院硕士学位论文,2008
    [69]Won Young, Yun yong SeokChoi. A simulation model for container-terminal operation Analysis using an object-oriented approach[J]. Int. J. Produetion Eeonomies 59,1999
    [70]马健霄.城市局域交通网络容量研究[J].南京林业大学博士论文,2007,6:39
    [71]Zhou Zhou, Anthony Chen and Shoulomo Bekhor.C-logit stochastic user equilibrium model: formulations and solution algorithm[J].Transportmetrica,2010,1-25,iFirst
    [72]高洁.基于复杂网络理论的交通运输网络及其结构的可靠性评价[D].同济大学博士论文,2008,6:40
    [73]Tao Xing, Xuesong Zhou.Finding the most reliable path with and without link travel time correlation:A Lagrangian substitution based approach[J].Transportation Research Part B45 (2011) 1660-1679
    [74]邵春福.交通规划原理[M].2008:25
    [75]Holland, Hidden J H. Order:How adaptation builds complexity. Perseus books, reading. Massachusetts,1995
    [76]林德明.适应性Agent图及其在复杂系统脆性分析中的应用[D].哈尔滨工程大学博士论文,2008,6:68-75
    [77]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006
    [78]吴红梅,金鸿章.基于熵理论复杂系统的脆性[J].中南大学学报(自然科学版),2009,40(1):347-351
    [79]陆化普.交通规划理论与方法(第二版)[M].清华大学出版社,2006,12:165-168
    [80]道路通行能力手册(HCM2000)
    [81]金鸿章,韦琦.复杂系统的脆性理论及应用[M].西北工业大学出版社,2010:4:152
    [82]梁英慧.大型客运站客流分布规律研究[J].物流技术,2010,29(8):100-102.
    [83]铁道部科技司重大项目.大型客运站仿真系统研究与开发项目报告,2009
    [84]BAK P, CHEN K. Self-organized criticality[J]. Scientific American,1991,264(1):26-33
    [85]徐鹏.自组织临界理论在电力系统连锁故障分析中的应用研究[D].华北电力大学,2008,3:17-18
    [86]闫丽梅.系统的脆性理论及其在电力系统中的应用[D].哈尔滨工程大学博十论文,2006:30-31
    [87]陈忠,盛毅华.现代系统科学[M].上海:上海科学技术文献出版社,2005
    [88]苏凤环.自组织临界性理论与元胞自动机模型研究[D].西南交通大学博士论文,2006:42-44
    [89]P.Bak, C. Tang, K, Wiesenfeld. Self-organized Criticality [J]. Physical Review A,1988,38(1):364-374
    [90]高召宁.自组织临界性、分形及灾变理论研究[D].西南交通大学博士论文,2008,05:42-47
    [91]蒋良潍.散粒体自组织临界性及其应用[D].西南交通大学博士论文,2003,07:4-5
    [92]於崇文.地质作用的自组织临界过程动力学[J].地学前缘,2000,7(1):13-43
    [93]冯瑞,金国钧.凝聚态物理学新论[M].上海:上海科技出版社,1992
    [94]Bak P. How nature works:the science of self-organized criticality[M]. New York:Copernicus press,1996
    [95]龙建成.城市道路交通拥堵传播规律及消散控制策略研究[D].北京交通大学博士论文,2009,12:21-22
    [96]施玉群.关于突变评价法几个问题的进一步研究[J].武汉大学学报(工学版),2003,36(4):132-136.
    [97]史志富,张安,刘梅燕等.基于突变理论与模糊集的复杂系统多准则决策[J].系统工程与电子技术,2006,28(7):1010-1013.
    [98]孙波,李燕楠,王长春.突变级数评价法在南水北调工程施工方案优选中的应用[J].水力发电,2011,37(7):44.46
    [99]荣盘祥.复杂系统脆性理论及其理论框架的研究[D].哈尔滨工程大学博士论文,2006,5:66-67
    [100]涂圣文,过秀成,孙志华,袁昌鹏.改进的突变评价法在干线公路过境方案决策中的应用[J].交通与计算机,2008,26(3):65-68
    [101]吴琛,程琳.突变理论在城市客运结构评价中的应用[J].交通运输系统工程与信息,2010,10(4):166-171.
    [102]金鸿章,韦琦.复杂系统的脆性理论及应用[M].西北工业大学出社,2010:47-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700