用户名: 密码: 验证码:
基于Backstepping的船舶运动非线性自适应鲁棒控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H∞鲁棒控制作为一种能够处理系统结构或系统参数存在不确定性问题的有效方法,其非常适于在船舶运动控制领域中加以应用和推广。特别是闭环增益成形算法作为一种H∞鲁棒控制在实际工程中的应用简化,是一种简捷、有效地处理带有不确定性的船舶运动控制问题的鲁棒控制算法。但因其不能独立地针对非线性系统进行控制器设计,所以本文分别将SISO系统和MIMO系统闭环增益成形算法与Backstepping方法相融合,并通过Lyapunov稳定性理论和线性稳定性理论首次论证了两种算法相融合的合理性和实用性,进一步夯实了这两种算法融合使用的理论基础。同时将该研究成果分别应用于船舶航向保持系统、船舶减摇鳍控制系统和船舶舵鳍联合控制系统的设计中,取得了一些理论成果,研究结果具有一定的实际应用价值。主要研究工作简述如下:
     针对船舶航向保持系统中,传统Backstepping方法因不确定恒值干扰易产生静差及控制器参数整定过于复杂等问题,首先将SISO系统闭环增益成形算法与带积分项的Backstepping方法相融合,提出了一种带有积分功能的船舶航向保持非线性鲁棒控制器设计方案,并通过严格的理论推导和仿真结果论证了该方案的合理性。然后,考虑到船舶航向控制系统中的不确定性参数变化、外界干扰、各种非线性因素的影响以及传统鲁棒设计方法存在保守性的问题,本文提出将自适应Backstepping算法与闭环增益成形算法相融合,在此基础上提出一种全新的非线性自适应鲁棒算法,最后将该算法应用于船舶航向保持控制器设计中,并在考虑了风、浪干扰的情况下进行相应的仿真实验,验证了该算法的有效性。
     由于船舶的横摇阻尼通常较小,为了防止船舶发生倾覆的危险,增加人员的舒适程度,减摇鳍作为目前减摇效果最好,使用最为广泛的船舶减摇设备,开发适合船舶非线性动态特性、鲁棒性强的减摇鳍控制器具有十分重要的意义。特别是大连海事大学的科研实习船“育鲲”轮,为了能够让先进的船载科研仪器以较高的效率运行,采用传统的线性减摇鳍控制器很难满足其要求,因此需要设计出一种减摇效果更好、鲁棒性更强的非线性控制器。本文首先对“育鲲”轮的非线性横摇数学模型进行了深入研究,并同样将SISO系统闭环增益成形算法和Backstepping相融合,分别提出了非线性减摇鳍控制器和非线性自适应减摇鳍控制器设计方案,并通过对科研实习船“育鲲”轮的仿真实验来验证所提出的控制器的有效性,最后得出一些相关的重要结论。
     舵鳍联合控制是在减摇鳍减摇和舵减摇基础上发展起来的一种新型减摇装置,它能在保证航向保持控制精度的同时提高船舶的减摇效果。本文首先针对某轮的舵鳍联合系统线性数学模型,建立了一种仅航向保持具有非线性的舵鳍联合系统非线性数学模型,并通过Backstepping方法与MIMO闭环增益成形算法相融合,提出了一种针对舵鳍联合系统的非线性鲁棒控制器,并通过理论推导与仿真实验论证了该控制器的有效性。然后在对现有通用的舵鳍联合系统模型进行深入研究的基础上,针对Backstepping算法在使用方面的一些限制,在进行控制器设计时对通用模型进行了简化,使之符合Backstepping算法设计的需要,并尝试将自适应Backstepping方法与MIMO系统闭环增益成形算法相融合,实现算法的程序化和设计参数的自整定;最后将算法应用于“育鲲”轮的舵鳍联合系统控制器设计中,并通过加入风、浪干扰和舵机、鳍机特性,进一步论证了该算法的可行性。
H∞robust control, as an effective method to solve the control problem of model perturbation and parameter uncertainties, has been generally used in the research of ship motion control system.As a simplified H∞, robust control theory, the closed-loop gain shaping algorithm (CGSA) is a simple and direct control algorithm for practical ship motion control engineering. The CGSA can not design the controller for nonlinear system directly; therefore an algorithm combined the CGSA with the Backstepping method is proposed in this paper. For the further research, the stability of the proposed algorithm is proved by the Lyapunov stability theory and linear stability theory, which has provided a solid foundation for the further studies. Furthermore, the above theoretical control strategies have been applied to the ship steering course-keeping system, fin roll control system and rudder/fin joint control system. At last some important conclusions and practical achievements are obtained. The main contributions are as follow:
     To overcome the disadvantage of the static error of constant disturbance and complexity of the parameters tuning in the ship course-keeping with the traditional Backstepping method, a control scheme combined integral Backstepping algorithm with SISO CGSA is proposed. Furthermore, an integral nonlinear robust controller for ship course-keeping system is designed.The theoretical analysis and simulation results show that the controller designed by the above scheme has nice robustness to the model perturbation and environmental disturbances. Then, in order to overcome the high conservative of the traditional robust control strategy and the hydrodynamic uncertainties of the ship steering system, a new nonlinear adaptive robust control scheme derived from the combination of Backstepping method and the CGSA is proposed in this paper. Finally, a nonlinear adaptive robust controller for ship steering system is designed, and the simulation results show that the adaptive controller has a good performance, strong robustness to the external disturbance.
     With the consideration of the insufficiencies of the ship roll damping, to improve the security and comfort of the vessel and prevent the capsize of the ship, the active fin roll damping as the most effective roll damping equipment has been found to be very attractive.In the case of training vessel "YUKUN",effective working of advanced scientific research equipments with high-precision is one of the most important requirements. Hence it is important to develop a nonlinear controller for ship fin roll stabilisation system to offer a better performance and stronger robustness.For the further study about the nonlinear fin roll control system of the vessel "YUKUN", the control strategy combined the Backstepping method with SISO CGSA is used to design the two fin roll stabilisation controller:nonlinear robust controller and nonlinear adaptive robust controller. Finally, the numerical simulations to the vessel "YUKUN" clearly show that the two proposed controllers have good control performance and strong robustness to the external disturbance and the model perturbation.At the same time, some important conclusions are obtained.
     The ship rudder/fin joint control system is a new roll stabilisation equipment derived from the fin roll stabilisation and rudder roll damping, which could improve the effect of the roll stabilization while guaranteeing the course-keeping precision of the ship steering system.Firstly, a nonlinear mathematical model for the rudder/fin joint system, which could describe the nonlinear characteristics of the ship steering system, has been built. Through the further theoretical analysis, a concise nonlinear rudder/fin joint robust control scheme derived from the Backstepping method combined with MIMO CGSA is proposed. Secondly, due to the utility restriction of Backstepping method, a simplified rudder/fin joint nonlinear mathematical model derived from the original model has been built. Then a nonlinear adaptive robust rudder/fin joint controller is proposed with the combination of the adaptive Backstepping method and MIMO CGSA, which could make the design procedure automated and realize the control parameter self-tuning. Finally, with the consideration of the external disturbance and the rudder/fin servo systems, the simulation results show that the nonlinear adaptive robust controller has nice performance and strong robustness.
引文
[1]贾大山.中国水运发展战略探索.大连:大连海事大学出版社,2003.
    [2]张显库,贾欣乐.船舶运动控制.北京:国防工业出版社,2006.
    [3]张显库,贾欣乐.闭环增益成形算法及其应用.电子学报.1999,27(11):133-135.
    [4]贾欣乐,张显库.船舶运动智能控制与H∞鲁棒控制.大连:大连海事大学出版社,2002.
    [5]张显库.非脆弱鲁棒PID控制器设计.重庆工学院学报(自然科学版).2009,23(5):28-30.
    [6]Zhang X K,Jin Y C.Control of A Multivariable High Purity Distillation Column Based on Closed-loop Gain Shaping Algorithm.International Journal of Information Technology.2005, 11 (5):116-123.
    [7]Zhang X K,Jia X L.Simplification of H∞ mixed sensitivity algorithm and its application.Automatic Control and Computer Sciences.2002,36(3):28-33.
    [8]贾欣乐,张显库.H∞控制器应用于船舶自动舵.控制与决策.1995,10(3):250-254.
    [9]张显库,贾欣乐.船舶自动舵鲁棒控制权函数综合选择方法.大连海事大学学报.1999,25(3):21-25.
    [10]张显库,贾欣乐,杨承恩,等.船舶鲁棒自动舵产品化研究.系统工程与电子技术.1999,21(2):75-81.
    [11]张显库,贾欣乐,王兴成.一种变形的回来成形控制器及其应用.控制与决策.2000,15(1):116-118.
    [12]张显库,贾欣乐.求PID参数新方法.系统工程与电子技术.2000,22(8):4-5.
    [13]张显库,贾欣乐.用镜像映射方法求非稳定过程的鲁棒控制器.系统工程与电子技术.2000,22(4):10-12.
    [14]张显库.用镜像映射方法求纯不稳定过程的鲁棒控制器.系统工程与电子技术,2004,26(10):1466-1467.
    [15]Zhang X K.New method on design of robust controller for unstable process.Proceeding of International Conference on Machine Learning and Cybernetics,643-648,2005.
    [16]张显库,金一丞.基于信息对称的简捷控制.控制与决策.2007,22(11):1255-1258.
    [17]张显库.不对称信息理论在船舶运动控制中的应用.中国造船.2006,47(1):55-59.
    [18]张显库,杨盐生.不对称信息理论与非线性鲁棒控制算法.控制与决策.2005,20(11):1241-1244.
    [19]张显库,郭晨,杜佳璐.船舶航向不对称信息理论与非线性逆推鲁棒控制算法.交通运输工程学报.2006,6(2):47-50.
    [20]王新屏,张显库.基于反馈线性化与闭环增益成形的减摇鳍控制.中国航海.2007,30(4):5-8.
    [21]王新屏,张显库.具有航向保持非线性的舵鳍非线性鲁棒控制.系统工程与电子技术.2008,30(8):1549-1552.
    [22]王新屏,张显库,关巍,等.一种简捷的非线性鲁棒控制算法.2008 Chinese Control and Decision Conference,Yantai,China,2008,3005-3010.
    [23]王新屏,张显库.基于Backstepping与闭环增益成形的减摇鳍控制.大连海事大学学报.2008,34(3):89-92.
    [24]Guan W,Zhang X K,Wang X P.Concise Nonlinear Adaptive Robust Control of ship Steering Systems.2009 IEEE International Conference on Automation and Logistics,ShengYang, 2009:343-346.
    [25]张显库,杨盐生,郭晨.舵鳍联合减摇的鲁棒控制系统.交通运输工程学报.2006,6(4):71-74.
    [26]张显库.离散型闭环增益成形算法及其应用.中国航海.2006,(3):4-6,
    [27]张显库,张丽坤,杨承恩.闭环增益成形算法在舵阻摇系统中的应用.中国航海.2004,59(2):20-24.
    [28]张显库,吕晓菲,郭晨,等.船舶航向保持的鲁棒神经网络控制.船舶力学.2006,10(5):54-58.
    [29]张显库,尹勇,金一丞.海上搜救模拟器的直升机悬停鲁棒控制.中国航海.2008,31(1):1-5.
    [30]张杨,张显库.强风中普通锚泊商船动力定位的研究.船舶工程.2008,30(2):58-62.
    [31]张显库.具有对偶极点的不稳定过程的鲁棒控制.系统工程与电子技术.2008,30(5):898-900.
    [32]张显库.汽车防抱死制动系统的鲁棒控制.重庆工学院学报.2008,22(7):1-5.
    [33]张显库.水翼艇纵向运动多变量鲁棒控制.中国造船.2009,50(1):55-59.
    [34]张显库.闭环增益成形算法的模型摄动.应用科技.2009,36(3):35-37.
    [35]贾欣乐,杨盐生.船舶运动数学模型-机理建模与辨识建模.大连:大连海事大学出版社,1999.
    [36]C.G.Kaellstroem,K.J.Aestroem, N.E.Thorell,et al.Adaptive autopilots for tanks.Automatica.1979,15 (2):241-254.
    [37]J.V.Amerongen.Adaptive steering of ships:a model reference approach. Automatica.1984, 20(1):3-14.
    [38]黄继起.自适应控制理论及其在船舶系统中的应用.北京:国防工业出版社,1992.
    [39]T.Holzhiiter.LQG approach for the high-precision track control of ships.IEEE Proceedings of Control Theory and Applications.1997,144(2):121-127.
    [40]蒋丹东,贾欣乐.海上神经网络控制器的海上验证.大连海事大学学报.1998,24(1):1--4.
    [41]N.A.J.Witt,R.Sutton, K.M.Miller.Recent technological advances in the control and guidance of ships.Journal of Navigation.1994,47(2):236-258.
    [42]吕进,郭晨.船舶航向的神经网络并行鲁棒模型参考控制.系统仿真学报.2007,19(15):3489-3493.
    [43]J.V.Amerongen,H.R.Van Nauta Lemke,J.C.T.Van der Veen.Autopilot for ships designed with fuzzy sets.IFAC on Digital Compute Application to Process Control,USA,1977.
    [44]Yang Yansheng,Zhou Changjiu,Ren Junsheng.Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems.Applied Soft Computing Journal.2003,3(4):305-316.
    [45]Shen Zhipeng,Guo Chen.Fuzzy self-tuning PID steering control for ultra large container ship.Proceedings of the World Congress on Intelligent Control and Automation,2008: 7657-7660.
    [46]李文魁,田蔚风,陈永冰,等.船舶运动混合智能控制评述.武汉理工大学学报.2009,33(3):466-470.
    [47]Yang Guoxun,Guo Chen,Jia Xinle,et al.Hybrid intelligent control algorithm to ship steering based on soft computing.Proceedings of the World Congress on Intelligent Control and Automation(WCICA),2002, Vol.4:2978-2982.
    [48]Guo Chen,Ye Zhen,Sun Zengqi,et al.A hybrid fuzzy cerebella model articulation controller based autonomous controller.Computers and Electrical Engineering.2002,28(1):1-16.
    [49]B.Samanta,C.Nataraj.Design of intelligent ship autopilots using particle swarm optimization.2008 IEEE Swarm Intelligence Symposium,2008,September 21-23.
    [50]M.J.Grimble,S.A.Carr,M.R. Katebi.Integrated ship control using Hoo robust design techniques.Proceedings of the IEEE Conference on Control Applications,1994,Vol.2:1087-1091.
    [51]D.S.Desanj,M.J.Grimble,M.R.Katebi.State-space adaptive H∞ controller with application to a ship control system.Transactions of the Institute of Measurement and Control, 1997,19(3):139-153.
    [52]V.A.Abramovsky,V.M.Abramovsky,E.B.Kat.Robust stabilization of SES heaving and pitching.Ship Control Systems Symposium,Proceedings,1997, Vol.1:551-565.
    [53]Hwang Cheng-Neng,Yang Joe-Ming,Chiang Chung-Yen.The design of fuzzy collision-avoidance expert system implemented by H-autopilot.Journal of Marine Science and Technology.2001,9(1):25-37.
    [54]Wang XingCheng,Wang Ran.Two-Degree-of-Freedom H∞ control of ship steering.Proceedings of the World Congress on Intelligent Control and Automation (WCICA),2002, Vol.1:763-767.
    [55]Wang XingCheng,Ren Ying.H∞, control of ship steering 2004 IEEE Conference on Robotics.Automation and Mechatronics,2004, Vol.2:1198-1202.
    [56]Yang Pao-Hwa, Hu Shr-Shiung,Juang J. Y.Design of a nonlinear H∞ controller applied to a ship control system.IEEE Conference on Control Applications Proceedings,2000, Vol.1:349-354.
    [57]Hu Shr-Shiung,Yang Pao-Hwa,J.Y.Juang,et al.Robust nonlinear ship course-keeping control by H∞ I/O linearization and μ-synthesis.International Journal of Robust and Nonlinear Control.2003,13(1):55-70.
    [58]Tan Feng-yang,Yamato Hiroyuki,Koyama Takeo.H∞ control design to include nonlinearities.Second report:Nonlinearities in equations of motion.Journal of Marine Science and Technology.2002,6(3):148-157.
    [59]N.A. Fairbairn,M.J.Grimble.H∞ robust controller for self-tuning applications part 3 self-tuning controller implementation.International Journal of Control.1990,52(1):15-36.
    [60]D.S.Desanj, M.J.Grimble,M.R.Katebi.State-space adaptive Hoo controller with application to a ship control system.Transactions of the Institute of Measurement and Control.1997,19(3):139-153.
    [61]D.C.Donha,D.S.Desanj,M.R.Katebi,M.J.Grimble.H∞ adaptive controllers for auto-pilot applications.International Journal of Adaptive Control and Signal Processing.1998,12(8):623-648.
    [62]袁士春,郭晨,史成军.基于线性变参数的船舶运动H∞控制及仿真.大连海事大学学报.2007,33(2):88-91.
    [63]Yang Yansheng.Output feedback adaptive robust control algorithm applied to ship steering autopilot with uncertain nonlinear system.Proceedings of the World Congress on Intelligent Control and Automation(WCICA),2002, Vol.3:2487-2491.
    [64]Yang Yansheng,Zhou Changjiu,Ren Junsheng.Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems.Applied Soft Computing Journal.2003,3(4):305-316.
    [65]Shichun Yuan,Chen Guo,Zhipeng Shen.Ship steering adaptive robust control based on Kalman filtering.Proceedings of the World Congress on Intelligent Control and Automation (WCICA),2006, Vol.1:2189-2193.
    [66]Tahoun Ali Husin,Abouelsoud Ahmed Ali, Mahmoud Magdi Sadek,et al.An approach for robust SISO adaptive control.Mediterranean Journal of Measurement and Control.2006,2(4):186-193.
    [67]T.I.Fossen,J.P.Strand.Tutorial on nonlinear backstepping:Applications to ship control.Modeling,Identification and Control.1999,20(2):83-134.
    [68]Du Jia-Lu,Guo Chen.Nonlinear adaptive design for course-tracking control of ship without a priori knowledge of control gain.Control Theory and Applications.2005,22(2):315-320.
    [69]张显库,郭晨,杜佳璐.船舶航向不对称信息理论与非线性逆推鲁棒控制算法.交通运输工程学报.2006,6(2):47-50.
    [70]K.D.Do,Z.P.Jiang,J.Pan.Robust adaptive path following of underactuated ships.Proceedings of the IEEE Conference on Decision and Control,2002,Vol.3:3243-3248.
    [71]K.D.Do,Z.P.Jiang,J.Pan.Robust global stabilization of underactuated ships on a linear course:State and output feedback.International Journal of Control.2003,76(1):1-17.
    [72]Li Tieshan,Yang Yansheng.Robust dissipative design for straight-line tracking control of underactuated ship.Proceedings of the World Congress on Intelligent Control and Automation (WCICA),2004,Vol.1:548-552.
    [73]Li Tieshan,Yang Yansheng,Hong Biguang,et al.A robust adaptive nonlinear control approach to ship straight-path tracking design.Proceedings of the American Control Conference,2005, Vol.6:4016-4021.
    [74]李铁山,杨盐生,洪碧光,等.船舶航迹控制鲁棒自适应模糊设计.控制理论与应用.2007,24(3):445-448.
    [75]Li Wenkui,Tian Weifeng,Zhou Gang,etc.Direct compensative robust optimal control (DCROC) law for ship straight-line track-keeping.Journal of Shanghai Jiaotong University (Science).2007,12(3):364-369.
    [76]Liu Yang,Guo Chen.The robust adaptive design of straight-line tracking control.Proceedings of the World Congress on Intelligent Control and Automation (WCICA),2008,8932-8935.
    [77]许叙遥.船舶减摇技术的若干研究.哈尔滨:哈尔滨工程大学,2003.
    [78]A.H.霍洛季林.船舶的耐波性和在波浪上的稳定措施.北京:国防工业出版,1980.
    [79]N.A.Hickey,M.J.Grimble,M.A.Johnson,et al.Robust fin roll stabilization of surface ships.Proceedings of the IEEE Conference on Decision and Control,1997,Vol.5:4225-4230.
    [80]Liu Sheng,Sun Jingchuan,Chen Shengzhong.Ship's fin stabilizer H∞ control under sea wave disturbance.Canadian Conference on Electrical and Computer Engineering,1999, Vol.2:891-895.
    [81]张晓宇,沈冬祥.基于LMI的船舶主鳍/襟翼鳍鲁棒控制研究.系统仿真学报.2008,20(12):3250-3252.
    [82]K.D.Do,J.Pan.Nonlinear robust fin roll stabilization of surface ships using neural networks.Proceedings of the IEEE Conference on Decision and Control,2001, Vol.3: 2726-2731.
    [83]Yang Yansheng,Zhou Changjiu.Design of fuzzy adaptive robust control algorithm via small gain approach.IEEE International Conference on Plasma Science,2002,Vol.1:650-655.
    [84]王新屏,张显库,关巍.船舶舵鳍联合控制的综述.中国航海.2009,32(2):20-25.
    [85]许可建,刘维亭,朱志宇,等.船舶减摇控制方法综述.船舶.2004,Vol.5:14-17.
    [86]P.Tristan.Ship motion control-course keeping and roll stabilization using rudder and fin.Springer,2005.
    [87]金鸿章,李国斌.船舶特种装置控制系统.北京:国防工业出版社,1995.
    [88]A.E. Baitis.The development and evaluation of a rudder roll stabilization system for the WHEC Hamilton Class.Report DTNSRDC/SPD-0930-02,Bethesda, Md, USA,1980.
    [89]E.Baitis,D.A.Woolaver,T.A.Beck.Rudder roll stabilization for coast guards cutters and frigates.Naval Engineering Journal.1983, Vol.91:267-282.
    [90]杨承恩,田园,毕英君.船舶舵阻摇技术的回顾与展望.世界海运.2002,25(4):4-7.
    [91]葛德宏,高启孝,陈永冰,李安.舰船舵阻摇技术的研究现状及展望.舰船科学技术.2007,29(4):22-26.
    [92]J.B.Carley.Feasibility Study of Steering and Stabilizing by Rudder.Proceeding of SCSS75, 2,The Hague,The Netherlands,1975:172-194.
    [93]J.N.Sgobbo,M.G.Parsons. Rudder/fin roll stabilization of the USCG WMEC 901 class vessel.Marine Technology.1999,36(3):157-170.
    [94]J.B.Carley,A.Duberley.Design considerations for optimum ship motion.3rd Ship Control System Symposium, Bath, UK,1972.
    [95]P.H.Whyte.On the application of modern control theory on the ship roll stabilisation.Canada Drb Drea Report,79/2,1979.
    [96]M.J.Grimble,M.R.Katebi,Y.Zang.H∞ based ship fin/rudder roll stabilisation design.10th Ship Control Systems Symposium,1993:5.225-5.265.
    [97]M.J.Grimble,S.A.Carr, M.R.Katebi.Integrated ship control using Hoo robust design techniques.Proceedings of the IEEE Conference on Control Applications,1994,Vol.2:1087-1091.
    [98]M.T.Sharif, G.N.Roberts,R.Sutton.Integrated robust ships roll stabilisation.IEEE Control Conference 94,1994:1566-1571.
    [99]M.T.Sharif, G.N. Roberts.Robust fin/rudder ship roll stabilisation.Proceedings of the Third IEEE Conference on Control Applications,1994.
    [100]M.T.Sharif, G.N.Roberts,R.Sutton.Full-scale experimental results of fin/rudder roll stabilisation.MCMC'94, Southampton.
    [101]M.T.Sharif, G.N.Roberts,R.Sutton.Sea-trial experimental results of fin/rudder roll stabilisation.Control Engineering Practice.1995,3(5):703-708.
    [102]M.T.Sharif, G.N.Roberts,R.Final experimental results of full scale fin/rudder roll stabilisation sea trials.Control Engineering Practice.1996,4(3):377-384.
    [103]A.Agarwal.H∞ robust control technology applied to the design of a combined steering/stabilizer system for warships.Ship Control Systems Symposium,1997, Vol.1:85-99.
    [104]P.Crossland.The effect of roll-stabilisation controllers on warship operational performance.Control Engineering Practice.2003,11(4):423-431.
    [105]H.Tanguy,G.Lebre,O.Doucy.Multi-objective optimization of PID and Hoo fin/rudder roll controllers.5th Conference on Maneuvering and Control of Marine Craft,2003,Girona,Spain.
    [106]H.Tanguy,G.Lebre.A gain scheduled control law for fin/rudder roll stabilisation of ships.IFAC Conference on Control Applications in Marine Systems 2004, Ancona, Italy.
    [107]H.Tanguy,G.Lebre.Fin rudder roll stabilisation of ships:a gain scheduling control methodology.Proceeding of the 2004 American Control Conference, Boston, USA.
    [108]V.Chereau, H.Tanguy,G.Lebre.Interpolated versus polytic gain scheduling control laws for fin/rudder roll stabilisation of ships.Proceedings of the 44th IEEE Conference on Decision and Control,and The European Control Conference 2005,Seville,Spain.
    [109]于萍,刘胜.基于Hoo设计法的非线性舵鳍联合控制系统仿真研究.系统仿真学报.2002,14(8):1040-1044.
    [110]刘胜,方亮,于萍.船舶舵/鳍联合减摇鲁棒控制研究.哈尔滨工程大学学报.2007,28(10):1109-1115.
    [111]胡跃明.非线性控制系统理论与应用.北京:国防工业出版社,2001.
    [112]H.K.Khalil.Nonlinear Systems.NJ:Printice Hall,1996.
    [113]慕春棣,梅生伟,申铁龙.非线性系统鲁棒控制理论的一些新进展.控制理论与应用.2001,18(1):1-6.
    [114]P.Kokotovic,M.Arcak.Constructive nonlinear control:A historic perspective.Automatic.2001,37(5):637-662.
    [115]J.Tsinias.Sufficient Lyapunov-like conditions for stabilization.Mathematics of control, signals,and systems.1989, Vol.2:343-357.
    [116]I.Kanellakopoulos,P.Kokotovic,A.S.Morse.Systematic design of adaptive controllers for feedback linearizable systems.IEEE Trans on AC.1991,36(11):1241-1253.
    [117]E.D.Sontag,H.J.Sussmann.Further comments on the stabilizability of the angular velocity of a rigid body.Systems and Control letters.1989,12(3):213-217.
    [118]P.V.Kokotovic,H.J.Sussmann.A positive real condition for global stabilization of nonlinear systems.Systems and Control letters.1989,13(2):125-133.
    [119]R. Marino,T.Patrizio.Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems.Automatica.1993,29(1):181-1889.
    [120]M.Krstic,I.Kanellakopoulos,P.V.Kokotovic.Nonlinear and Adaptive Control Design, John Wiley and Sons,New York,1995.
    [121]杨俊华,吴捷,胡跃民.反步方法原理及在非线性鲁棒控制中的应用.控制与决策.2002,Vol.17:641-647.
    [122]董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用.控制与决策.2006,21(10):1081-1086.
    [123]T. I.Fossen.Guidance and Control of Ocean Vehicles.John Wiley and Sons,1994.
    [124]T.I.Fossen,J.P.Strand.Tutorial on nonlinear backstepping:Applications to ship control.Modeling,Identification and Control.1999,20(2):83-134.
    [125]T.I.Fossen,J.P.Strand.Nonlinear ship control on tutorial session.IFAC Conference On Control Applications in Marine Systems (CAMS'98).October 27-30,Fukuoka,Japan,1998.
    [126]王兴成,姜晓红,张健.非线性船舶航向控制器Backstepping设计.控制工程.2002,9(5):63-65.
    [127]杜佳璐,郭晨,李铁山.基于逆推算法的非线性船舶航向跟踪控制器.大连海事大学学报.2004,30(2):8-11.
    [128]孔令涛,杜佳璐,王玉杰.基于逆推非线性阻尼算法的船舶航向控制器设计.大连海事大学学报.2006,32(4):61-64.
    [129]杜佳璐,郭晨,杨承恩.船舶航向非线性系统的自适应跟踪控制器设计.应用科学学报.2006,24(1):83-88.
    [130]林永屹,杜佳璐,牛杰.基于Backstepping的船舶航向自适应鲁棒非线性控制器设计.船舶工程.2007,29(1):24-27.
    [131]柳丽萍,杜佳璐,王兴成.基于积分逆推非线性阻尼算法的船舶航向控制器设计.船舶工程.2008,30(5):42-45.
    [132]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社,2003.
    [133]吴敏,桂卫华,何勇.现代鲁棒控制.长沙:中南大学出版社,2006.
    [134]王新屏.舵鳍联合系统的简捷非线性鲁棒控制:(博士学位论文).大连:大连海事大学,2008.
    [135]韩曾晋.自适应控制.北京:清华大学出版社,1995.
    [136]K.J.Astrom,B.Wittenmark.Adaptive control.Addison Wesley,1989.
    [137]贾欣乐,杨盐生.船舶运动数学模型-机理建模与辨识建模.大连:大连海事大学出版社,1998.
    [138]张显库,王新屏,朱璐.关于船舶Nomoto模型的进一步思考.航海技术.2008,30(2):2-4.
    [139]Van Amerongen J.Adaptive steering of ships:a model reference approach to improved maneuvering and economical course-keeping,Ph.D.Thesis,Technical Uni.of Delft, Netherlands,1982.
    [140]张显库,金一承.控制系统建模与数字仿真.大连:大连海事大学出版社,2004.
    [141]杨承恩,贾欣乐,毕英君.船舶舵阻横摇及其鲁棒控制.大连:大连海事大学出版社,2001.
    [142]盛振邦,刘应中.船舶原理.上海:上海交通大学出版社,2003.
    [143]古文贤.船舶操纵.大连:大连海运学院出版社,1993.
    [144]A.R.Benaskeur,A.Desbiens.Backstepping-Based Adaptive PID control.Proceedings of Control Theory and Applications.2002,149(1):54-59.
    [145]郭禹.航海学.大连:大连海运学院出版社,1999.
    [146]杨盐生,贾欣乐.不确定系统的鲁棒控制及其应用.大连:大连海事大学出版社,2003.
    [147]R.A.Ibrahim,I.M.Grace.Modeling of ship roll dynamics and its coupling with heave and pitch.Mathematical Problems in Engineering,2009:1-32.
    [148]P.Tristan.Ship Motion Control.Trondheim,Norway,2005.
    [149]M.Taylan.The effect of nonlinear damping and restoring in ship rolling. Ocean Engineering.2000,27(9):921-932.
    [150]S.Surendran,V.R.Reddy.Roll dynamics of a Ro-Ro ship.International Shipbuilding Progress.2002,49(4):301-320.
    [151]S.Surendran, V.R.Reddy.Numerical simulation of ship stability for dynamic environment.Ocean Engineering.2003,30(10):1305-1317.
    [152]S.Surendran,S.K.Lee,V.R.Reddy,et al.Non-linear roll dynamics of a Ro-Ro ship in waves.Ocean Engineering.2005,30(14):1305-1317.
    [153]S.Surendran,S.K.Lee,S.Y.Kim.Studies on an algorithm to control the roll motion using active fins.Ocean Engineering.2007,34(3):542-551.
    [154]K.D.Do,J.Pan.Nonlinear robust fin roll stabilization of surface ships using neural networks.Proceeding of 40th IEEE Conference on Decision and Control.Orlando,Florida, USA,2001:2726-2731.
    [155]A.Y. Odabasi,J.Vince.Roll response of a ship under the action of a sudden excitation.International Shipbuilding Progress.1982,29(340):327-328.
    [156]J.H.G.Wright,W.B.Marshfield.Ship roll response and capsize behavior in beam seas.Transactions RINA.1979,122:129-148.
    [157]N.A.Hickey,M.J.Grimble,M.A.Johnson,et al.Robust fin roll stabilisation of surface ships.Proceedings of 36th Conference on Decision and Control,San Diego, California USA,1997:4225-4230.
    [158]董文瀚,孙秀霞,林岩.飞机纵向运动模型参考反推自适应PID控制.控制与决策.2007,22(8):853-858.
    [159]Guan W, Zhang X K,Wang X P.Simple and direct nonlinear robust control of ship course-keeping.Journal of Dalian Maritime University.2009,35(3):43-47.
    [160]金鸿章.具有积分信号的舵/鳍联合控制系统的最优设计.中国造船.1989,(3):107-116.
    [161]张冰,许可建,姜长生.船舶舵鳍联合减摇模糊变结构控制研究.中国航海.2005,65(4):1-3.
    [162]王新屏,张显库,关巍.舵鳍联合非线性数学模型的建立及仿真.中国航海.2009,32(4):58-64.
    [163]王新屏.舵鳍联合系统的简捷非线性鲁棒控制:(博士学位论文).大连:大连海事大学,2009.
    [164]兰海.基于耗散理论的电力系统鲁棒非线性控制研究(博士学位论文).哈尔滨:哈尔滨工程大学,2004.
    [165]张稚彬.基于反步法的一类非线性系统的鲁棒自适应控制(硕士学位论文).成都:四川大学,2005.
    [166]胡江强.基于基于克隆选择优化的船舶航向自适应控制(博士学位论文).大连:大连海事大学,2008.
    [167]姜晓红.基于反基于非线性Backstepping的船舶航向控制器设计(硕士学位论文).大连:大连海事大学,2003.
    [168]石芳.鲁棒自适应航向控制器的设计(博士学位论文).大连:大连海事大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700