用户名: 密码: 验证码:
基于多模型智能递阶控制的车辆底盘集成控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代控制理论、多传感器信息融合、大规模集成电路等先进技术的快速发展以及人类社会对汽车产品的完美追求,以提高车辆乘坐舒适性、主动安全性和操纵稳定性为控制目标的底盘集成控制已成为车辆工程领域中的一个研究热点。通过对底盘相关子系统控制功能的主动协调,可以充分挖掘各控制模块的功能潜力,实现底盘一体化全局控制,提高车辆综合使用性能。
     本文结合国家自然科学基金项目“基于信息融合技术的高速车辆纵横向耦合控制研究”(批准号:50475064)和重庆市自然科学基金重点项目“汽车底盘匹配与控制关键技术研究”(批准号:CSCT, 2006BA6017)研究内容,在综合国内外相关研究的基础上,研究包括电动助力转向、半主动悬架及制动防抱死等主动控制子系统在内的车辆底盘多模型控制系统的协调机理,提出车辆底盘多模型智能递阶控制(Vehicle Chassis Intelligent Hierarchical Control, VCIHC)策略;并针对车辆底盘复杂大系统的特点及多智能体(Multi-Agent System, MAS)理论在解决分布式复杂问题中的优势,将MAS理论引入到车辆底盘主动控制中,建立分级式车辆底盘MAS协调控制策略,以探索如何避免底盘各子系统间的相互冲突与干涉,使车辆底盘在纵向、侧向及垂直方向的运动控制得到全方位的协调与集成,为车辆底盘主动控制技术的研究开发奠定理论基础。论文主要研究工作包括以下几个方面:
     首先运用“模块化”设计思路,分别采用鲁棒控制、模糊控制等智能控制理论,对底盘多模型智能递阶控制所涉及的电动助力转向、半主动悬架及防抱死制动等主动控制子系统的控制特性进行研究,为车辆底盘的多模型协调控制奠定基础。
     针对车辆实时控制过程中,作为主控变量和表征车辆自身运行状态的部分关键状态变量较难直接、准确或低成本测量的问题,提出基于强跟踪滤波理论的多传感器线性组合状态最优估计算法,建立车辆状态估计模型,并通过仿真分析对车辆关键状态估计模型及估计算法进行验证,为车辆主动控制中关键状态的获取提供一种准确度较高、成本较低的实时软测量技术。
     根据车辆实时行驶状态信息和理想参考模型,基于智能递阶控制思想,建立车辆底盘多模型智能递阶控制系统。在智能递阶控制系统中,运用滑模控制理论,设计组织级控制器,得到车辆的广义目标控制力;再结合车辆实际运行状态和预期安全稳定性状态,决策车辆底盘各子系统的协调控制规则,通过对各子系统的协调控制,实现车辆底盘在极端运行工况下的广义多目标集成控制,以提高车辆底盘综合使用性能。
     结合车辆底盘主动控制子系统模块化和分布式的特点及多智能体理论在解决分布式问题中的优势,将多智能体理论引入车辆底盘多模型集成控制系统,建立底盘多智能体协调控制策略。通过各子系统智能体间的通信、交互和协调控制,实现了车辆底盘控制系统组织级任务的自动规划和协调级控制指令的动态分配,并尽可能地利用车载传感器资源、共享数据和知识,以探索具有较高主动性和自适应性的车辆底盘智能控制策略。
     最后,针对文中所设计的车辆底盘防抱死制动及电动助力转向子系统间的协调控制策略,进行硬件在环试验研究。
With the rapid development of the advanced technologies of modern control theories, multi-sensor information fusion, large scale integrated circuit, and the human constant pursuit of performance, vehicle chassis integrated control system has been become an important field in the vehicle dynamic control. Its control target is to increase the vehicle riding comfort, active safety and handling stability.The potential performance of the vehicle subsystems are attained and the vehicle chassis global integrated control is realized by the vehicle subsystems active coordination control.
     Combined with the project of NSFC (No.50475064) and the Natural Science Foundation Project of ChongQing (CSTC,2006BA6017), and based on the domestic and abroad research, this thesis is attempting to investigate the coordination control mechanism of vehicle chassis multi-model system including the subsystems of the Electric Power Steering, Anti-lock Braking System and Semi-active Suspension. The control strategy of vehicle active chassis intelligent hierarchical control (VACIHC) is proposed. According to the features of complex chassis system and the advantages of multi-agent system (MAS) theory in solving distributed complicated problems, the MAS theory is introduced into the active chassis control systems and the MAS coordination control strategy for vehicle chassis hierarchical control is presented. The research on how to avoid the conflicts and disturbances between the vehicle chassis subsystems, and achieving the coordination control for the vehicle lateral, longitudinal and vertical motion is discussed. It will establish the theoretical foundation for the vehicle active chassis control research and development.The main work of this dissertation including the following aspects:
     Regarding the double-axle light-duty vehicle as the research object and based on the method of modularization and the intelligent control theories of robust and fuzzy control, the EPS, SAS and ABS in the chassis multi-model intelligent hierarchical control are simulated. It will establish the foundation for the vehicle chassis multi-model coordination control.
     According to the problem that some key state variables in the vehicle stability control process are too difficult to measure directly, the state optimization estimation algorithm based on multi-sensors linear combination and strong tracking filter theory is proposed. Then the vehicle nonlinear states estimation model is established and the vehicle key states estimation are simulated and analyzed with the strong tracking filter theory. It is a real-time, accurate and low-cost soft-sensor way for vehicle advance control.
     According to the vehicle current state information and ideal reference model and based on the theory of intelligent hierarchical control, the vehicle chassis multi-model intelligent hierarchical control system is established. The organization level controller is designed with the sliding mode control and received the target general control forces. And then, combination with the vehicle real state and the anticipation safety stability state by estimated, the coordination control rules of vehicle chassis subsystems are decided. With the coordinated control of the subsystems, the vehicle chassis synthesis control performance is improved.
     Combination with the personalized, intelligent and distributed characteristics of the chassis subsystems and the advantage of MAS in solving distributed complicated problem, the MAS is introduced in the chassis coordinated control and the strategy of chassis correspond control with MAS is founded. Through communication, interaction and coordination between the various subsystems agent, the vehicle chassis control object of the organization-level is planned automatically and the general forces of coordination-level is allocated dynamically, and the resources, shared data and knowledge were utilized possibly. The MAS control method is aimed to exploring the intelligent control strategy with high initiative and self-adaptive for vehicle chassis.
     In the end, the coordination control strategy between the vehicle chassis subsystems of ABS and EPS in this thesis is studied by the hardware-in-the-loop test.
引文
[1] Pavel Kvasnicka, Günther Prokop. Comprehensive approach for the chassis control development[C]. SAE Paper, 2006-01-1280.
    [2] Peter Lauer, Sascha J. Semmler. Simulation based development within global chassis control [C] IEEE Conference on Computer Aided Control Systems Design Munich, Germany, October 4-6, 2006, 2309-2314.
    [3]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社, 2005.
    [4]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报, 2008, 39(6):1-7.
    [5]庄继德.汽车电子控制系统工程[M].北京:北京理工大学出版社, 1998.
    [6] E.L.Dinga, H.Fennelb, S.X.Dingc. Model-based diagnosis of sensor faults for ESP systems [J]. Control Engineering Practice,2004,12: 847-856.
    [7] A. T. van Zanten. Bosch ESP systems: 5 years of experience[C].SAE, 2000-01-1633.
    [8] Junjie He, D.A.Crolla. Coordination of active steering, driveline, and braking for integrated vehicle dynamics control [J]. Journal of Automobile Engineering (Part D), 2006, 220(7): 1401-1421.
    [9] Tokihiko Akitaa, Katsuhiko Satoh. Development of 4WS control algorithms for an SUV [J]. JSAE Review, 2003, 14(24): 441–448.
    [10] S.-S. Youa,, Y.-H. Chai. Multi-objective control synthesis: an application to 4WS passenger vehicles [J]. Mechatronics, 1999: 363-390.
    [11] http://www.eng-tips.com/viewthread.cfm?qid=197470&page=1
    [12] Shimizu, Y, Kawai, T, Yuzurha, J. Improvement in driver-vehicle system performance by varying steering gain with vehicle speed and steering angle-VGS (Variable Gear-ratio Steering System)[C]. SAE Paper, 1999-01-0395
    [13] http://www.sae.org/automag/globalvehicles/06-2002/
    [14] H. Kim and Y S. Yoon. Semi-active suspension with preview using a frequency-shaped performance index. Vehicle systems dynamics, 1995, 33(24): 759-780.
    [15] Sommer S. Electronic air suspension with continuous damping control [J]. Auto Technology, 2003, 3: 52-55.
    [16] Mansour A. Karkoub. Active/semi-active suspension control using magnetorheological actuators [J]. International Journal of Systems Science, 2006, 37 (1):35-44.
    [17]余淼.汽车磁流变半主动悬架控制系统研究[D].重庆:重庆大学, 2003.
    [18] Rami Debouk, Thoms Fuhrman, Joseph Wysocki. Architecture of by-wire systems designelements and comparative methodlogy[C]. SAE Paper, 2003-01-1291.
    [19] M Abe, O Mokhiamar. An integration of vehicle motion controls for full drive-by-wire vehicle [J]. IMechE (Part K): J. Multi-body Dynamics, 2007, 221: 117-127.
    [20]林逸,沈沉,王军等.汽车线控制动技术及发展[J].汽车技术, 2005, 12: 1-4.
    [21] Sohel Anwar. Generalized predictive control of yaw dynamics of a hybrid brake-by-wire equipped vehicle [J]. Mechatronics, 2005, 15: 1089-1108.
    [22] http://www.sae.org/automag/techbriefs/02-2002/02.htm
    [23]何仁,李强.汽车线控转向技术的现状与发展趋势[J].交通运输工程学报, 2005, 5(2): 68-72.
    [24]包凡彪.汽车线控转向技术的发展与应用[J].汽车科技, 2007, 2: 10-12.
    [25]李春明.汽车底盘电控技术[M].北京:北京理工大学出版社, 2004.
    [26]姜炜,余卓平,张立军.汽车底盘集成控制综述[J].汽车工程, 2007, 29(5): 420-425.
    [27]高晓杰,余卓平,张立军.集成底盘控制系统的控制构架研究[J].汽车工程, 2007, 29(1): 21-26.
    [28]陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程, 2006, 28(2): 105-113.
    [29] Freuchte R.D., Karmel A., Rillings J.. Integrated vehicle control[C]. IEEE Vehicular Technology Conference, 1989: 868-877.
    [30] Sascha J. Semmler, Peter E. Rieth. Global chassis control-the networked chassis[C]. SAE Paper, 2006-01-1954.
    [31] Werner Kober; Martin Ehmann. Model-based development of the integrated vehicle dynamics control of Magna Steyr [J]. ATZ Automobiltechnische Zeitschrift, 2007, 10: 1-8.
    [32] Yasuji Shibahata. Progress and future direction of chassis control technology [J]. Annual Reviews in Control, 2005, 29(1): 151-158.
    [33] Armin, V., Sylvia, F.. Vehicle dynamics management–benefits of integrated control of active brake, active steering and active suspension systems[C]. FISITA 2004 Paper, F2004F185.
    [34] Trachtler A. Integrated vehicle dynamics control using active brake, steering and suspension systems [J]. International Journal of Vehicle Design, 2004, 36 (1): 1-12.
    [35] Philip Koehn, Michael Eckrich. Integrated chassis management: introduction into BMW’s approach to ICM[C].SAE Paper, 2006-01-1219.
    [36] Takami MIURA, Yuichi USHIRODA, Kaoru SAWASE. Development of integrated vehicle dynamics control system‘S-AWC’[J]. MITSUBISHI Motors Technical Review, 2008, 20: 21-25.
    [37] Jürgen Diebold. Active safety systems-the home for global chassis control[C]. SAE Paper, 2006-21-0079.
    [38] A Jara?ūnien?, G Jakubauskas. Improvement of road safety using passive and active intelligent vehicle safety systems [J]. Transport, 2007, 4: 284-289.
    [39] Rainer Busch, Klaus Webers, Achim Seibertz. Ford integrated vehicle dynamics control: concept [R]. Ford Motor Company, Research & Advanced Engineering, 2001.
    [40] T. H. Hwang, K. Park, S.J. Heo. Design of integrated chassis control logics for AFS and ESP [J]. International Journal of Automotive Technology, 2008, 9(1):17-27.
    [41] Nagai M., Yamanaka, S., Hirano Y. Integrated control law of active rear wheel steering and direct yaw moment control[J]. AVEC, 1996: 451-470.
    [42] Harada M., Harada H.. Analysis of lateral stability with integrated control of suspension and steering systems [J]. JSAE Review, 1999, 20: 465-470.
    [43] Yutaka Hirano, Hiroshi Harada, Kaoru Takanami. Development of an integrated system of 4WS and 4WD by H-infinity control[C]. SAE, 930267.
    [44] R. Karbalaei, A. Ghaffari, R. Kazemi, S. H. Tabatabaei. A new intelligent strategy to integrated control of AFS/DYC based on fuzzy logic [J].International Journal of Mathematical, Physical and Engineering Sciences, 2008, 1(1): 47-52.
    [45] Wang Junming, Longoria Raul G.. Coordinated and reconfigurable vehicle dynamics control [C]. IEEE Transactions on Control Systems Technology, May, 2009, 17(03): 723-732.
    [46] Wang Junming, Longoria Raul G.. Coordinated vehicle dynamics control with control distribution[C].IEEE American Control Conference, Minneapolis, Minnesota, USA, 2006: 5348-5353.
    [47] Yuming Hou, Jie Zhang, Yunqing Zhang. Integrated chassis control using ANFIS [C]. IEEE Automation and Logistics 2008, 1-3 Sept. 2008: 1625-1630.
    [48] Ting Wei-en, Lin Jung-shan. Nonlinear control design of anti-lock braking systems combined with active suspensions [J]. IET control theory & applications, 2007, 01(01): 343-348.
    [49] March C. and Shim T. Integrated control of suspension and front steering to enhance vehicle handling [J]. Automobile Engineering, 2007, 221(12): 377-392.
    [50] Harada M, Harada H. Analysis of lateral stability with integrated control of suspension and steering systems [J]. JSAE Review, 1999, 10(20): 465-470.
    [51] Shen Xiaoming, Yu Fan. Investigation on integrated vehicle chassis control based on vertical and lateral tire behavior correlativity [J]. Vehicle System Dynamics, 2006, 44(1): 506-519.
    [52] Shen Xiaoming, Yu Fan. A novel integrated chassis controller design combining active suspension and 4WS[C].SAE Paper, 2005-01-3566.
    [53]冯金芝,喻凡,李君等.车辆防抱制动系统与主动悬架联合控制[J].农业机械学报, 2002, 33(2): 15-19.
    [54]刘翔宇,陈无畏.基于DYC和ABS分层协调控制策略的ESP仿真[J].农业机械学报, 2009, 40(4): 1-6.
    [55]王其东,吴勃夫,陈无畏.基于预测控制的主动悬架与电动助力转向集成控制[J].农业机械学报, 2007, 38(1): 1-5.
    [56]陈无畏,周慧会,刘翔宇.汽车ESP与ASS分层协调控制研究[J].机械工程学报, 2009, 45(8): 190-196.
    [57]陈龙,袁传义.汽车主动悬架与电动助力转向系统自适应模糊控制[J].汽车工程, 2007, 29(1): 8-12.
    [58]牛礼民.车辆半主动悬架和电动助力转向集成控制的研究与实现[D].镇江:江苏大学, 2008.
    [59]殷国栋,陈南.四轮转向直接横摆力矩鲁棒集成控制仿真研究[J].系统仿真学报, 2008, 20(16): 4264-4268.
    [60]谢晗,吴光强.基于xPC目标的实时仿真技术及实现[J].微计算机信息,2006, 22(12-1):200-202.
    [61]崔海峰,刘昭度,马岳峰等.基于捷达GTX轿车的ABS/ASR集成控制系统[J].机械工程学报, 2006, 42(S1): 152-156.
    [62]丁海涛,郭孔辉,张建伟等.汽车ESP硬件与驾驶员在回路仿真试验台的开发与应用[J].汽车工程, 2006, 28(4): 346-350.
    [63]赵治国,余卓平,孙泽昌等.电动助力转向系统H∞鲁棒控制研究[J].汽车工程, 2005, 27(6): 730-735.
    [64]赵万忠,施国标,林逸等.基于H2/H∞控制的电动助力系统转向路感[J].机械工程学报, 2009, 45(4):142-147.
    [65]田大庆.基于鲁棒控制理论的汽车电动转向助力系统控制技术研究[D].成都:四川大学, 2006.
    [66]赵林峰,陈无畏,秦明辉等.基于转向轻便性及回正性能设计的EPS应用[J].机械工程学报, 2009, 45(6): 181-187.
    [67]吴文江,季学武,杜颜良.电动转向控制系统跟踪性能研究[J].机械工程学报, 2004, 40(4): 77-80.
    [68]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社, 2003.
    [69]罗铭刚.基于LMI的半主动悬架多目标输出反馈控制研究[D].重庆:重庆大学, 2007.
    [70] Abbas Chamseddine, Thibaut Raharijaona, Hassan Noura. Sliding mode control applied to active suspension using nonlinear full vehicle and actuator dynamics[C].The 45th IEEE Conference on Decision & Control, San Diego, CA, USA, December 13-15, 2006: 3597-3601.
    [71] Moroine Laoufi1and Azim Eskandarian. Fuzzy logic control for active suspension of a nonlinear full vehicle model[C].IEEE IV2009, Xian, China, June, 2009: 677-684.
    [72]陈炯,王会义,宋健.基于滑移率和减速度的ABS模糊控制仿真研究[J].汽车工程, 2006, 28(2): 148-152.
    [73]徐岩海.路面不平度对装有ABS汽车制动性能的影响[J].农业机械学报, 2008, 39(1): 7-10.
    [74]张代胜,顾勤林,陈朝阳等.车辆转弯制动防抱死系统仿真[J].农业机械学报, 2005,36(9): 16-20.
    [75]苏周成.车辆转弯制动稳定性动力学控制研究[D].重庆:重庆大学, 2007.
    [76]高振海,郑南宁等.基于车辆动力学和kalman滤波的汽车状态软测量[J].系统仿真学报, 2004, 16(1): 22-24.
    [77]刘国福,张屺,王跃科.汽车防抱死制动系统车速估计方法的初步研究[J].汽车工程, 2004, 26(6):723-726.
    [78]余卓平,高晓洁.车辆行驶过程中的状态估计问题综述[J].机械工程学报, 2009, 45(5): 20-33.
    [79] Damrongrit Piyabongkarn1, Rajesh Rajamani. Development and experimental evaluation of a slip angle estimator for vehicle stability control[C]. American Control Conference, 2006, 6: 14-16.
    [80]张勇,殷承良,张建武.车辆质心侧向速度实时估计方法[J].机械工程学报, 2008, 44(2):119-121.
    [81] Cherouat H..Vehicle velocity, side silp angles and yaw rate estimation[C].IEEE ISIE 2005, Dubrovnik, Croatia, 2005:349-354.
    [82] Wenzel, Thomas A., Burnham Keith J.. Dual extended kalman filter for vehicle state and parameter estimation [J].Vehicle System Dynamics, 2006, 44(2): 153-171.
    [83] Wenzel, Thomas A., Burnham Keith J.. Simplified extended kalman filter for automotive state estimation [J]. International Journal of Modelling, Identification and Control, 2008, 3(3): 201-211.
    [84] Hyeongcheol Lee. Reliability indexed sensor fusion and its application to vehicle velocity estimation [J]. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(2): 236-243.
    [85]宗长富,胡丹,杨肖等.基于扩展Kalman滤波的汽车行驶状态估计[J].吉林大学学报, 2009, 39(1): 7-11.
    [86]周东华.非线性系统的自适应控制导论[M].北京:清华大学出版社, 2002.
    [87]何友,王国宏.多传感器信息融合及应用[M].北京:电子工业出版社, 2000.
    [88]文成林,陈志国,周东华.基于强跟踪滤波器的多传感器非线性动态系统状态与参数联合估计[J].电子学报, 2002, 30(11): 1-3.
    [89] Hedrick J. K., Jang J., Potier A.. Cooperative multiple-sensor fusion for automated vehicle control[R]. California PATH Research Report, 2004: 1-15.
    [90] Tomonari Furukawa, Gamini Dissanayake. Parameter identification of autonomous vehicles using multi-objective optimization [J]. Journal of Engineering Optimization, 2001: 1-48.
    [91] Satria Medy, C. Best Matthew. Comparison between kalman filter and robust filter for vehicle handling dynamics state estimation[C]. SAE, 2002-01-1185.
    [92]杨柳.高速车辆纵横向动力学耦合控制研究[D].重庆大学, 2006.
    [93]郝奕.基于纵横向耦合的车辆动力学控制与仿真[D].重庆大学, 2007.
    [94]蔡自兴.智能控制原理与应用[M].北京:清华大学出版社, 2007.
    [95] Reza N.Jazar. Vehicle dynamics theory and application [M]. Springer, 2008.
    [96]喻凡.车辆动力学及其控制[M].北京:人民交通出版社, 2004.
    [97]郭建华.双轴汽车电子稳定性协调控制研究[D].长春:吉林大学, 2008.
    [98]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海:上海交通大学, 2008.
    [99]沈晓鸣.基于广义执行器—受控对象的车辆底盘集成控制的研究[D].上海:上海交通大学, 2007.
    [100] E.Bakker, H.B.Pacejka. Tyre modeling for use in vehicle dynamics studies [C]. SAE Paper 870421.
    [101]余志生.汽车理论(第四版)[M].北京:机械工业出版社, 2007.
    [102] Wang Junming, Longoria Raul G.. Combined tire slip and slip angle trackingcontrol for advanced vehicle dynamics control systems[C]. The 45th IEEE Conference on Decision & Control, San Diego, CA, USA, December 13-15, 2006: 1733-1738.
    [103] Wang Junming. Coordinated and reconfigurable vehicle dynamics control [D].Austin, USA: The University of Texas at Austin, 2007.
    [104]毛艳娥,井元伟,张嗣赢等.汽车ABS滑模变结构控制方法的研究[J].系统仿真学报, 2008, 20(5): 1243-1246.
    [105]郑玲,李以农.汽车半主动悬架模型参考自适应控制[J].中国公路学报, 2005, 18(2): 99-102.
    [106]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社, 2005.
    [107]初长保.汽车底盘系统分层协调控制研究[D].合肥:合肥工业大学, 2008.
    [108]邵建.汽车半主动悬架与防抱死制动系统集成控制研究[D].重庆:重庆大学, 2008.
    [109] Andrew Alleyne. Improved vehicle performance using conbined suspension and brakingforces[C].American Control Conference, Washington, June, 1996: 1672-1676.
    [110]庄德军.主动油气悬架垂向与侧向动力学性能研究[D].上海:上海交通大学, 2006.
    [111]来飞,邓兆祥.含非线性轮胎模型的汽车四轮转向与主动悬架集成控制[J].中国公路学报, 2009, 22(3): 113-120.
    [112]魏俊生.汽车电控悬架与电动助力转向系统的协调控制研究[D].重庆:重庆大学, 2008.
    [113] Johannes Tj?nnas and Tor A. Johansen. Stabilization of automotive vehicles using active steering and adaptive brake control allocation [C].IEEE Transactions on Control Systems Technology, 2009.
    [114] Matth¨aus B. Alberding, Johannes Tj?nnas, Tor A. Johansen. Nonlinear hierarchical control allocation for vehicle yaw stabilization and rollover prevention[C]. The European Control Conference (ECC), 2009.
    [115]陈德玲,陈俐,殷承良.制动过程的主动转向干预控制[J].系统仿真学报, 2008, 20(10): 2640-2645.
    [116]王汝传,徐小龙,黄海平.智能Agent及其在信息网络中的应用[M].北京:北京邮电学院出版社, 2006.
    [117]张洁,高亮,李培根.多Agent技术在先进制造中的应用[M].北京:科学出版社, 2004.
    [118]秦斌,吴敏,王欣等.基于MAS的分布式集成智能控制系统开发与应用[J].小型微型计算机系统, 2006, 27(7): 1405-1408.
    [119]贾利民,刘刚,秦勇.基于智能Agent的动态协作任务求解[M].北京:科学出版社, 2007.
    [120]曹军海,熊光楞,徐宗昌.分布式多Agent仿真系统的控制结构研究[J].系统仿真学报, 2005, 17(03): 627-630.
    [121] Craig Schlenoff, Randy Washington. Intelligent ground vehicle ontology for multi-agent system integration [C]. KIMAS 2005 WALTHAM, MA, USA, 2005, 4: 18-21.
    [122] Wang Jinxiang, Chen Nan, Yin Guodong. Multi-agent based vehicle integrated control framework for coordination of active steering, driveline and braking systems[C].IEEE International Conference on Computer Science and Software Engineering, Wuhan, China, December, 2008: 12-14.
    [123] Wang Jinxiang, Chen Nan, Pi Dawei. Agent-based coordination framework for integrated vehicle chassis control [J]. IMechE Part D: J. Automobile Engineering, 2009, 223: 601-621.
    [124] Niu Limin, Zhao Youqun. Multi-agent integrated control on vehicle semi-active suspension and EPS [C]. IEEE Global Congress on Intelligent Systems, Xiamen, China, May 19-21, 2009: 75-79.
    [125] Fabio Bellifemine, Giovanni Cair. Developing multi-agent systems with JADE [M].John Wiley &Son Ltd. 2007.
    [126]张建新.基于多智能体技术的机器人遥控焊接系统研究[D].哈尔滨:哈尔滨工业大学, 2006.
    [127]秦斌.基于MAS技术的焦炉集气管压力智能解耦与协调控制研究[D].长沙:中南大学, 2006.
    [128]罗杰,段建民,陈建新.基于协进化机制的Multi-agent分布式智能控制体系[J].计算机工程, 2006, 32(19): 34-37.
    [129]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].长春:吉林大学, 2007.
    [130]周亮.电动助力转向系统中无刷直流电机控制器的研究与开发[D].重庆:重庆大学, 2008.
    [131] Denis Eberhard, Simon Brewerton. Rapid prototyping of production vehicle control systems[C]. SAE Paper, 2006-01-1657.
    [132] Soo-Jin Lee, Young-Jun Kim. Development of hardware-in-the-Loop simulator and vehicle dynamic model for testing ABS[C]. SAE Paper, 2003-01-0858.
    [133] Yan Quan-Zhong, John M. Williams. Chassis control system development using simulation: software in the loop, rapid prototyping, and hardware in the loop[C]. SAE Paper, 2002-01-1565.
    [134] Wei-Yi Loh, R. Hecht Basch, Tom Dalka. Development of a brake dynamometer vehicle model hardware-in-the-loop system[C]. SAE Paper, 2003-01-3337.
    [135] Herbert Schuette, Peter Waeltermann. Hardware-in-the-loop testing of vehicle dynamics controllers– a technical survey[C]. SAE Paper, 2005-01-1660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700