用户名: 密码: 验证码:
早期梅毒的分子流行病学研究:我国多地区性病门诊的横断面调查
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梅毒是世界范围内常见的性传播疾病之一,据WHO (World Health Organization,世界卫生组织)最新估计全球每年新发梅毒患者1060万例。梅毒对人类的危害和致病性一直备受关注,其病原体T.pallidum (Treponema pallidum,梅毒螺旋体)可侵犯皮肤黏膜、心血管、神经、骨骼等造成多系统损害;梅毒能促进HIV的感染和传播,加速艾滋病的病程;感染梅毒的妊娠期妇女可发生流产、死胎、早产,以及分娩低出生体重儿和先天梅毒儿等。我国于1964年基本消灭了梅毒,但自从20世纪70年代末期实行对外开放政策和经济体制改革以来,由于大量农村人口向城市流动,以及卖淫嫖娼等社会现象的出现,各种性病特别是梅毒又死灰复燃并迅速蔓延。据全国性病疫情监测系统统计,我国梅毒发病率自2003年至今呈显著增长趋势,2011年的梅毒报告发病率高达32.04/10万,比2010年增长10.89%,梅毒发病人数居全国乙类传染病第三位。开展梅毒发病、流行和预防控制相关领域的研究已经成为我国性病防治研究的重要内容。
     T. pallidum无法在体外成功培养为梅毒的研究带来一定的困难。20世纪90年代,Nichols株基因组全部碱基对的成功破解使得从基因分子生物学的角度研究梅毒成为可能。分子流行病学是传统流行病学与分子生物学交叉融合的产物,是研究传染性疾病流行特征的有力工具。其应用先进的技术测量人群中特异性分子生物学标志的分布情况,并结合流行病学的现场研究方法探讨疾病的流行特征。基因分型系统是开展梅毒分子流行病学研究的重要方法之一,能从微观层面区分不同的菌株,从而有助于探讨传播的网络关系、追溯传染源、区分复发和再感染,同时可以研究基因型别与临床特征之间的联系,还有助于更好的研究梅毒在不同的时间、空间和人群中的流行特点。1998年,美国CDC (Center for Disease Control and Prevention,疾病预防控制中心)建立了基于arp和tprⅡ亚家族的双基因分型系统。2010年,美国华盛顿大学的梅毒研究团队又在此基础上引入tp0548基因,进一步提高了分型的区分度。
     梅毒分子流行病学的另一个重要方面是通过对基因突变的检测监测T. pallidum对大环内酯类药物(如阿奇霉素)耐药的状况。由于阿奇霉素具有单剂量口服治疗梅毒且不会导致青霉素所致的过敏反应,现场防治和性伴治疗时方便快捷、依从性好等特点,同时在部分国家开展的随机对照临床试验证实其疗效和青霉素相当,因此单剂量阿奇霉素在梅毒治疗中的应用受到广泛关注。然而,近年来在美国等发达国家不断有临床使用阿奇霉素治疗梅毒失败(耐药)的报道,并且这种耐药性正在一定的性网络中传播,有逐年上升的趋势。已有分子生物学研究证实耐阿奇霉素菌株的23SrRNA基因第2058位点的碱基发生A至G的点突变。在特定的时间、区域和人群中用该分子生物学标志监测耐药菌株的流行情况,不仅可以了解阿奇霉素耐药的状况,而且有助于指导区域特异性的梅毒治疗,特别是梅毒防控的现场治疗。
     目前,我国湖南、广州、江门和上海有关于双基因定位分型的研究报道;同时上海有关于阿奇霉素耐药性突变监测的报道,但均是小范围研究且样本量小。我国是世界上梅毒疫情严重的国家之一,尚未有多地区较大规模的梅毒分子流行病学研究,尚不了解T. pallidum基因型别的分布特点、阿奇霉素耐药性突变的总体流行情况以及对防治实践的影响。
     本研究分为三个部分。第一部分,世界范围内梅毒分子流行病学的系统综述和meta分析:本部分在5个数据库中全面检索自1998年10月17日首次报道梅毒基因分型的研究以来截至2010年12月31日所有已发表的梅毒分子流行病学研究,共16篇,并给予系统评价。结果表明早期梅毒的皮损标本,如硬下疳、扁平湿疣、湿丘疹或粘膜斑,最适合用于分子诊断和分子流行病学调查。耳垂刮出血有望成为研究无明显皮损的梅毒病例的首选标本类型,但尚需大样本研究加以证实。世界范围内T. pallidum的基因型别存在高度的多样性,其中14d、14f、14a、13d和15d最为流行。基因型别和阿奇霉素耐药性突变以及神经梅毒之间联系的相关资料比较有限。第二部分,梅毒的分子诊断、基因分型和阿奇霉素耐药性突变检测的实验室方法学建立:本部分在第一部分系统比较国外各个研究的实验室方法的基础上,结合中国医学科学院皮肤病研究所性病控制中心STD (Sexually transmitted diseases,性传播疾病)参比实验室的科研条件,建立基于polA基因的梅毒分子诊断的实验室方法。并在此基础上,建立基于arp、tprⅡ和tp0548基因的分型系统,以及基于23SrRNA基因的阿奇霉素耐药性突变的检测方法。第三部分,我国多地区STD门诊早期梅毒分子流行病学的初步研究:本部分将第二部分建立的实验室方法初步用于我国梅毒分子流行病学研究。在2008至2011年间,我们在我国东部、南部和北部三大地区的8个STD门诊共招募391例早期梅毒患者,在知情同意的前提下每人完成一份结构式问卷调查表,并采集一份皮损标本。其中211例标本能进行三基因完全分型和阿奇霉素耐药性突变的检测。总计发现27种基因型别,其中14d/f占39.8%,具有绝对的流行优势。三大地区基因型别分布存在显著性差异(χ2=18.1,p=0.021)。91.9%的临床菌株发生阿奇霉素耐药性突变,并且与大环内酯类抗生素用药史密切相关(χ2=37.5,p<0.001)
Syphilis is one of the common sexually transmitted diseases in the world. The World Health Organization recently estimated10.6million new cases of infectious syphilis each year. Treponema pallidum (T. pallidum), the pathogen of syphilis, can enter skin mucosa, cardiovascular system, nerve and bone. Syphilis infection can facilitate the transmission of HIV infection and the adverse development of AIDS. Syphilis can also increase the risk of adverse pregnancy outcomes, including abortion, stillbirth, premature delivery, low birth weight and congenital syphilis. China eliminated syphilis in1964, but syphilis resurged in late1970s after implementation of reform and opening policies because of rural-to-urban migration, higher-risk behaviors, and sexual networks of heterosexual, homosexual and bisexual contacts. According to surveillance results from the National Center for STD Control and Prevention, syphilis incidence has been increasing sharply since2003. In2011, syphilis incidence was as high as32.04per100,000persons, which was10.89%higher than that in2010. The annual number of new syphilis cases ranks third out of all categories B infectious diseases nationally, following tuberculosis and hepatitis B. It is very important to study the epidemiology, control and prevention of syphilis to decrease the transmission of syphilis in China.
     T. pallidum cannot be cultured in vitro, which makes syphilis research difficult. Since the1990s, it has been possible to investigate the molecular biology of syphilis due to the complete genome sequence determination of the Nichols strain. Molecular epidemiology is the integration of molecular biology with traditional epidemiologic research and a powerful tool for determining diversity and epidemiology of infectious diseases using molecular biomarkers. Molecular typing of T. pallidum clincal strains is an important aspect of the molecular epidemiology of syphilis. It helps to characterize syphilis transmission networks, trace infectious sources, differentiate between relapse and re-infection episodes, evaluate subtypes associated with clinical characteristics, and better understand the spatial, temporal and population distributions of T. pallidum. In1998, the first molecular typing method was introduced by the United States Centers for Disease Control and Prevention and is based on the interstrain variability of the acidic repeat protein gene and the T. pallidum repeat gene subfamily Ⅱ. Moreover, a recent study developed a third gene named tp0548with a better discriminatory typing power in2010at the University of Washington.
     Another important aspect of the molecular epidemiology of syphilis is monitoring macrolide antibiotic resistance, such as azithromycin. The use of azithromycin for the treatment of early syphilis offers certain advantages over conventional intramuscular therapy with benzathine penicillin G, including oral route of delivery with single-dose, no risk of anaphylactic shock, the ability to treat in the field and the convenience of partner-delivery therapy. The efficacy, safety and ease of azithromycin usage were verified by randomized controlled clinical trials. However, azithromycin treatment failures for early syphilis have been documented in multiple geographic locations in developed countries. Moreover, azithromycin resistance has been increasing each year and transmitting in certain sexual networks in these developed countries. Biological research has demonstrated that a single mutation from adenine to guanine in locus2058of the23SrRNA gene confers azithromycin resistance. Monitoring resistant strains helps to guide syphilis treatment in a defined time, space and population using the23SrRNA gene as a molecular biomarker.
     In China, four small-scale molecular typing studies, which were based on the arp and tprⅡ genes, have described the subtype distributions of T. pallidum in South Hunan, Guangzhou, Jiangmen and Shanghai. Shanghai has also reported the epidemiology of azithromycin resistant strains. China is a huge country with the severe resurgence of syphilis. The strain type distribution of T. pallidum and epidemiology of azithromycin resistance are still not well known due to the absence of molecular epidemiology data across multiple geographic areas.
     There are three sections for this study. Section one is a systematic review and meta-analysis of the molecular epidemiology of syphilis globally. A total of16published studies were included in five databases from Oct.17th1998to Dec.31st2010. The main results based on systematic analyses were as following:(1) primary lesions, such as genital ulcer, condyloma lata, papulae and mucosal patches, were better specimens for the molecular diagnosis and epidemiologic study of syphilis;(2) ear lobe scraping was a promising specimen type when no visible skin lesions existed, but it needs to be validated by more research with larger sample sizes;(3) there was substantial genetic diversity of T. pallidum globally and14d,14f,14a,13d and15d were the most prevalent subtypes in descending order;(4) subtype data associated with azithromycin resistance and neurosyphilis were limited.
     Section two discusses the establishment of laboratory methods for molecular diagnosis, genotyping and azithromycin-resistant mutant identification for syphilis. This section described a detailed methodology established for syphilis molecular epidemiology research in the STD reference laboratory of the National Center for STD Control and Prevention based on the systematic review of laboratory methods in the first section. Positive DNA was first screened by a diagnostic PCR assay of polA gene, which is unique to T. pallidum. Molecular typing was based on the interstrain variability of the arp, tpr subfamily Ⅱ and tp0548genes. Azithromycin resistance identification was based on a single mutation from adenine to guanine in locus2058of23SrRNA gene.
     Section three is a preliminary molecular epidemiology study of early syphilis in STD clinics in multiple geographic areas of China. We conducted a cross-sectional study in STD clinics from eight cities located in East, South and North China during the years2008to2011. A total of391outpatients with early syphilis were recruited based on an oral informed consent. Each subject was interviewed using a short structured questionnaire and encouraged to provide a moist skin lesion for specimen collection.211clinical specimens could be fully molecular typed and identified azithromycin-resistant mutations. Overall,27strain types were identified.14d/f accounted for39.8%prevalence and was the predominant strain type across China. Strain type distribution was significantly different across geographic areas (χ2=18.1,p=0.021).91.9%clinical strains were azithromycin resistant, and resistant mutations were significantly associated with history of macrolide antibiotics use (χ2=37.5,p<0.001).
引文
[1]Golden MR, Marra CM, Holmes KK. Update on syphilis:resurgence of an old problem [J]. JAMA,2003,290(11):1510-1514.
    [2]Daskalakis D. Syphilis:continuing public health and diagnostic challenges [J]. Curr HIV/AIDS Rep,2008,5(2):72-77.
    [3]李立明.流行病学[M].第5版.北京:人民卫生出版社.2004,298-315.
    [4]Sturm-Ramirez K, Brumblay H, Diop K, et al. Molecular epidemiology of genital Chlamydia trachomatis infection in high-risk women in Senegal, West Africa [J]. J Clin Microbiol,2000,38(1):138-145.
    [5]van Duynhoven YT, Ossewaarde JM, Derksen-Nawrocki RP, et al. Chlamydia trachomatis genotypes:correlation with clinical manifestations of infection and patients'characteristics [J]. Clin Infect Dis,1998,26(2):314-322.
    [6]Wylie JL, Jolly A. Patterns of chlamydia and gonorrhea infection in sexual networks in Manitoba, Canada [J]. Sex Transm Dis,2001,28(1):14-24.
    [7]O'Rourke M, Ison CA, Renton AM, et al. Opa-typing:a high-resolution tool for studying the epidemiology of gonorrhoea [J]. Mol Microbiol,1995,17(5): 865-875.
    [8]Howie F, Young H, McMillan A. The diversity of the opa gene in gonococcal isolates from men who have sex with men [J]. Sex Transm Infect,2004,80(4): 286-288.
    [9]Palmer HM, Leeming JP, Turner A. Investigation of an outbreak of ciprofloxacin-resistant Neisseria gonorrhoeae using a simplified opa-typing method [J]. Epidemiol Infect,2001,126(2):219-224.
    [10]Cook DJ, Mulrow CD, Haynes RB. Systematic reviews:synthesis of best evidence for clinical decisions. Ann Intern Med,1997,126(5):376-380.
    [11]Evidence informed policy and practice. History of systematic reviews. http://eppi.ioe.ac.uk/cms/Default.aspx?tabid=68.
    [12]Sheldon TA. Making evidence synthesis more useful for management and policy-making [J]. J Health Serv Res Policy,2005,10 Suppl 1:1-5.
    [13]Schmid G, Rowley JT, Samuelson J, et al. World Health Organization (WHO) 2005 Global Estimates of the Incidence and Prevalence of Sexually Transmitted Infections (STIs). WHO/CDC Symposium:Congenital Syphilis and the 2005 WHO Estimates of STI Incidence and Prevalence:Using the Second to Help Eliminate the First.2009.
    [14]Fenton KA, Breban R, Vardavas R, et al. Infectious syphilis in high-income settings in the 21st century [J]. Lancet Infect Dis,2008,8(4):244-253.
    [15]Velicko I, Arneborn M, Blaxhult A. Syphilis epidemiology in Sweden: re-emergence since 2000 primarily due to spread among men who have sex with men [J]. Euro Surveill,2008,13(50).
    [16]Peterman TA, Furness BW. The resurgence of syphilis among men who have sex with men [J]. Curr Opin Infect Dis,2007,20(1):54-59.
    [17]Jakopanec I, Grjibovski AM, Nilsen O, et al. Syphilis epidemiology in Norway, 1992-2008:resurgence among men who have sex with men [J]. BMC Infect Dis, 2010,10(105.
    [18]Lafond RE, Lukehart SA. Biological basis for syphilis [J]. Clin Microbiol Rev, 2006,19(1):29-49.
    [19]Sheffield JS, Wendel GD, Jr., McIntire DD, et al. Effect of genital ulcer disease on HIV-1 coreceptor expression in the female genital tract [J]. J Infect Dis,2007, 196(10):1509-1516.
    [20]Buchacz K, Patel P, Taylor M, et al. Syphilis increases HIV viral load and decreases CD4 cell counts in HIV-infected patients with new syphilis infections [J]. AIDS,2004,18(15):2075-2079.
    [21]Zetola NM, Klausner JD. Syphilis and HIV infection:an update [J]. Clin Infect Dis,2007,44(9):1222-1228.
    [22]Doroshenko A, Sherrard J, Pollard AJ. Syphilis in pregnancy and the neonatal period [J]. Int J STD AIDS,2006,17(4):221-227; quiz 228.
    [23]Singh AE, Sutherland K, Lee B, et al. Resurgence of early congenital syphilis in Alberta [J]. CMAJ,2007,177(1):33-36.
    [24]Simms I, Broutet N. Congenital syphilis re-emerging [J]. J Dtsch Dermatol Ges, 2008,6(4):269-272.
    [25]Kruger C, Malleyeck I. Congenital syphilis:still a serious, under-diagnosed threat for children in resource-poor countries [J]. World J Pediatr,2010,6(2):125-131.
    [26]Fraser CM, Norris SJ, Weinstock GM, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete [J]. Science,1998,281(5375): 375-388.
    [27]Morshed MG, Lee MK, Jorgensen D, et al. Molecular methods used in clinical laboratory:prospects and pitfalls [J]. FEMS Immunol Med Microbiol,2007, 49(2):184-191.
    [28]Larsen SA, Steiner BM, Rudolph AH. Laboratory diagnosis and interpretation of tests for syphilis [J]. Clin Microbiol Rev,1995,8(1):1-21.
    [29]Centurion-Lara A, Arroll T, Castillo R, et al. Conservation of the 15-kilodalton lipoprotein among Treponema pallidum subspecies and strains and other pathogenic treponemes:genetic and antigenic analyses [J]. Infect Immun,1997, 65(4):1440-1444.
    [30]Centurion-Lara A, Castro C, van Voorhis WC, et al. Two 16S-23S ribosomal DNA intergenic regions in different Treponema pallidum subspecies contain tRNA genes [J]. FEMS Microbiol Lett,1996,143(2-3):235-240.
    [31]Pillay A, Liu H, Chen CY, et al. Molecular subtyping of Treponema pallidum subspecies pallidum [J]. Sex Transm Dis,1998,25(8):408-414.
    [32]Katz KA, Pillay A, Ahrens K, et al. Molecular epidemiology of syphilis-San Francisco,2004-2007 [J]. Sex Transm Dis,2010,37(10):660-663.
    [33]Marra CM, Sahi SK, Tantalo LC, et al. Enhanced molecular typing of Treponema pallidum:geographical distribution of strain types and association with neurosyphilis [J]. J Infect Dis,2010,202(9):1380-1388.
    [34]Stoner BP. Current controversies in the management of adult syphilis [J]. Clin Infect Dis,2007,44 Suppl 3:S130-146.
    [35]Ghanem KG, Workowski KA. Management of adult syphilis [J]. Clin Infect Dis, 2011,53 Suppl 3:S110-128.
    [36]Hook EW,3rd. Is elimination of endemic syphilis transmission a realistic goal for the USA [J]? Lancet,1998,351 Suppl 3:19-21.
    [37]李军,王林娜,郑和义,et al.1125例梅毒分析[J].中国医学科学院学报,2010,32(2):185-189.
    [38]Stapleton JT, Stamm LV, Bassford PJ, Jr. Potential for development of antibiotic resistance in pathogenic treponemes [J]. Rev Infect Dis,1985,7 Suppl 2: S314-317.
    [39]Stamm LV, Stapleton JT, Bassford PJ, Jr. In vitro assay to demonstrate high-level erythromycin resistance of a clinical isolate of Treponema pallidum. Antimicrob Agents Chemother [J],1988,32(2):164-169.
    [40]Stamm LV, Bergen HL. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate [J]. Antimicrob Agents Chemother,2000, 44(3):806-807.
    [41]Mashkilleyson AL, Gomberg MA, Mashkilleyson N, et al. Treatment of syphilis with azithromycin [J]. Int J STD AIDS,1996,7 Suppl 1:13-15.
    [42]Gruber F, Kastelan M, Cabrijan L, et al. Treatment of early syphilis with azithromycin [J]. J Chemother,2000,12(3):240-243.
    [43]Hook EW,3rd, Martin DH, Stephens J, et al. A randomized, comparative pilot study of azithromycin versus benzathine penicillin G for treatment of early syphilis [J]. Sex Transm Dis,2002,29(8):486-490.
    [44]Kiddugavu MG, Kiwanuka N, Wawer MJ, et al. Effectiveness of syphilis treatment using azithromycin and/or benzathine penicillin in Rakai, Uganda [J]. Sex Transm Dis,2005,32(1):1-6.
    [45]Riedner G, Rusizoka M, Todd J, et al. Single-dose azithromycin versus penicillin G benzathine for the treatment of early syphilis [J]. N Engl J Med,2005,353(12): 1236-1244.
    [46]Hook EW,3rd, Behets F, Van Damme K, et al. A phase Ⅲ equivalence trial of azithromycin versus benzathine penicillin for treatment of early syphilis [J]. J Infect Dis,2010,201(11):1729-1735.
    [47]Swanston WH, Prabhakar P, Barrow L, et al. Single dose (direct observed) azithromycin therapy for Neisseria gonorrhoeae and Chlamydia trachomatis in STD clinic attenders with genital discharge in Trinidad and Tobago [J]. West Indian Med J,2001,50(3):198-202.
    [48]Lukehart SA, Godornes C, Molini BJ, et al. Macrolide resistance in Treponema pallidum in the United States and Ireland [J]. N Engl J Med,2004,351(2): 154-158.
    [49]Mitchell SJ, Engelman J, Kent CK, et al. Azithromycin-resistant syphilis infection: San Francisco, California,2000-2004 [J]. Clin Infect Dis,2006,42(3):337-345.
    [50]Matejkova P, Flasarova M, Zakoucka H, et al. Macrolide treatment failure in a case of secondary syphilis:a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum [J]. J Med Microbiol,2009,58(Pt 6): 832-836.
    [51]Sutton MY, Liu H, Steiner B, et al. Molecular subtyping of Treponema pallidum in an Arizona County with increasing syphilis morbidity:use of specimens from ulcers and blood [J]. J Infect Dis,2001,183(11):1601-1606.
    [52]Cole MJ, Chisholm SA, Palmer HM, et al. Molecular epidemiology of syphilis in Scotland [J]. Sex Transm Infect,2009,85(6):447-451.
    [53]Molepo J, Pillay A, Weber B, et al. Molecular typing of Treponema pallidum strains from patients with neurosyphilis in Pretoria, South Africa [J]. Sex Transm Infect,2007,83(3):189-192.
    [54]Martin IE, Gu W, Yang Y, et al. Macrolide resistance and molecular types of Treponema pallidum causing primary syphilis in Shanghai, China [J]. Clin Infect Dis,2009,49(4):515-521.
    [55]Martin IE, Tsang RS, Sutherland K, et al. Molecular typing of Treponema pallidum strains in western Canada:predominance of 14d subtypes [J]. Sex Transm Dis,2010,37(9):544-548.
    [56]Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses:the PRISMA statement [J]. PLoS Med,2009,6(7): e1000097.
    [57]Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions:explanation and elaboration [J]. PLoS Med,2009,6(7):e1000100.
    [58]Publication bias. Introduction to Meta-analysis,1st edition [M]. Edited by Borenstein M, Hedges LV, Higgins JP, Rothstein HR. United Kingdom:Wiley; 2009:277-291.
    [59]Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses [J]. BMJ,2003,327(7414):557-560.
    [60]Random-effects model. Introduction to Meta-analysis,1st edition [M]. Edited by Borenstein M, Hedges LV, Higgins JP, Rothstein HR. United Kingdom:Wiley; 2009:69-74.
    [61]Florindo C, Reigado V, Gomes JP, et al. Molecular typing of Treponema pallidum clinical strains from Lisbon, Portugal [J]. J Clin Microbiol,2008,46(11): 3802-3803.
    [62]Castro R, Prieto E, Aguas MJ, et al. Molecular subtyping of Treponema pallidum subsp. pallidum in Lisbon, Portugal [J]. J Clin Microbiol,2009,47(8): 2510-2512.
    [63]Pillay A, Liu H, Ebrahim S, et al. Molecular typing of Treponema pallidum in South Africa:cross-sectional studies [J]. J Clin Microbiol,2002,40(1):256-258.
    [64]Pope V, Fox K, Liu H, et al. Molecular subtyping of Treponema pallidum from North and South Carolina [J]. J Clin Microbiol,2005,43(8):3743-3746.
    [65]Cruz AR, Pillay A, Zuluaga AV, et al. Secondary syphilis in Cali, Colombia:new concepts in disease pathogenesis [J]. PLoS Negl Trop Dis,2010,4(5):e690.
    [66]曾铁兵,吴移谋,黄澍杰,等.衡阳和江门地区梅毒螺旋体基因分型的初步研究[J].中华皮肤科杂志,2004,37(12):692-694.
    [67]詹利生,曾铁兵,严加林,等.湘南地区梅毒螺旋体基因分型的初步研究[J].实用预防医学,2005,12(3):486-488.
    [68]郑和平,欧志英,胡玉山,等.梅毒螺旋体的巢式PCR检测与基因分型[J].中华皮肤科杂志,2005,38(9):546-548.
    [69]Martin IE, Tsang RS, Sutherland K, et al. Molecular characterization of syphilis in patients in Canada:azithromycin resistance and detection of Treponema pallidum DNA in whole-blood samples versus ulcerative swabs [J]. J Clin Microbiol,2009,47(6):1668-1673.
    [70]Salazar JC, Rathi A, Michael NL, et al. Assessment of the kinetics of Treponema pallidum dissemination into blood and tissues in experimental syphilis by real-time quantitative PCR [J]. Infect Immun,2007,75(6):2954-2958.
    [71]Al-Soud WA, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells [J]. J Clin Microbiol,2001,39(2):485-493.
    [72]Liu H, Rodes B, George R, et al. Molecular characterization and analysis of a gene encoding the acidic repeat protein (Arp) of Treponema pallidum [J]. J Med Microbiol,2007,56(Pt 6):715-721.
    [73]Castro R, Prieto E, Aguas MJ, et al. Detection of Treponema pallidum sp pallidum DNA in latent syphilis [J]. Int J STD AIDS,2007,18(12):842-845.
    [74]Tantalo LC, Lukehart SA, Marra CM. Treponema pallidum strain-specific differences in neuroinvasion and clinical phenotype in a rabbit model [J]. J Infect Dis,2005,191(1):75-80.
    [75]Lewis DA, Lukehart SA. Antimicrobial resistance in Neisseria gonorrhoeae and Treponema pallidum:evolution, therapeutic challenges and the need to strengthen global surveillance [J]. Sex Transm Infect,2011,87 Suppl 2:ii39-43.
    [76]Marra CM, Colina AP, Godornes C, et al. Antibiotic selection may contribute to increases in macrolide-resistant Treponema pallidum [J]. J Infect Dis,2006, 194(12):1771-1773.
    [77]Morshed MG, Jones HD. Treponema pallidum macrolide resistance in BC [J]. CMAJ,2006,174(3):349.
    [78]Woznicova V, Matejkova P, Flasarova M, et al. Clarithromycin treatment failure due to macrolide resistance in Treponema pallidum in a patient with primary syphilis [J]. Acta Derm Venereol,2010,90(2):206-207.
    [79]Zhou P, Li K, Lu H, et al. Azithromycin treatment failure among primary and secondary syphilis patients in Shanghai [J]. Sex Transm Dis,2010,37(11): 726-729.
    [80]Azithromycin treatment failures in syphilis infections--San Francisco, California, 2002-2003 [R]. MMWR Morb Mortal Wkly Rep,2004,53(9):197-198.
    [81]Van Damme K, Behets F, Ravelomanana N, et al. Evaluation of azithromycin resistance in Treponema pallidum specimens from Madagascar [J]. Sex Transm Dis,2009,36(12):775-776.
    [82]Muller EE, Paz-Bailey G, Lewis DA. Macrolide resistance testing and molecular subtyping of Treponema pallidum strains from southern Africa [J]. Sex Transm Infect.2012 May 18. [Epub ahead of print]
    [83]Blandford JM, Gift TL. The cost-effectiveness of single-dose azithromycin for treatment of incubating syphilis [J]. Sex Transm Dis,2003,30(6):502-508.
    [1]Lafond RE, Lukehart SA. Biological basis for syphilis [J]. Clin Microbiol Rev, 2006,19(1):29-49.
    [2]Ho EL, Lukehart SA. Syphilis:using modern approaches to understand an old disease [J]. J Clin Invest,2011,121(12):4584-4592.
    [3]梅毒.性传播疾病实验室诊断指南,第1版[M].尹跃平主编.上海:上海科学技术出版社;2007:1-16.
    [4]Turner TB, Hardy PH, Newman B. Infectivity tests in syphilis [J]. Br J Vener Dis, 1969,45(3):183-195.
    [5]Larsen SA, Steiner BM, Rudolph AH. Laboratory diagnosis and interpretation of tests for syphilis [J]. Clin Microbiol Rev,1995,8(1):1-21.
    [6]Li Y, Gonik B. Is congenital syphilis really congenital syphilis [J]? Infect Dis Obstet Gynecol,2006,2006(81629.
    [7]Centurion-Lara A, Molini BJ, Godornes C, et al. Molecular differentiation of Treponema pallidum subspecies [J]. J Clin Microbiol,2006,44(9):3377-3380.
    [8]Zetola NM, Engelman J, Jensen TP, et al. Syphilis in the United States:an update for clinicians with an emphasis on HIV coinfection [J]. Mayo Clin Proc,2007, 82(9):1091-1102.
    [9]Woznicova V, Smajs D, Wechsler D, et al. Detection of Treponema pallidum subsp. pallidum from skin lesions, serum, and cerebrospinal fluid in an infant with congenital syphilis after clindamycin treatment of the mother during pregnancy [J]. J Clin Microbiol,2007,45(2):659-661.
    [10]Woznicova V, Votava M, Flasarova M. Clinical specimens for PCR detection of syphilis [J]. Epidemiol Mikrobiol Imunol,2007,56(2):66-71. [Article in Czech]
    [11]Rajan MS, Pantelidis P, Tong CY, et al. Diagnosis of Treponema pallidum in vitreous samples using real time polymerase chain reaction [J]. Br J Ophthalmol, 2006,90(5):647-648.
    [12]Flasarova M, Pospisilova P, Mikalova L, et al. Sequencing-based Molecular Typing of Treponema pallidum Strains in the Czech Republic:All Identified Genotypes are Related to the Sequence of the SS14 Strain [J]. Acta Derm Venereol,2012. [Epub ahead of print]
    [13]Noordhoek GT, Wolters EC, de Jonge ME, et al. Detection by polymerase chain reaction of Treponema pallidum DNA in cerebrospinal fluid from neurosyphilis patients before and after antibiotic treatment [J]. J Clin Microbiol,1991,29(9): 1976-1984.
    [14]Horowitz HW, Valsamis MP, Wicher V, et al. Brief report:cerebral syphilitic gumma confirmed by the polymerase chain reaction in a man with human immunodeficiency virus infection [J]. N Engl J Med,1994,331(22):1488-1491.
    [15]Wicher K, Noordhoek GT, Abbruscato F, et al. Detection of Treponema pallidum in early syphilis by DNA amplification [J]. J Clin Microbiol,1992,30(2): 497-500.
    [16]Hay PE, Clarke JR, Taylor-Robinson D, et al. Detection of treponemal DNA in the CSF of patients with syphilis and HIV infection using the polymerase chain reaction [J]. Genitourin Med,1990,66(6):428-432.
    [17]Centurion-Lara A, Castro C, Shaffer JM, et al. Detection of Treponema pallidum by a sensitive reverse transcriptase PCR [J]. J Clin Microbiol,1997,35(6): 1348-1352.
    [18]Jethwa HS, Schmitz JL, Dallabetta G, et al. Comparison of molecular and microscopic techniques for detection of Treponema pallidum in genital ulcers [J]. J Clin Microbiol,1995,33(1):180-183.
    [19]Orle KA, Gates CA, Martin DH, et al. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers [J]. J Clin Microbiol,1996,34(1):49-54.
    [20]Kouznetsov AV, Weisenseel P, Trommler P, et al. Detection of the 47-kilodalton membrane immunogen gene of Treponema pallidum in various tissue sources of patients with syphilis [J]. Diagn Microbiol Infect Dis,2005,51(2):143-145.
    [21]DNA replication.2nd edition [M]. Edited by Kornberg A, Baker TA. New York: WH Freeman,1992.
    [22]Rodes B, Liu H, Johnson S, et al. Molecular cloning of a gene (polA) coding for an unusual DNA polymerase Ⅰ from Treponema pallidum [J]. J Med Microbiol, 2000,49(7):657-667.
    [23]Liu H, Rodes B, Chen CY, et al. New tests for syphilis:rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase Ⅰ gene [J]. J Clin Microbiol,2001,39(5): 1941-1946.
    [24]Marfin AA, Liu H, Sutton MY, et al. Amplification of the DNA polymerase Ⅰ gene of Treponema pallidum from whole blood of persons with syphilis [J]. Diagn Microbiol Infect Dis,2001,40(4):163-166.
    [25]Casal CA, Silva MO, Costa IB, et al. Molecular detection of Treponema pallidum sp. pallidum in blood samples of VDRL-seroreactive women with lethal pregnancy outcomes:a retrospective observational study in northern Brazil [J]. Rev Soc Bras Med Trop,2011,44(4):451-456.
    [26]Woznicova V, Heroldova M. Direct detection of Treponema pallidum in diagnosis of syphilis [J]. Epidemiol Mikrobiol Imunol,2004,53(3):121-125. [Article in Czech]
    [27]Leslie DE, Azzato F, Karapanagiotidis T, et al. Development of a real-time PCR assay to detect Treponema pallidum in clinical specimens and assessment of the assay's performance by comparison with serological testing [J]. J Clin Microbiol, 2007,45(1):93-96.
    [28]Fraser CM, Norris SJ, Weinstock GM, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete [J]. Science,1998,281(5375): 375-388.
    [29]Pillay A, Liu H, Chen CY, et al. Molecular subtyping of Treponema pallidum subspecies pallidum [J]. Sex Transm Dis,1998,25(8):408-414.
    [30]Liu H, Rodes B, George R, et al. Molecular characterization and analysis of a gene encoding the acidic repeat protein (arp) of Treponema pallidum [J]. J Med Microbiol,2007,56(Pt 6):715-721.
    [31]Harper KN, Liu H, Ocampo PS, et al. The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis [J]. FEMS Immunol Med Microbiol,2008,53(3): 322-332.
    [32]Gray RR, Mulligan CJ, Molini BJ, et al. Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema [J]. Mol Biol Evol,2006, 23(11):2220-2233.
    [33]Leader BT, Hevner K, Molini BJ, et al. Antibody responses elicited against the Treponema pallidum repeat proteins differ during infection with different isolates of Treponema pallidum subsp. pallidum [J]. Infect Immun,2003,71(10): 6054-6057.
    [34]Giacani L, Molini B, Godornes C, et al. Quantitative analysis of tpr gene expression in Treponema pallidum isolates:Differences among isolates and correlation with T-cell responsiveness in experimental syphilis [J]. Infect Immun, 2007,75(1):104-112.
    [35]Marra CM, Sahi SK, Tantalo LC, et al. Enhanced molecular typing of Treponema pallidum:geographical distribution of strain types and association with neurosyphilis [J]. J Infect Dis,2010,202(9):1380-1388.
    [36]Florindo C, Reigado V, Gomes JP, et al. Molecular typing of Treponema pallidum clinical strains from Lisbon, Portugal [J]. J Clin Microbiol,2008,46(11): 3802-3803.
    [37]Pillay A, Liu H, Ebrahim S, et al. Molecular typing of Treponema pallidum in South Africa:cross-sectional studies [J]. J Clin Microbiol,2002,40(1):256-258.
    [38]Vester B, Douthwaite S. Macrolide resistance conferred by base substitutions in 23S rRNA [J]. Antimicrob Agents Chemother,2001,45(1):1-12.
    [39]Stamm LV, Stapleton JT, Bassford PJ, Jr. In vitro assay to demonstrate high-level erythromycin resistance of a clinical isolate of Treponema pallidum [J]. Antimicrob Agents Chemother,1988,32(2):164-169.
    [40]Stapleton JT, Stamm LV, Bassford PJ, Jr. Potential for development of antibiotic resistance in pathogenic treponemes [J]. Rev Infect Dis,1985,7 Suppl 2: S314-317.
    [41]Stamm LV, Parrish EA. In-vitro activity of azithromycin and CP-63,956 against Treponema pallidum [J]. J Antimicrob Chemother,1990,25 Suppl A:11-14.
    [42]Roberts MC. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes [J]. FEMS Microbiol Lett,2008,282(2):147-159.
    [43]Lucier TS, Heitzman K, Liu SK, et al. Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae [J]. Antimicrob Agents Chemother,1995,39(12):2770-2773.
    [44]Taylor DE, Ge Z, Purych D, et al. Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations [J]. Antimicrob Agents Chemother,1997, 41(12):2621-2628.
    [45]Sander P, Prammananan T, Meier A, et al. The role of ribosomal RNAs in macrolide resistance [J]. Mol Microbiol,1997,26(3):469-480.
    [46]Karlsson M, Fellstrom C, Heldtander MU, et al. Genetic basis of macrolide and lincosamide resistance in Brachyspira (Serpulina) hyodysenteriae [J]. FEMS Microbiol Lett,1999,172(2):255-260.
    [47]Roberts MC. Update on acquired tetracycline resistance genes [J]. FEMS Microbiol Lett,2005,245(2):195-203.
    [48]Stamm LV, Bergen HL. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate [J]. Antimicrob Agents Chemother,2000, 44(3):806-807.
    [49]Matejkova P, Strouhal M, Smajs D, et al. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays [J]. BMC Microbiol,2008,8(76.
    [50]Lukehart SA, Fohn MJ, Baker-Zander SA. Efficacy of azithromycin for therapy of active syphilis in the rabbit model [J]. J Antimicrob Chemother,1990,25 Suppl A:91-99.
    [51]Katz KA, Klausner JD. Azithromycin resistance in Treponema pallidum [J]. Curr Opin Infect Dis,2008,21(1):83-91.
    [52]Verdon MS, Handsfield HH, Johnson RB. Pilot study of azithromycin for treatment of primary and secondary syphilis [J]. Clin Infect Dis,1994,19(3): 486-488.
    [53]Hook EW,3rd, Stephens J, Ennis DM. Azithromycin compared with penicillin G benzathine for treatment of incubating syphilis [J]. Ann Intern Med,1999,131(6): 434-437.
    [54]Hook EW,3rd, Martin DH, Stephens J, et al. A randomized, comparative pilot study of azithromycin versus benzathine penicillin G for treatment of early syphilis [J]. Sex Transm Dis,2002,29(8):486-490.
    [55]Rekart ML, Patrick DM, Chakraborty B, et al. Targeted mass treatment for syphilis with oral azithromycin [J]. Lancet,2003,361(9354):313-314.
    [56]Azithromycin treatment failures in syphilis infections--San Francisco, California, 2002-2003 [J]. MMWR Morb Mortal Wkly Rep,2004,53(9):197-198.
    [57]Mitchell SJ, Engelman J, Kent CK, et al. Azithromycin-resistant syphilis infection: San Francisco, California,2000-2004 [J]. Clin Infect Dis,2006,42(3):337-345.
    [58]Katz KA, Pillay A, Ahrens K, et al. Molecular epidemiology of syphilis-San Francisco,2004-2007 [J]. Sex Transm Dis,2010,37(10):660-663.
    [59]Lukehart SA, Godornes C, Molini BJ, et al. Macrolide resistance in Treponema pallidum in the United States and Ireland [J]. N Engl J Med,2004,351(2): 154-158.
    [60]Matejkova P, Flasarova M, Zakoucka H, et al. Macrolide treatment failure in a case of secondary syphilis:a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum [J]. J Med Microbiol,2009,58(Pt 6): 832-836.
    [61]Stamm LV. Global challenge of antibiotic-resistant Treponema pallidum [J]. Antimicrob Agents Chemother,2010,54(2):583-589.
    [62]C.W.迪芬巴赫,G S.德维克斯勒.PCR技术实验指南[M].北京:科学出版社.1998,33.
    [1]Schmid G, Rowley JT, Samuelson J, et al. World Health Organization (WHO) 2005 Global Estimates of the Incidence and Prevalence of Sexually Transmitted Infections (STIs). WHO/CDC Symposium:Congenital Syphilis and the 2005 WHO Estimates of STI Incidence and Prevalence:Using the Second to Help Eliminate the First.2009.
    [2]Fenton KA, Breban R, Vardavas R, et al. Infectious syphilis in high-income settings in the 21st century [J]. Lancet Infect Dis,2008,8(4):244-253.
    [3]Golden MR, Marra CM, Holmes KK. Update on syphilis:resurgence of an old problem [J]. JAMA,2003,290(11):1510-1514.
    [4]Velicko I, Arneborn M, Blaxhult A. Syphilis epidemiology in Sweden: re-emergence since 2000 primarily due to spread among men who have sex with men [J]. Euro Surveill,2008,13(50).
    [5]Peterman TA, Furness BW. The resurgence of syphilis among men who have sex with men [J]. Curr Opin Infect Dis,2007,20(1):54-59.
    [6]Jakopanec I, Grjibovski AM, Nilsen O, et al. Syphilis epidemiology in Norway, 1992-2008:resurgence among men who have sex with men [J]. BMC Infect Dis, 2010,10:105.
    [7]Mayer KH. Sexually transmitted diseases in men who have sex with men [J]. Clin Infect Dis,2011,53 Suppl 3(S79-83.
    [8]Lafond RE, Lukehart SA. Biological basis for syphilis [J]. Clin Microbiol Rev, 2006,19(1):29-49.
    [9]Sheffield JS, Wendel GD, Jr., McIntire DD, et al. Effect of genital ulcer disease on HIV-1 coreceptor expression in the female genital tract [J]. J Infect Dis,2007, 196(10):1509-1516.
    [10]Buchacz K, Patel P, Taylor M, et al. Syphilis increases HIV viral load and decreases CD4 cell counts in HIV-infected patients with new syphilis infections [J]. AIDS,2004,18(15):2075-2079.
    [11]Zetola NM, Klausner JD. Syphilis and HIV infection:an update [J]. Clin Infect Dis,2007,44(9):1222-1228.
    [12]Doroshenko A, Sherrard J, Pollard AJ. Syphilis in pregnancy and the neonatal period [J]. Int J STD AIDS,2006,17(4):221-227; quiz 228.
    [13]Singh AE, Sutherland K, Lee B, et al. Resurgence of early congenital syphilis in Alberta [J]. CMAJ,2007,177(1):33-36.
    [14]Simms I, Broutet N. Congenital syphilis re-emerging [J]. J Dtsch Dermatol Ges, 2008,6(4):269-272.
    [15]Kruger C, Malleyeck I. Congenital syphilis:still a serious, under-diagnosed threat for children in resource-poor countries [J]. World J Pediatr,2010,6(2):125-131.
    [16]Tucker JD, Chen XS, Peeling RW. Syphilis and social upheaval in China [J]. N Engl J Med,2010,362(18):1658-1661.
    [17]Wang JM. Origin of syphilis in China [J]. Chung Hua I Hsueh Tsa Chih,1923,9: 17-20.
    [18]Hu CK, Ye GY, Wang GC, et al. Ten years of accomplishments in dermatology and venereology [J]. Chin J Dermatol,1959,7:290-294.
    [19]Hu CK, Ge Y, Chen ST. Control and eradication of syphilis in China [R]. Beijing Sci Conference,1964:167-177.
    [20]Cohen MS, Henderson GE, Aiello P, et al. Successful eradication of sexually transmitted diseases in the People's Republic of China:implications for the 21st century [J]. J Infect Dis,1996,174 Suppl 2:S223-229.
    [21]Gong XD, Zhang GC, Ye SZ, et al. Epidemiological analysis of syphilis in China from 1985 to 2000. Chin J Sex Transm Infect,2001,1:1-6.
    [22]Cohen MS, Hawkes S, Mabey D. Syphilis returns to china... With a vengeance [J]. Sex Transm Dis,2006,33(12):724-725.
    [23]Chen ZQ, Zhang GC, Gong XD, et al. Syphilis in China:results of a national surveillance programme [J]. Lancet,2007,369(9556):132-138.
    [24]中国疾病预防控制中心性病控制中心.2011年全国梅毒与淋病疫情分析报告[J].性病情况简报,2011,26(1):7-15.
    [25]Zhu L, Qin M, Du L, et al. Maternal and congenital syphilis in Shanghai, China, 2002 to 2006 [J]. Int J Infect Dis,2010,14 Suppl 3:e45-48.
    [26]Black CM, Morse SA. The Use of Molecular Techniques for the Diagnosis and Epidemiologic Study of Sexually Transmitted Infections [J]. Curr Infect Dis Rep, 2000,2(1):31-43.
    [27]郑和平,欧志英,胡玉山,等.梅毒螺旋体的巢式PCR检测与基因分型[J].中华皮肤科杂志,2005,38(9):546-548.
    [28]詹利生,曾铁兵,严加林,等.湘南地区梅毒螺旋体基因分型的初步研究[J]. 实用预防医学,2005,12(3):486-488.
    [29]曾铁兵,吴移谋,黄澍杰,等.衡阳和江门地区梅毒螺旋体基因分型的初步研究[J].中华皮肤科杂志,2004,37(12):692-694.
    [30]Martin IE, Gu W, Yang Y, et al. Macrolide resistance and molecular types of Treponema pallidum causing primary syphilis in Shanghai, China [J]. Clin Infect Dis,2009,49(4):515-521.
    [31]梅毒.性传播疾病临床诊疗指南,第1版[M].王千秋,张国成主编.上海:上海科学技术出版社;2007:2-16.
    [32]Tucker JD, Cohen MS. China's syphilis epidemic:epidemiology, proximate determinants of spread, and control responses [J]. Curr Opin Infect Dis,2011, 24(1):50-55.
    [33]Pillay A, Liu H, Ebrahim S, et al. Molecular typing of Treponema pallidum in South Africa:cross-sectional studies [J]. J Clin Microbiol,2002,40(1):256-258.
    [34]Marra CM, Sahi SK, Tantalo LC, et al. Enhanced molecular typing of Treponema pallidum:geographical distribution of strain types and association with neurosyphilis [J]. J Infect Dis,2010,202(9):1380-1388.
    [35]Cole MJ, Chisholm SA, Palmer HM, et al. Molecular epidemiology of syphilis in Scotland [J]. Sex Transm Infect,2009,85(6):447-451.
    [36]Martin IE, Tsang RS, Sutherland K, et al. Molecular typing of Treponema pallidum strains in western Canada:predominance of 14d subtypes [J]. Sex Transm Dis,2010,37(9):544-548.
    [37]Cruz AR, Pillay A, Zuluaga AV, et al. Secondary syphilis in Cali, Colombia:new concepts in disease pathogenesis [J]. PLoS Negl Trop Dis,2010,4(5):e690.
    [38]Florindo C, Reigado V, Gomes JP, et al. Molecular typing of Treponema pallidum clinical strains from Lisbon, Portugal [J]. J Clin Microbiol,2008,46(11): 3802-3803.
    [39]Castro R, Prieto E, Aguas MJ, et al. Molecular subtyping of Treponema pallidum subsp. pallidum in Lisbon, Portugal [J]. J Clin Microbiol,2009,47(8): 2510-2512.
    [40]Sutton MY, Liu H, Steiner B, et al. Molecular subtyping of Treponema pallidum in an Arizona County with increasing syphilis morbidity:use of specimens from ulcers and blood [J].J Infect Dis,2001,183(11):1601-1606.
    [41]Pope V, Fox K, Liu H, et al. Molecular subtyping of Treponema pallidum from North and South Carolina [J]. J Clin Microbiol,2005,43(8):3743-3746.
    [42]Katz KA, Pillay A, Ahrens K, et al. Molecular epidemiology of syphilis-San Francisco,2004-2007 [J]. Sex Transm Dis,2010,37(10):660-663.
    [43]Marra CM, Colina AP, Godornes C, et al. Antibiotic selection may contribute to increases in macrolide-resistant Treponema pallidum [J]. J Infect Dis,2006, 194(12):1771-1773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700