用户名: 密码: 验证码:
多电平变换器脉宽调制及其非线性控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子装置的广泛应用,给电网注入了大量谐波及无功,造成了严重的电网“污染”,因此消除谐波污染并提高功率因数已成为电力电子技术的一个热门研究方向。PWM整流器(VSR)具有功率因数高、电流畸变小、输出电压可调及能量可双向流动等优点,受到了人们广泛的关注。而多电平技术由于可以降低开关管的耐压值、减小器件电压应力、优化输出波形、提高系统功率等级等明显的优势,得到了飞速的发展。本文主要对单相和三相多电平变流器拓扑脉宽调制方法(PWM)及其非线性控制方法进行研究,为其在中高压大功率场合的应用提供研究基础。
     针对目前单相多电平逆变器大多采用载波调制方法,存在数字实现复杂,且不易对中点电位进行控制的缺点,本文提出了一种单相二极管箝位型三电平逆变器空间矢量脉宽调制方法,实现了中点电位的精确控制,且易于DSP编程实现。以减少功率器件开关频率和直流侧电容电压平衡为控制目标,优化选择了输出电压矢量作用顺序,采用首发矢量为正(负)小矢量的五段式最优脉宽调制方法,提出了根据负载电流方向和直流侧两个电容电压的大小,调整正负小矢量的作用时间来精确控制电容中点电位的策略。将该调制方法拓展应用于级联H桥拓扑,并进行了仿真和实验验证。
     本文对三相二极管箝位型三电平逆变器提出了一种基于虚拟矢量的简化空间矢量脉宽调制(SVPWM)方法,使得矢量作用时间计算得到简化,且较好的解决了传统SVPWM直流侧电容电压存在低频振荡的问题,并进行了仿真和实验验证。
     将本文提出的单相二极管箝位型三电平逆变器空间矢量脉宽调制方法拓展应用于几种混合多电平拓扑结构。对单相不对称二极管箝位型拓扑、单相3单元级联H桥拓扑、单DC两单元H桥拓扑和三相混合级联H桥拓扑进行了深入分析,并采用本文提出的单相空间矢量脉宽调制方法进行了仿真实验。基于该调制方法,单相不对称二极管箝位型拓扑可以结合不同开关器件的优点,充分发挥了开关速度较快和耐压值较高的器件的特性。而单DC两单元H桥拓扑直流侧仅需单个直流电源,减小了装置的体积。基于本文提出的脉宽调制方法,单相3单元级联H桥和三相混合级联H桥拓扑输出也取得了较好的效果,具有较好的应用价值。
     本文根据单相电压型二极管箝位型三电平逆变器Euler-Lagrange数学模型,选取系统能量函数为Lyapunov函数,给出了其无源性控制方法的推导过程,并从理论上证明了其稳定性。该方法物理意义明确,能保持大范围稳定,且系统能具有较好的静动态性能。搭建了单相二极管箝位型三电平逆变器实验样机,进行了实验验证。
     本文对单相二极管箝位型三电平、二极管箝位型不对称三电平和级联H桥两单元三电平三种单相整流器拓扑进行了深入研究,详细分析了其工作原理和数学模型,对三种拓扑结构直流侧电容电压不平衡原因进行了深入分析,且分别给出了其中点电位控制方法,并对三种拓扑进行了分析比较。选取系统的能量函数作为李亚普诺夫函数,对单相二极管箝位型三电平整流器拓扑推导出一种基于Lyapunov直接法的非线性控制方法,结合本文提出的单相三电平SVPWM方法,有效地解决了整流器系统全局大范围稳定性问题,实现了整流器高品质输出电压的快速调节和单位功率因数。
     将瞬时功率理论用于三相三电平PWM整流器闭环控制系统,结合无源性控制方法,直接应用李亚普诺夫稳定性理论,对三相二极管箝位型三电平整流器提出了一种新型无源性功率控制方法,能实现有功和无功功率的解耦控制,系统具有固定的开关频率,对参数变化、外来摄动以及未建模误差有较强的鲁棒性,物理意义明确,系统能保持系统大范围稳定,且具有较好的静动态性能。
     最后,以TMS320F2812为控制核心,设计了一台二极管箝位型三相三电平小功率实验样机,并完成了相关的实验研究,大量的仿真和实验结果验证了本文所提理论的正确性和可行性。
With the extensive application of power electronic devices, a large number of harmonics current and reactive power is injected into power grid, resulting in a serious power "pollution", thus eliminating the harmonic pollution and improving the power factor has become a hot research direction in the field of power electronics. Voltage source rectifier (VSR) is used increasingly in a wide diversity of applications in recent years, as it can provide constant DC bus voltage, low harmonic distortion of the utility currents, bidirectional power flow, and controllable power factor. And multi-level technology has made rapid development, as it can reduce the switch device voltage stress, the output voltage would be improved, low switching frequency, the rate of power will be increased and so on. In this paper, the major objective of the research is to investigate the pulse-width-modulation (PWM) method and its nonlinear control method of single-phase and three-phase multi-level converter topology, and provide the research basis for its application in high-voltage, high-power occasions.
     View of the single-phase multilevel inverter almost used carrier modulation method, it is difficult to control the mid-point potential precisely, and hard to implement digitally. In this paper, a space vector PWM (SVPWM) algorithm is proposed for the single-phase three-level neutral-point-clamped (NPC) inverter. In order to reduce the power device switching frequency and balancing the capacitor voltage, a optimal PWM method which positive or negative small vectors are adopted as first active vector is proposed. The cause of the imbalance of the capacitor voltage in DC-side is analyzed and the strategy of changing the voltage adjusting coefficient to adjust the effective time of the positive and the negative small vectors to control the neutral point potential balance is proposed, which is based on the detection of the direction of the load current and the capacitor voltage, and this modulation method is also applied to the cascaded H-bridge, simulation and experimental results are presented to validate the proposed modulation method.
     In this paper, a simplified SVPWM based on the virtual voltage vector is proposed for the three-phase three-level NPC inverter. It makes the calculation to be simplified and solve the problem of capacitor voltage low frequency oscillation effectively, and simulation and experimental results are carried out to verify the theoretical analyses.
     The SVPWM which is proposed for single-phase diode clamped three-level inverter is applied to several hybrid multilevel topologies. The single-phase asymmetry diode clamped three-level topology, single-phase three units cascaded H-bridge topology, single-DC two units H-bridge topology and three-phase hybrid cascaded H-bridge topology are analyzed in detail, and some simulation experiments which are based on the proposed modulation method are carried out. Based on the modulation method, the single-phase diode clamped asymmetric three-level topology can combine the advantage of different switching devices, it can permits faster devices and high voltage devices operation in synergism. The single-DC two units H-bridge topology only needs a single DC power supply, and it can reduce the size of the device. The output voltage of single-phase three units H-bridge and three-phase hybrid cascaded H-bridge topology also achieves good results under the proposed PWM method proposed in this paper, and they have good application value.
     Based on the Euler-Lagrange (EL) mathematical model of the single-phase three-level voltage source inverter, energy function of the system is selected as the Lyapunov function. The passivity-based (PB) method is derived and the stability of the system is proved. This method has clear physical meaning, can maintain a wide range of stability, and the whole system has good static and dynamic performance. A single-phase diode clamped three-level experimental prototype is built, and the experimental results verify the validity of theoretical analyses.
     In this paper, the topology of sing-phase diode clamped three-level, asymmetric diode clamped three-level and cascade H-bridge three-level are analyzed in detail, including its working principle and mathematical model. The reasons of capacitor voltage imbalance in DC side are also analyzed, and the methods are given for the midpoint voltage balance respectively. The energy function of the system is selected as a Lyapunov function, and a nonlinear control strategy based on the Lyapunov’s direct method is deduced for single-phase diode clamped three-level rectifier topology. The converter can be stabilized globally to handle large signal disturbances, and exhibits high-quality output voltage and unity power factor.
     A new type of passive power control strategy is derived for three-phase three-level NPC rectifier, which combined with the instantaneous power theory and the passivity-based control methods. The proposed strategy which is based on the Lyapunov’s direct method can achieve decoupling control of active and reactive power. The whole system has a fixed switching frequency, and has strong robustness about parameter variations, external perturbation, as well as no modeling error. The method has clear physical meaning, can maintain a wide range of system stable and has good static and dynamic performance.
     Finally, low power diode clamped NPC three-level converter experimental prototype is made based on the microprocessor TMS320F2812, extensive simulation and experiment are carried out in order to validate above theories.
引文
[1]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿(第2版)[M].北京:机械工业出版社:2006.
    [2]王兆安,黄俊.电力电子技术[M].第四版北京:机械工业出版社:2000.
    [3]李永东.大容量多电平变换器——原理.控制.应用[M].北京:科学出版社,2005.
    [4]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制[M].北京:清华大学出版社,2007.
    [5]薛花,姜建国.并联型有源滤波器的自适应无源性控制方法研究[J].中国电机工程学报,2007,27(25):114-118.
    [6] A. Nabae, I. Takahashi, H. Akagi. A new Neutral-Point-Clamped PWM Inverter[C]. IEEE Proc. Of IAS’80,1980: 761-766.
    [7]何湘宁,陈阿莲.多电平变换器的理论和应用技术[M].北京:机械工业出版社,2006.
    [8]刘凤君.多电平逆变技术及其应用[M].北京:机械工业出版社,2007.
    [9] T.A. Meynard, H. Foch. Multilevel conversion: high voltage choppers and voltage -source inverters[C]. IEEE proc. of IAS’92,1992: 7397-403.
    [10] M. marchesoni, M. Mazzucchelli, S tenconi. A nonconventional power converter for plasma stabilization[C]. IEEE proc. of PESC’88, 1988: 122-129.
    [11] M. Marchesoni, M. Mazzucchelli, S. Tenconi. A nonconventional power converter for Piasma stabilization[J]. IEEE Transactions on Industrial Electronics. 1991,5(2): 212-219.
    [12] Peng F.Z. A generalized multilevel inverter topology with self voltage balancing[J]. IEEE Transactions on Industrial Applications. 2001,19(2): 41-46.
    [13]周卫平,吴正国,刘大明,等.有源电力滤波器变趋近率滑模变结构控制[J].中国电机工程学报,2005,25(23):91-94.
    [14]张云,孙力,吴凤江,等.电容箝位型非对称H桥五电平逆变器正弦脉宽调制控制[J].中国电机工程学报,2009, 29 (21):40-45.
    [15]宋文祥,陈国呈,束满堂,等.中点箝位式三电平逆变器空间矢量调制及其中点控制研究[J].中国电机工程学报,2006, 26 ( 5):105-109.
    [16]赵辉,李瑞,王红君,等. 60°坐标系下三电平逆变器SVPWM方法的研究[J].中国电机工程学报,2008,28 (24):39-45.
    [17]史喆,石新春.级联型逆变器的一种新型SVPWM方法[J].电工技术学报,2005,20(10):30-34.
    [18] Maangeles M. P., Franquelo L.G, Portillo R.J., et al. A 3-D space vector modulation generalized algorithm for multilevel converters[J]. IEEE Power Electronics Letters. 2003,1(4):110-114.
    [19]宋文祥,陈国呈,武慧,等.一种具有中点电位平衡功能的三电平空间矢量调制方法及其实现[J].中国电机工程学报, 2006, 26 ( 12):95-100.
    [20]窦真兰,张同庄,凌禹.三电平NPC整流器空间矢量脉宽调制及中点电位平衡控制[J].电力自动化设备,2008,28(2):65-69.
    [21] Celanovic N , Boroyevich D. A fast space-vector modulation algorithm for multilevel three-phase converters[J]. IEEE Transactions on Industry Applications. 2001,37(2):637-641.
    [22]史喆,石新春.级联型逆变器的一种新型SVPWM方法[J].电工技术学报,2005,20(10):30-34.
    [23] Jae Hyeong Seo, A New Simplified Space-Vector PWM Method for Three-Level Inverters. IEEE Trans. Power Electronic, vol.16, no.4, 545-550, 2001.
    [24]宋强,刘文华.多电平通用空间矢量调制集成电路及其FPGA实现[J].中国电机工程学报,2008,28(12):95-100.
    [25]姚文熙,王斯然,刘森森,等.三电平空间矢量调制中的共模分量[J].电工技术学报,2009,24(4):108-113.
    [26]吴洪洋,何湘宁.多电平载波PWM法与SVPWM法之间的本质联系及其应用[J].中国电机工程学报,2002,22(5):10-15.
    [27]宋文祥,陈国呈,丁肖宇,等.基于两类脉宽调制方式本质联系的三电平逆变器中点电压平衡控制的研究[J].电工技术学报,2005,20(12):53-58.
    [28]宋强,刘文华,陈远华,等.多电平逆变器载波调制与空间矢量调制的等效关系[J].电力系统自动化,2004,28(19):36-41.
    [29]刘健,尹项根,张哲,等.高压大功率三电平逆变器的SPWM数字化技术研究[J].中国电机工程学报,2008,28(27):35-41.
    [30]原熙博,李永东,王琛琛.基于零序分量注入的三电平PWM整流器目标优化控制[J].电工技术学报,2009,24(3):116-121.
    [31] Wenxi Yao, Haibing Hu, Zhengyu Lu, Comparisons of space-vector modulation and carrier-based modulation of multilevel inverter[J]. IEEE Transactions on Power Electronics, 2008, 23(1):45-51.
    [32] K.Zhou,D. Wang. Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis[J]. IEEE Transactions on Industrial Electronics. 2002,49(1): 186-196.
    [33]丁凯,邹云屏,王展,等.一种适用于高压大功率的新型混合二极管箝位级联多电平变换器[J].中国电机工程学报, 2004, 24 (9):62-67.
    [34]许赟,邹云屏,刘雄,等.单相三电平PWM整流器双环控制系统的研究[J].电力电子技术,2008,42(9):1-3.
    [35] Vladimir Blasko. A hybrid PWM strategy combining modified space vector and triangle comparison methods[C]. Power electronics specialists conference, 1996,: 1872-1878.
    [36] Celanovic N. A comprehensive study of neutral-point voltage balancing problem in three-level neutral- point- clamped voltage source PWM inverters [J]. IEEE Transactions on Power Electronics, 2000, 15( 2): 242-249.
    [37]姜卫东,王群京,史晓锋,等.中点箝位型三电平逆变器在空间矢量调制时中点点位的低频振荡[J].中国电机工程学报,2009,29(3):49-55.
    [38] Josep Pou, Rafael pindado, Dushan Boroyevich,et al. Evaluation of the low-frequency neutral-point voltage oscillations in the three-level inverter[J]. IEEE Transactions on Industrial Electronics. 2005,52(6): 1582-1588.
    [39] Sommer R., Mertens A., Brunotte C, et al. Medium voltage drive system with NPC three-level inverter using IGBTs[C]. IEEE Medium Voltage Drives Seminar, 2000:311-315.
    [40] Rodriguez J., Lai J., Peng F.Z., Multilevel inverters: A survey of topologies, controls, and applications[J]. IEEE Transactions on Industrial Electronics. 2002,49(4): 724-738.
    [41] Lee D.H., Lee R.S., Lee F.C., A analysis of midpoint balance for the neutral-point- clamped three-level VSI [J]. IEEE Power Electronics Specialists Conference. 1998,1: 193-199.
    [42] Annette V. J., Shaoan Dai., Haoran Zhang, A multilevel inverter approach providing DC-link balancing, ride-through enhancement, and common-mode voltage elimination[J]. IEEE Transactions on Industrial Electronics. 2002,49(4): 739-745.
    [43] Akagi H., Fujita H., Yonetani S, A 6.6kV transfromerless STATCOM based on a five-level diode-clamped PWM converter: System design and experimentation of 200V, 10kVA laboratory model[C]. IEEE-IAS, 2005,1: 557-564.
    [44]孟永庆,沈传文,刘正,等.基于零序电压注入的三电平中点箝位整流器中点点位控制方法的研究[J].中国电机工程学报,2007,27(10):92-97.
    [45] Qiang Song, Wenhua Liu, Qingquan Yu, et al. A neutral-point potential balancing algorithm for three-level NPC inverters using analytically injected zero-sequence voltage[C]. APEC’03,1: 228-233.
    [46] Wenxiang Song, Guocheng Chen, Xiaoyu Ding, et al. Research on neutral-point balancing control for three-level NPC inverter based on correlation between carrier-based PWM and SVPWM[C]. IPEMC’06,3: 1-6.
    [47]赵葵银. PWM整流器的模糊滑模变结构控制[J].电工技术学报,2006,21(7):49-53.
    [48] Fernando S. J. Sliding-mode control of boost-type unity-power-factor PWM rectifiers[J]. IEEE Transactions on Industrial Applications. 1999,46(3): 594-603.
    [49]王宝华,杨成梧.微分几何与逆系统在TCSC稳定控制中应用[J].电力自动化设备,2001,21(6):14-16.
    [50]邓卫华.电力电子变化器状态反馈精确线性化模型及非线性控制[D].博士学位论文,华南理工大学:2005.
    [51]邓卫华,张波,胡宗波,等. CCM Buck变换器的状态反馈精确线性化的非线性解耦控制研究[J].中国电机工程学报,2004,24(5):120-125.
    [52]邓卫华,张波,胡宗波,等.电流连续型Boost变换器的状态反馈精确线性化与非线性PID控制研究[J].中国电机工程学报,2004,24(8):45-50 .
    [53]邓卫华,张波,丘东元,等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):120-125.
    [54] Lee D.C., Lee G.M., Lee K.D. DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization[J]. IEEE Transactions on Industrial Applications, 2000, 36(3):826-833.
    [55] Lee T.S. Input-output linearization and zero-dynamics control of three-phase AC/DC voltage-source converters[J]. IEEE Transactions on Power Electronics, 2003, 18(2):11-22.
    [56]邹祖冰,蔡丽娟,甘辉霞.基于非线性解耦控制的三相电压型SPWM逆变器[J].中国电机工程学报,2004,24(10):57-60.
    [57]李春文,冯元琨.多变量非线性系统控制的逆系统方法[M].北京:清华大学出版社,1991.
    [58]李啸骢,程时杰,韦化,等.输出函数在单输入单输出非线性控制系统设计中的重要作用[J].中国电机工程学报,2004,24(10):50-56.
    [59] Yacoubi L., Fnaiech F., Al-Haddad K., et al. Input/output feedback linearization control of a three-phase three-level neutral point clamped boost rectifier[C]. Thirty-Sixth Industry Applications Conference, 2001(1):626-631.
    [60] Yacoubi L., Al-Haddad K., Dessaint L.A., et al. DSP based implementation of an input/output feedback linearization control technique applied to a three-phase three-level neutral point clamped boost rectifier[C]. The 29th annual conference of the IEEE Industrial Electronics Society, 2003,(2):1197-1202.
    [61] Smedley K.M, Cuk S. One-cycle control of switching converters [C]. PESC’91 record. 22nd annual IEEE, 1991:888-896.
    [62] Smedley K.M, Cuk S. Dynamics of one-cycle controlled Cuk converters[J]. IEEE Transactions on Power Electronics, 1995, 10(6):634-639.
    [63] Lai Zheren, Smedley K.M. A new extension of one-cycle control and its application to switching power amplifiers [J]. IEEE Transactions on Power Electronics, 1996, 11(1):99-105.
    [64]周林,蒋建文,周雒维.基于单周控制的三相四线制有源电力滤波器[J].中国电机工程学报,2003,23(3):85-88.
    [65]谢品芳,杜雄,周雒维.单周控制直流侧单相有源电力滤波器[J].电工技术学报,2003,18(4):51-55.
    [66]周雒维,杜雄,谢品芳,等.直流侧APF与APF和PFC开关利用率的比较研究[J].中国电机工程学报,2003,23(8):28-31.
    [67]蔡政英,邹云屏,丁凯.一种VVVF电源的模糊PID控制[J].电工技术学报,2005,20(8):64-68.
    [68]李玉玲,鲍建宇,张仲超.基于模型预测控制的单位功率因数电流型PWM整流器[J].中国电机工程学报,2006,26(19):60-64.
    [69]王晓刚,谢运祥,帅定新,等.三相电压型脉宽调制整流器的非线性预测控制[J].中国电机工程学报,2009,29(21):27-33.
    [70]陈继侠,孙辉,陈晓东.电能质量调节器的改进无差拍控制[J].电力自动化设备,2004,24(8):55-58.
    [71]郭卫农,段善旭,康勇,等.电压型逆变器的无差拍控制技术研究[J].华中理工大学学报,2000,28(6):30-33.
    [72]王晓刚.三相四桥臂有源电力滤波器及其预测控制研究[D].华南理工大学,博士学位论文,2009.
    [73]韩京清.自抗扰控制器及其应用[J].控制与决策, 1998, 13 (1):19-23.
    [74]高龙,韩俊生,李崇坚,等.非线性鲁棒自抗扰控制器在电力系统中的应用[J].清华大学学报, 2000, 40 (3):27-29.
    [75]张淼,吴捷.基于自抗扰技术的光伏发电并网控制系统[J].控制理论与应用, 2005, 22 (4):583-587.
    [76]许湘莲,邹云屏,郭江.基于自抗扰控制器的级联多电平静态同步补偿器控制系统[J].中国电机工程学报, 2007, 27 (31):40-44.
    [77]邹祖冰,蔡丽娟,甘辉霞.电压型PWM逆变器的自抗扰控制策略[J].电工技术学报, 2004, 19 (2):84-88.
    [78]戴先中,张兴华,刘国海,等.感应电机的神经网络逆系统线性化解耦控制[J].中国电机工程学报,2004,24(1):112-117.
    [79]程代展.非线性系统的微分几何理论[M].北京:科学出版社,1982.
    [80] Isidori A., Krener A., Gori-giorgi C., etal. Nonlinear decoupling via feedback: a differential geometric approach[J]. IEEE Transactions on Automatical Control, 1981, 26(2):331-345.
    [81] Isidori A. Nonlinear control systems: Communications and control engineering series[M]. Berlin, Germany: Springer-Verlag, 1995.
    [82]高为炳.非线性控制系统导论[M].北京:科学出版社,1988.
    [83]夏小华,高为炳.非线性系统控制及解耦[M].北京:科学出版社,1997.
    [84]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1991.
    [85] Diego Soto, Ruben Pena. Nonlinear control strategies for cascaded multilevel statcoms[J]. IEEE Transactions on Power Delivery, 2004, 19(4):1919-1927.
    [86] Yang Chen, K. M Smedley. Parallel operation of one-cycle controlled three-phase PFC rectifiers[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6):3217-3224.
    [87]姜惠兰,李桂鑫,崔虎宝,等. PWM整流器的径向基函数神经网络控制新方法[J].信息与控制, 2006, 35(3):406-410.
    [88]李自成,孙玉坤,刘国海,等.神经网络法与直接计算法在APF谐波电流检测中的应用比较[J].电力自动化设备,2008,28(10):79-82.
    [89]李波,张林利,王广柱,等.用于APF的神经网络自适应谐波电流检测方法[J].电力自动化设备,2004,24(5):38-40.
    [90]舒迪前.预测控制系统及其应用[M].北京:机械工业出版社,1996.
    [91]张晓华,张卫杰.三相电压型PWM整流器的IDA-PB控制[J].电工技术学报,2009,24(3):122-127.
    [92] R. Ortega, A. Vander Schaft, B. Maschke, etal. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems[J]. Automatica, 2002,38(4):585-596.
    [93] G Escobar., Cidpastor C., Queinnec I, etal. Passivity-based integral control of a boost converter for large-signal stability[J]. IEE Proceeding on Control Theory Application, 2006, 153(2):139-146.
    [94] Ortega R., Loria A.,Nicklasson P J, etal. Passivity-based control of euler lagrange systems[M]. New York: Springer-Verlag, 1998.
    [95] Sira-Ramirez H., Perez-Moreno R A., Ortega R, etal. Passivity-based controllers for the stabilization of DC-to-DC power converters[J]. Automatica, 1997, 33(4):499-513.
    [96] St., Ciankovic A M ,Escobar G, Mattavelli P. Passivity-based controller for harmonic compensation in distribution lines with nonlinear loads[C]. PESC’00:1143-1148.
    [97]乔树通,伍小杰,姜建国.基于无源性的滑模控制在DC/DC变换器中的应用[J].电工技术学报,2003,18(4):41-45.
    [98]马良河,姜建国.同步电动机任意设定转速的无源性跟踪控制[J].电工技术学报,2004,19(9):37-41.
    [99]纪志成,薛花,沈艳霞.感应电动机无源性控制方法研究[J].电工技术学报,2005,20(3):1-6.
    [100]张兴华,戴先中.基于无源性的感应电机转矩与转速控制[J].电工技术学报,2001,16(4):34-38.
    [101]马进,席在荣,梅生伟,等.基于Hamilton能量理论的发电机气门与励磁非线性稳定控制器的设计[J].中国电机工程学报,2002,22(5):88-93.
    [102] Ortega R, Loria A, Nicklasson P J, et al. Passivity-based control of euler-lagrangesystems: mechanical, electrical and electromechanical application[M]. London, U. K.: Springer-Verlag, 1998.
    [103]乔树通,姜建国.三相Boost型PWM整流器输出误差无源性控制[J].电工技术学报,2007,22(2):68-73.
    [104]吴磊涛,杨兆华,胥布工. DC/DC开关变换器的无源控制方法[J].电工技术学报,2004,19(4):66-69.
    [105]王久和,黄立培,杨秀媛.三相电压型PWM整流器的无源性功率控制[J].中国电机工程学报,2008,28(21):20-25.
    [106] Leyva R., Cidpastor C., Queinnec I, etal. Passivity-based integral control of a boost converter for large-signal stability[J]. IEE Proceeding on Control Theory Application, 2006, 153(2):139-146.
    [107] Sriram V.B., Sabyasachi Sengupta, Amit Patra. Indirect current control of a single-phase voltage-source boost-type bridge converter operate in the rectifier mode[J]. IEEE Transactions on Power Electronics, 2003, 18(5):1130-1137.
    [108] Dimitrios K., Eduardo mendes, Alessandro Astolfi, et al. An experimental comparison of several PWM controllers for a single-phase AC-DC converter[J]. IEEE Transactions on Control Systems Technology, 2003, 11(6):940-947.
    [109] Lee T.S. Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters[J]. IEEE Transactions on Industrial Electronics, 2004, 51(4):892-902.
    [110]张振环,刘会金,李琼林.基于欧拉-拉格朗日模型的单相有源电力滤波器无源性控制新方法[J].中国电机工程学报,2008,28(9):37-44.
    [111] Duindam V, Stramigioli S, Scherpen J. Passive compensation of nonlinear robot dynamics[J]. IEEE Transactions on Robotic and Automatic, 2004, 20(3):480-487.
    [112] Espinosa Perez G, Maya Ortiz P, Velasco Villa M. Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[J]. IEEE Transactions on Control System Technology, 2004, 12(3):439-448.
    [113]宋文胜,冯晓云,蒋威.一种单相三电平中点钳位式整流器的SVPWM控制方法[J].电工技术学报,2007,22(7):69-73.
    [114] M. Malinowski, S. Stynski, M. P. Kazmierkowski, Single-phase cascade multilevel PWM converter based on FLC modules with LC output sine filter[J]. ISIE’08:335-340.
    [115] Sergio B.M, Salvador Aplpuz, Joan Rocabert, et al. Pulsewidth modulations for thecomprehensive cpapcitor voltage balance of n-level three-leg diode-clamped converters[J]. IEEE Transactions on Power Electronics, 2009, 24(5):1364-1375.
    [116]李建林,许鸿雁,高志刚,等.级联H桥五电平变流器工况分析与验证[J].电工技术学报,2007,22(4):85-91.
    [117]王学华,张欣,阮新波.级联多电平逆变器最优SPWM控制策略及其功率均衡方法[J].电工技术学报, 2009, 24 (5):92-99.
    [118]刘铮,王翠,彭永进,等.级联多电平逆变器空间矢量脉宽调制算法零序电压分布及优化算法[J].电工技术学报, 2008, 23 (12):92-98.
    [119]刘庆丰,王华民,刘丁.级联型多电平逆变器中的谐波控制[J].电工技术学报, 2006, 21(10):38-43.
    [120]江友华,曹以龙,龚幼民.基于载波相移角度的级联型多电平变频器输出性能的研究[J].中国电机工程学报, 2007, 27(1):76-81.
    [121]张春朋,林飞,宋文超,等.基于直接反馈线性化的异步电动机非线性控制[J].中国电机工程学报,2003,23(2):99-102.
    [122]王智涛,梅生伟.基于无源控制方法的TCSC控制器及其仿真研究[J].电力系统自动化, 2003, 27 (1):11-15.
    [123] Khorrami F, K rishnamurthy P, Melkote H. Modeling and adaptive nonlinear control of electric motors[M]. New York: Springer, 2003.
    [124] Ortega R, Canudas C, Seleme S. Nonlinear control of induction motors: Torque tracking with unknown load disturbance[J]. IEEE Transactions on Automatic Control. 1993,38(11): 1675-1680.
    [125] Madhav D.Manjrekar,Thomas A.Lipo.A Hybrid Multilevel Inverter Topology for Drive Applications. IEEE APEC’98 Conf.Rec.,1998,523~529.
    [126]丁凯,邹云屏,蔡政英,等.一种新型单相不对称五电平逆变器[J].中国电机工程学报,2004,24 (11):116-120.
    [127]丁凯.混合多电平逆变器拓扑及调制方法研究[D].华中科技大学,博士学位论文,2004.
    [128] Zhong Du, Leon M, Z, Burak Ozpineci,etc. Fundamental frequency switching strategies of a seven-level hybrid cascaded H-bridge multilevel inverter[J]. IEEE Transactions on Power Electronics, 2009, 24(1):25-33.
    [129] Zhong Du,Leon M, etc. A cascade multilevel inverter using a single DCsource[C].APEC’06, 2006.
    [130]陈阿莲,何湘宁,赵荣祥,等.一种改进的级联多电平变换器拓扑[J].中国电机工程学报, 2003, 23 (11):9-12.
    [131]丁凯,邹云屏,吴智超,等.新型三相混合不对称九电平逆变器研究[J].中国电机工程学报, 2005, 25 (11):35-41.
    [132]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社, 2003.
    [133]吴振兴,邹云屏,张允,等.单相PWM整流器输入电流波形的改善技术[J].高电压技术,2008,34(3):603-608.
    [134] J. Shen, N. Butterworth. Analysis and design of a three-level PWM converter system for railway-traction applications[J]. IEE Proceeding Power Applicaiton, 1997, 144(5):357-371.
    [135] Chang G W, Lin H W, Chen S K. Modeling characteristics of harmonic currents generated by high-speed railway traction drive converters[J]. IEEE Transactions on Power delivery, 2004, 19(2):766-773.
    [136] Sanders S. R., Verghese G. Lyapunov-based control of switched power converters[J]. IEEE Transactions on Power Electronics, 1992, 7(1):17-24.
    [137] Hasan K., Osman K. Lyapunov-based control of three-phase PWM AC/DC voltage-source converter[J]. IEEE Transactions on Power Electronics, 1998, 13(5):801-813.
    [138]孟永庆,苏彦民,刘正.三电平中点箝位整流器系统建模及基于李亚普诺夫直接法的控制方法研究[J].中国电机工程学报,2005,25(24):79-84.
    [139] Lee T S. Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters[J]. IEEE Transactions on Power Electronics. 2004,51(4): 892-902.
    [140]张涌萍,张波,丘东元. DC-DC变换器双线性系统建模及基于李亚普诺夫直接法的控制方法[J].中国电机工程学报,2008,28(9):7-11.
    [141]孟永庆,苏彦民,刘正.三电平中点箝位整流器系统建模及基于李亚普诺夫直接法的控制方法研究[J].中国电机工程学报,2005,25(24):79-84.
    [142]詹长江,秦荃华,韩英铎,等.三电平脉宽调制高频整流器系统数学模型及仿真分析[J].中国电机工程学报,1999,19(7):45-48.
    [143]金红元,邹云屏,林磊,等.三电平PWM整流器双环控制技术及中点电压平衡控制技术的研究[J].中国电机工程学报, 2006, 26 (20):64-68.
    [144] Tokuo Ohnishi. Three phase PWM converter/inverter by means of instantaneous active and reactive power control[C]. Proc. IEEE IECON’1991:819-824.
    [145] Toshihiko Noguchi, Hiroaki Tomiki, Seiji Kondo, et al. Direct Power control of PWM converter without power-source voltage sensors[J]. IEEE Transactions on Industry Applications, 1998, 34(3):473-479.
    [146] Mariusz Malinowski, Marian P, Andrzej M. A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives[J]. IEEE Transactions on Power Electronics, 2003, 18(6):1390-1396.
    [147] Mariusz Malinowski, Sebastian Stynski, Wojciech Kolomyjski. Control of three-level PWM converter applied to variable-speed-type turbines[J]. IEEE Transactions on Industrial Electronics, 2009, 56(1):69-77.
    [148] Ralph Teichmann, Mariusz Malinowski, Steffen Bernet. Evaluation of three-level rectifiers for low-voltage utility applications[J]. IEEE Transactions on Industrial Electronics, 2005, 52(2):471-481.
    [149] Mariusz Malinowski, Steffen Bernet. A simple voltage sensorless active damping scheme for three-level PWM converters with an LCL filter[J]. IEEE Transactions on Industrial Electronics, 2008, 52(2):1876-1880.
    [150] Mariusz Cichowlas, Mariusz Malinowski, Marian P,etal. Active filtering function of three-level PWM boost rectifier under different line voltage conditions[J]. IEEE Transactions on Industrial Electronics, 2008, 52(2):410-419.
    [151]张颖超,赵争鸣,鲁挺等.固定开关频率三电平PWM整流器直接功率控制[J].电工技术学报,2008,23(6):72-77.
    [152] Dietmar Krug, Steffen Bernet, Seyed S. F.etal. Comparison of 2.3-KV medium-voltagee multilevel converters for industrial medium-voltage drives[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6):2979-2990.
    [153] Sergio Vazquez, Juan A. S. Juan M. C.,etal, A model-based direct power control for three-level power converters[J]. IEEE Transactions on Industrial Electronics, 2008, 55(4):1647-1657.
    [154] Gerardo Escobar. Juan M. C.,Eduardo Galvan,etal, Analysis and design of direct power control for a three phase synchronous rectifier via output regulation subspaces[J]. IEEE Transactions on Power Electronics, 2003, 18(3):823-830.
    [155] Jose A.R., Jose M. A., Thomas G. H., Optimum space vector computation technique for direct power control[J]. IEEE Transactions on Power Electronics, 2009, 24(6):1637-1645.
    [156] Dawei Zhi. Lie Xu.,Barry W. W., Improved direct power control of grid-connected DC/AC converters[J]. IEEE Transactions on Power Electronics, 2009, 18(3) :1280-1292.
    [157] Mariusz Malinowski, Marek Jasinski, Marian P. K. Simple direct power control of three-phase PWM rectifier using space-vector modulation[J]. IEEE Transactions on Industrial Electronics, 2004, 51(2):447-454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700