用户名: 密码: 验证码:
用于增强系统整体功角稳定性的电力系统稳定器参数协调设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电网“西电东送,南北互供,全国联网”的基本格局已经形成,各区域电网之间的电气连接和功率交换不断增强,电力系统低频振荡现象时有发生,而且在某些区域电网呈反复发生的趋势。国内外报道的低频振荡事故中,有不少是由大扰动激发后出现的。已有文献表明,用于抑制低频振荡的电力系统稳定器(PSS)装置在增强系统小扰动稳定性的同时,可能对系统暂态稳定性产生不利影响,甚至损害整体功角稳定性。本论文针对这种情况,从多机系统PSS参数协调设计问题入手,力图寻找一种平衡方案,使系统整体的功角稳定性得以提高。本论文取得的主要成果如下:
     本论文通过各种经典分析方法,证实了当PSS提供过强的阻尼转矩分量时,也会提供负的同步转矩分量,因此在增强系统小扰动稳定性的同时,可能会损害暂态稳定性。
     对现有采用模拟退火法协调设计多机PSS参数的方案提出改进,合理地处理了自变量取值约束。提出了一种新的目标函数,旨在保证系统特征值阻尼比和振荡频率位于某一预设范围;针对不同的研究系统,更容易合理地给出该目标函数中的预设门槛值。引入了另一种同样简单实用的模式搜索法来求解该优化问题。在十机新英格兰测试系统上验证了以上算法的效果和效率。
     进一步发展了用于多机系统PSS参数协调设计的轨迹灵敏度方法。通过轨迹灵敏度方法,获得系统动态性能指标相对于PSS待设计参数的梯度信息,给出更新PSS参数向量的搜索方向,能够找到使系统整体功角稳定性改善的PSS参数配置新方案。与原有实现相比,本论文在中间变量选取、公式推导、初值选择、取值范围约束处理、寻优区间排查、梯度向量信息利用等各方面作出改善。
     提出将基于最优控制变分法的轨迹逆积分技术用于求解上述的多机系统PSS参数协调设计问题。详细分析了上述两种方法的计算特点,找出了快捷高效的计算途径,对比了不同的计算方案,在四机双区域测试系统和十机新英格兰测试系统上取得满意的效果。
     尝试使用一种结构简单的附加逻辑控制器,消除PSS在遭受大扰动后可能对发电机的同步转矩分量产生的不利作用,在四机双区域测试系统和十机新英格兰测试系统上验证其效果。
The fundamental framework of Chinese national power grid has now been settled as“power transfer from West to East, between North and South, with countrywide interconnection”. The electrical link and power interchange between regional power systems have thus been greatly improved, but still low-frequency oscillations happen from time to time, especially in certain areas. Quite a few of the low-frequency oscillations reported at home and abroad are due to large disturbances. Power system stabilizers (PSS) could be detrimental to the transient stability while boosting the small-signal stability, with the whole rotor angle stability spoiled. This dissertation tries to solve the above issue by coordinated design of PSS parameters in the multi-machine power system. There are possible balancing solutions where the overall angle stability is enhanced. The contents of this dissertation are as follows.
     Using several classical analysis approaches, it is confirmed in this dissertation that the excessive damping torque component offered by PSS is accompanied by its negative synchronizing torque component, which is the cause for the boosted small-signal stability and the impaired transient stability.
     The current simulated annealing method used for coordinated PSS parameter design is improved on the treatment of the bound constraints of arguments. A new objective function is proposed to ensure the damping ratio and oscillation frequency within a specified range. The merit is that it is easy to specify reasonable gate values for different power systems. Pattern search, another simple and practical method, is also adopted to solve the proposed optimization problem. The effectiveness and efficiency of these methods are proved on the 10-generator New England test power system.
     The trajectory sensitivity (TS) method used for coordinated PSS parameter design is further developed by this dissertation. The TS method is utilized to compute the gradient vector of the dynamic performance index of the power system with respect to PSS parameters to be tuned. Moreover, the search direction for updating the PSS parameters is given, and new PSS parameter configuration could be found for better overall angle stability. Compared to the original implementation, the dissertation modifies the selection of intermediate variables, formula derivation, the pick up of initial values, the sifting of searching interval, the arrangement of gradient information etc.
     A technique called“backward integration along trajectory”(BIAT) based on the calculus of variation in optimal control is proposed to solve the aforementioned problem of coordinated PSS parameter design. The features of both the TS and BIAT methods are compared in details. Promising effect is suggested by the case studies on the 4-machine 2-area test power system and the 10-machine New England test power system.
     An additional logic controller with simple structure is proposed to remove the possible unfavorable effect offered by PSS on the synchronizing torque component for the generator. The results are tested on the aforementioned test power systems.
引文
[1] Prabha Kundur. Power system stability and control. New York: McGraw-Hill, 1994
    [2]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社, 2002
    [3]朱方,赵红光,刘增煌,寇惠珍.大区电网互联对电力系统动态稳定性的影响.中国电机工程学报, 2007, 27(1): 1-7
    [4]方思立,朱方.电力系统稳定器的原理及其应用.北京:中国电力出版社, 1996
    [5]罗国俊,徐显华,龙少清,李其昌.广东——香港联网系统的低频振荡.中国电机工程学报, 1986, 6(1): 29-35
    [6]蒙定中.防止广东电网大停电的建议.广东电力, 2005, 18(3): 1-12
    [7]袁季修.防御大停电的广域保护和紧急控制.北京:中国电力出版社, 2007
    [8]廉建华,陈迅.广东电网电力系统稳定器应用的现状与管理.广东电力, 2002, 15(5): 49-51
    [9]李渝.新疆主电网低频功率振荡分析.电网技术, 2001, 25(5): 46-48
    [10]余旭阳,何志华.全国联网条件下湖南电网低频振荡的研究.湖南电力, 2006, 26(1): 1-5
    [11]余保东,孙建波,汤胜祥等.湖北电网低频振荡计算分析.电力系统自动化, 2001, 39(15): 39-42
    [12]赵学强,杨增辉.华东——福建联网低频振荡问题分析.华东电力, 2006, 34(2): 21-24
    [13]王文新.二滩电站机组振荡现象及原因分析.水电自动化与大坝监测, 2007, 31(5): 81-84
    [14]秦文萍,徐红利.“9.1”蒙西电网机组低频振荡现象分析.太原理工大学学报, 2007, 38(1): 51-55
    [15]毛晓明,吴小辰.南方交直流并联电网运行问题分析.电网技术, 2004, 28(2): 6-13
    [16] W.-S. Kao. The effect of load models on unstable low-frequency oscillation damping in Taipower system experience w/wo power system stabilizers. IEEE Transactions on Power Systems, 2001, 16(3): 463-472
    [17]国家电力调度通信中心.电网典型事故分析(1999—2007年).北京:中国电力出版社, 2008
    [18]李丹,苏为民,张晶等.“9.1”内蒙古西部电网振荡的仿真研究.电网技术, 2006, 30(6): 41-47
    [19]朱方,刘增煌,高光华.电力系统稳定器对三峡输电系统动态稳定性的影响.电网技术, 2002, 26(8): 44-47
    [20]朱方,刘增煌,高光华.电力系统稳定器对三峡输电系统暂态稳定性的影响.中国电机工程学报, 2002, 22(11): 20-22
    [21] C. Q. Liu. A discussion of the WSCC 2 July 1996 outages. IEEE Power Engineering Review, 1998, 18(10): 60-61
    [22] D. N. Kosterev, C. W. Taylor, W. A. Mittelstadt. Model validation for the August 10, 1996 WSCC system outage. IEEE Transactions on Power Systems, 1999, 14(3): 967-979
    [23] L. Pereira, K. Kosterev, P. Mackin, et al. An interim dynamic induction model for stability studies in the WSCC. IEEE Transactions on Power Systems, 2002, 17(4): 1108-1115
    [24]竺士章.发电机励磁系统试验.北京:中国电力出版社, 2005
    [25]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响.中国电机工程学报, 2005, 25(11): 6-11
    [26]薛禹胜,郝思鹏,刘俊勇等.关于低频振荡分析方法的评述.电力系统自动化, 2009, 33(3): 1-8
    [27]刘取.电力系统稳定性及发电机励磁控制.北京:中国电力出版社, 2007
    [28]中华人民共和国国家经济贸易委员会. DL755-2001,电力系统安全稳定导则.中华人民共和国电力行业标准.北京:中国电力出版社, 2001-07-01
    [29]国家电网公司. Q/GDW 143-2006,电力系统稳定器整定试验导则.国家电网公司企业标准.北京:中国电力出版社, 2006-08-01
    [30] IEEE Power Engineering Society. IEEE Std 421.5-2005, IEEE recommended practice for excitation system models for power system stability studies. IEEE-SA Standards Board, 2005-10-25
    [31] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and classification of power system stability. IEEE Transactions on Power Systems, 2004, 19(2): 1387-1401
    [32]王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社, 2003
    [33] Graham Rogers. Power system oscillation. Norwell, Massachusetts: Kluwer Academic Publishers, 2000
    [34] Yao-nan Yu. Electric power System dynamics. New York: Academic Press, 1983
    [35]薛禹胜.运动稳定性分析量化理论——非自治非线性多刚体系统的稳定性分析.南京:江苏科学技术出版社, 1999
    [36]国家电网调[2006]161号,国家电网公司电力系统安全稳定计算规定及其编制说明.国家电网公司文件, 2006-3-14
    [37] W. G. Heffron, R. A. Phillips. Effect of a modern amplidyne voltage regulator on underexcited operation of large turbine generators. AIEE Transactions on Power Apparatus and Systems, 1952, 71(1): 692-697
    [38] F. P. de Mello, C. Concordia. Concepts of synchronous machine stability as affected by excitation control. IEEE Transactions on Power Apparatus and Systems, 1969, PAS-88(4): 316-329
    [39] F. P. de Mello, T. F. Laskowski. Concepts of power system dynamic stability. IEEE Transactions on Power Apparatus and Systems, 1975, PAS-94(3): 827-833
    [40] S. E. M. de Oliverira. Effect of excitation systems and of power system stabilisers on synchronous generator damping and synchronising torques. IEE Proceedings, Part C: Generation, Transmission and Distribution, 1989, 146(5): 264-270
    [41] M. Klein, G. J. Rogers, P. Kundur. A fundamental study of inter-area oscillations in power systems. IEEE Transactions on Power Systems, 1991, 6(3): 914-921
    [42] S. E. M. de Oliverira. Synchonizing and damping torque coefficients and power system steady-state stability as affected by static var compensators. IEEE Transactions on Power Systems, 1994, 9(1): 109-119
    [43] Y. Yu, H. A. M. Moussa. Optimal stabilization of a multi-machine system. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(3): 1174-1182
    [44] P. Pourbeik, M. J. Gibbard. Damping and synchronizing torques induced on generators by FACTS stabilizers in multimachine power systems. IEEE Transactions on Power Systems, 1996, 11(4): 1920-1925
    [45]王青,闵勇,张毅威.多机电力系统电磁转矩分析方法.清华大学学报(自然科学版), 2008, 48(1): 9-12
    [46] F. J. Swift, H. F. Wang. The connection between modal analysis and electric torque analysis in studying the oscillation stability of multi-machine power systems. Electrical Power and Energy Systems. 1997, 19(5): 321-330
    [47] M. J. Gibbard. Co-ordinated design of multimachine power system stabilisers based on damping torque concepts. IEE Proceedings, Part C: Generation, Transmission and Distribution, 1988, 135(4): 276-284
    [48] D. M. Lam, H. Yee. A study of frequency responses of generator electrical torques for power system stabilizer design. IEEE Transactions on Power Systems, 1998, 13(3): 1136-1142
    [49] M. J. Gibbard, D. J. Vowles, P. Pourbeik. Interactions between, and effectiveness of, power system stabilizers and FACTS device stabilizers in multimachine systems. IEEE Transactions on Power Systems, 2000, 15(2): 748-755
    [50] R. T. Alden, A. A. Shaltout. Analysis of damping and synchronizing torques, Part I—a general calculation method. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(5): 1696-1700
    [51] R. T. H. Alden, A. A. Shaltout. Analysis of damping and synchronizing torques, Part II—effect of operating conditions and machine parameters. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(5): 1701-1708
    [52] A. A. Shaltout, E. A. Abu Al-Feilat. Damping and synchronizing torque computation in multimachine power systems. IEEE Transactions on Power Systems, 1992, 7(1): 280-286
    [53]李鹏,余贻鑫,孙强,贾宏杰.基于Prony分析的多机系统电磁转矩系数计算.电网技术, 2006, 30(10): 39-44
    [54]李鹏.从平衡到振荡——基于区域、分岔及阻尼理论的电力系统稳定分析.天津大学博士学位论文, 2004
    [55]马燕峰,赵书强,顾雪平.基于改进多信号Prony算法的低频振荡传递函数降阶辨识及PSS的设计.电网技术, 2007, 31(17): 16-20
    [56] H. Ghasemi, C. Canizares. On-line damping torque estimation and oscillatory stability margin prediction. IEEE Transactions on Power Systems, 2007, 22(2): 667-674
    [57] E. Abu Al-Feilat, M. Bettayeb, H Al-Duwaish,M. Abido, A. Mantawy. A neural network-based approach for on-line dynamic stability assessment using synchronizing and damping torque coefficients. Electric Power Systems Research, 1996, 39(2): 103-110
    [58] E. A. Abu-Al-Feilat, N. Younan, S. Grzybowski. Estimating the synchronizing and damping torque coefficients using Kalman filtering. Electric Power Systems Research, 1999, 52(2): 145-149
    [59] V. Vittal, N. Bhatia, A. A. Fouad. Analysis of the inter-area mode phenomena in power systems following large disturbances. IEEE Transactions on Power Systems, 1991, 6(4): 1515-1521
    [60] L. Chih-Ming, V. Vittal, W. Kliemann, A. A. Fouad. Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields. IEEE Transactions on Power Systems, 1996, 11(2): 781-787
    [61] J. Thapar, V. Vittal, W. Kliemann, A. A. Fouad. Application of the normal form of vector fields to predict interarea separation in power systems. IEEE Transactions on Power Systems, 1997, 12(2): 844-850
    [62] G. Jang, V. Vittal, W. Kliemann. Effect of nonlinear modal interaction on control performance: use of normal forms technique in control design, Part I: general theory and procedure. IEEE Transactions on Power Systems, 1998, 13(2): 401-407
    [63] G. Jang, V. Vittal, W. Kliemann. Effect of nonlinear modal interaction on control performance: use of normal forms technique in control design, Part II: case studies. IEEE Transactions on Power Systems, 1998, 13(2): 408-413
    [64]徐东杰,贺仁睦,胡国强,许涛.正规形方法在互联电网低频振荡分析中的应用.中国电机工程学报, 2004, 24(3): 18-23
    [65] J. J. Sanchez-Gasca, V. Vittal, M. J. Gibbard et al. Inclusion of higher order terms for small-signal (modal) analysis: committee report. IEEE Transactions on Power Systems, 2005, 20(4): 1886-1904
    [66] N. Pariz, H. M. Shanechi, E. Vaahedi. Explaining and validating stressed power systems behavior using modal series. IEEE Transactions on Power Systems, 2003, 18(2): 778-785
    [67] H. M. Shanechi, N. Pariz, E. Vaahedi. General nonlinear modal representation of large scale power systems. IEEE Transactions on Power Systems, 2003, 18(3): 1103-1109
    [68]吴复霞,吴浩,韩祯祥,甘德强.电力系统非线性模式分析方法的比较.中国电机工程学报, 2007, 27(34): 19-25
    [69]王铁强,贺仁睦,王卫国等.电力系统低频振荡机理的研究.中国电机工程学报, 2002, 22(2): 21-25
    [70]汤涌.电力系统强迫功率振荡的理论基础.电网技术, 2006, 30(10): 29-33
    [71] I. Dobson, J. Zhang, S. Greene et al. Is strong modal resonance a precursor to power system oscillations? IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(3): 340-349
    [72] N. Kakimoto, A. Nakanishi, K. Tomiyama. Instability of interarea oscillation made by autoparametric resonance. IEEE Transactions on Power Systems, 2004, 19(4): 1961-1970
    [73] K. R. Padiyar, H. V. SaiKumar. Investigations on strong resonance in multimachine power systems with STATCOM supplementary modulation controllers. IEEE Transactions on Power Systems, 2006, 21(2): 754-762
    [74] A. Mees, L. Chua. The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems. IEEE Transactions on Circuits and Systems, 1979, 26(4): 235-254
    [75] V. Ajjarapu, B. Lee. Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system. IEEE Transactions on Power Systems, 1992, 7(1): 424-431
    [76]邓集祥,刘广生,边二曼.低频振荡中的Hopf分歧研究.中国电机工程学报, 1997, 17(6): 391-394
    [77] C. Hsiao-Dong, L. Chih-Wen, P. P. Varaiya, F. F. Wu, M. G. Lauby. Chaos in a simple power system. IEEE Transactions on Power Systems, 1993, 8(4): 1407-1417
    [78] J. Weijun, V. Venkatasubramanian. Hard-limit induced chaos in a single-machine-infinite-bus power system. Proceedings of the 34th IEEE conference on Decision and Control, 1995, 4: 3465-3470
    [79] E. Z. Zhou. Power oscillation flow study of electric power systems. Electrical Power and Energy Systems, 1995, 17(2): 143-150
    [80] C. Jing, J. D. McCalley, M. Kommareddy. An energy approach to analysis of interarea oscillations in power systems. IEEE Transactions on Power Systems, 1996, 11(2): 734-740
    [81] A. R. Messina, M. Ochoa, E. Barocio. Use of energy and power concepts in the analysis of the inter-area mode phenomenon. Electric Power Systems Research, 2002, 59(2): 111-119
    [82] D. Z. Fang, Y. Xiaodong, S. Wennan, H. F. Wang. Oscillation transient energy function applied to the design of a TCSC fuzzy logic damping controller to suppress power system interarea mode oscillations. IEE Proceedings, Part C: Generation, Transmission and Distribution, 2003, 150(2): 233-238
    [83] D. Z. Fang, Y. Xiaodong, T. S. Chung, K. P. Wong. Adaptive fuzzy-logic SVC damping controller using strategy of oscillation energy descent. IEEE Transactions on Power Systems, 2004, 19(3): 1414-1421
    [84]余贻鑫,王成山.电力系统稳定性理论与方法.北京:科学出版社, 1999
    [85]孙强,余贻鑫,李鹏,贾宏杰.与主导振荡模式有关的小扰动稳定域边界拓扑性质.电力系统自动化, 2007, 31(15): 6-10
    [86]孙强,余贻鑫.小扰动稳定域边界的超平面拟合及应用.天津大学学报, 2008, 41(6): 647-652
    [87]孙强.电力系统小扰动稳定域及低频振荡.天津大学博士学位论文, 2007
    [88]陈举华,许楠.电力系统小扰动稳定域应用研究.中国电机工程学报, 2004, 24(12): 52-57
    [89] H. G. Kwatny, X.-M. Yu. Energy analysis of load-induced flutter instability in classical models of electric power networks. IEEE Transactions on Circuits and Systems, 1989, 36(12): 1544-1557
    [90] T. S. Chung, D. Z. Fang. Fuzzy logic controller for enhancing oscillatory stability of AC/DC interconnected power system. Electric Power System Research, 2002, 61(3): 221-226
    [91]房大中,杨晓东,宋文南.提高交直流电力系统稳定性的HVDC模糊逻辑控制器.电力系统自动化, 26(6): 23-27
    [92] T. Smed, G. Andersson. Utilising HVDC to damp power oscillations. IEEE Transactions on Power Systems, 1993, 8(2): 620-627
    [93]杨晓东,房大中,刘长胜,宋文南.阻尼联络线低频振荡的SVC自适应模糊控制器研究.中国电机工程学报, 2003, 23(1): 55-59
    [94] N. Mithulananthan, C. A. Canizares, J. Reeve, G. J. Rogers. Comparison of PSS, SVC and STATCOM controllers for damping power system oscillations. IEEE Transactions on Power Systems, 2003, 18(2): 786-792
    [95] D. Z. Fang, S. Q. Yuan, Y. J. Wang, T. S. Chung. Coordinated parameter design of STATCOM stabiliser and PSS using MSSA algorithm. IET Generation, Transmission and Distribution, 2007, 1(4): 670-678
    [96] M. H. Haque. Damping improvement by FACTS devices: A comparison between STATCOM and SSSC. Electric Power Systems Research, 2006, 76(9): 865-872
    [97] M. A. Abido. Pole placement technique for PSS and TCSC-based stabilizer design using simulated annealing. Electrical Power and Energy Systems, 2000, 22(8): 543-554
    [98] K. L. Lo, T. T. Ma. UPFC damping control strategy based on transient energy function. Electric Power Systems Research, 2000, 56(3): 195-203
    [99]房大中,包顺先,杨晓东,王勇.基于振荡能量下降原理的UPFC模糊控制器设计.电力系统及其自动化学报, 2006, 18(3): 7-13
    [100] M. J. Basler, R. C. Schaefer. Understanding power-system stability. IEEE Transactions on Industry Applications, 2007, 44(2): 463-474
    [101] IEEE Power Engineering Society. IEEE Std 421.4-2004, IEEE guide for the preparation of excitation system specifications. IEEE-SA Standards Board, 2004-11-22
    [102] N. Martins, L. T. G. Lima. Determination of suitable locations for power system stabilizers and static VAR compensators for damping electromechanical oscillations in large power systems. IEEE Transactions on Power Systems, 1990, 5(4): 1455-1463
    [103] E. Z. Zhou, O. P. Malik, G. S. Hope. Theory and method for selection of power system stabilizer location. IEEE Transactions on Energy Conversion, 1991, 6(1): 170-176
    [104] H. F. Wang, F. J. Swift, M. Li. Indices for selecting the best location of PSSs or FACTS-based stabilisers in multimachine power systems by reduced-order modal analysis. IEE Proceedings, Part C: Generation, Transmission and Distribution, 1997, 144(2): 155-159
    [105] J. V. Milanovic, A. C. S. Dugue. Identification of electromechanical modes and placement of PSSs using relative gain array. IEEE Transactions on Power Systems, 2004, 19(1): 410-417
    [106]王青,闵勇,张毅威.电力系统低频振荡的机理研究和主要分析方法.电气应用, 2006, 25(7): 1-6
    [107] J. Rommes, N. Martins. Computing large-scale system eigenvalues most sensitive to parameter changes, with applications to power system small-signal stability. IEEE Transactions on Power Systems, 2008, 23(2): 434-442
    [108] K. E. Chu. On multiple eigenvalues of matrices depending on several parameters. SIAM Journal on Numerical Analysis, 1990, 27(5): 1368-1385
    [109] P. W. Sauer, C. Rajagopalan, M. A. Pai. An explanation and generalization of the AESOPS and PEALS algorithms. IEEE Transactions on Power Systems, 1991, 6(1): 293–299
    [110] J. A. Scott. An Arnoldi code for computing selected eigenvalue of sparse, real, unsymmetric matrices. ACM Transactions on Mathematical Software, 1995, 21(4): 432-475
    [111] K. E. Bollinger, R. Winsor, A. Campbell. Frequency response methods for tuning stabilizers to damp out tie-line power oscillations: theory and field-test results. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(5): 1509-1514
    [112] N. Martins. Efficient eigenvalue and frequency response methods applied to the power system small-signal stability studies. IEEE Transactions on Power Systems, 1986, 1(1): 217-224
    [113] G. J. W. Dudgeo, W. E. Leithead, A. Dysko, J. O’Reilly, J. R. McDonald. The effective role of AVR and PSS in power systems: frequency response analysis. IEEE Transactions on Power Systems, 2007, 22(4): 1986-1994
    [114] R. C. Burchett, G. T. Heydt. Probabilistic methods for power system dynamic stability studies. IEEE Transactions on Power Apparatus and Systems, 1978, PAS-97(3): 695-702
    [115] K. W. Wang. Robust PSS design based on probabilistic approach. PhD dissertation, The Hong Kong Polytechnic University, 2000
    [116]易海琼,程时杰,侯云鹤等.基于点估计的电力系统小扰动稳定概率分析.电力系统自动化, 2007, 31(23): 1-4
    [117]卢强,孙元章.电力系统非线性控制.北京:科学出版社, 1993
    [118]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制.北京:清华大学出版社, 2007
    [119]方思立,朱方.电力系统稳定器(PSS)在世界各地的使用情况.电网技术, 1994, 18(2): 15-19
    [120] IEEE Power Engineering Society. IEEE Std 421.2-1990, IEEE guide for identification, testing and evaluation of the dynamic performance of excitation control systems. IEEE-SA Standards Board, 1990-3-31
    [121] I. Kamwa, R. Grondin, G. Trudel. IEEE PSS2B versus PSS4B: the limits of performance of modern power system stabilizers. IEEE Transactions on Power Systems, 2005, 20(2): 903-915
    [122] K. Bollinger, A. Laha, R. Hamilton, T. Harras. Power stabilizer design using root locus methods. IEEE Transactions on Power Apparatus and Systems, 1975, PAS-94(5): 1484-1488
    [123] E. V. Larsen, D. A. Swann. Applying power system stabilizers, Part I: general concepts. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(6): 3017-3024
    [124] E. V. Larsen, D. A. Swann. Applying power system stabilizers, Part II: performance objectives and tuning concepts. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(6): 3025-3033
    [125] E. V. Larsen, D. A. Swann. Applying power system stabilizers, Part III: practical considerations. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(6): 3034-3046
    [126] J. H. Chow, J. J. Sanchez-Gasca. Pole-placement designs of power system stabilizers. IEEE Transactions on Power Systems, 1989, 4(1): 271-277
    [127] F. L. Pagola, J. I. Perez-Arriaga, G. C. Verghese. On sensitivities, residues and participations: applicants to oscillatory stability and control. IEEE Transactions on Power Systems, 1989, 4(1): 278–285
    [128] R. G. Farmer, B. L. Agrawal. State-of-the-art technique for power system stabilizer tuning. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(3): 699-709
    [129]刘豹,唐万生.现代控制理论(第3版).北京:机械工业出版社, 2006
    [130] J. M. Undrill. Dynamic stability calculation for an arbitrary number of interconnected synchronous machines. IEEE Transactions on Power Apparatus and Systems, 1968, PAS-87(3): 835-844
    [131] F. P. deMello, P. J. Nolan, T. F. Laskowski, J. M. Undrill. Coordinated application of stabilizers in multimachine power systems. IEEE Transactions on Power Apparatus and Systems, 1980, PAS-99(3): 892-901
    [132] G. C. Verghese, I. J. Perez-Arriaga, F. C. Schweppe. Selective modal analysis with applications to electric power systems, Part II: the dynamic stability problem. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(9): 3126-3134
    [133] R. T. Byerly, R. J. Bennon, D. E. Sherman. Eigenvalue analysis of synchronizing power flow oscillations in large electric power systems. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(1): 235-243
    [134]郭建峰,张建芬,王克文.电力系统稳定器参数的协调优化.郑州大学学报(工学版), 2005, 26(2): 55-59
    [135] Z. Wang, C. Y. Chung, K. P. Wong, C. T. Tse. Robust power system stabiliser design under multi-operating conditions using differential evolution. IET Generation, Transmission and Distribution, 2008, 2(5): 690-700
    [136] Y. L. Abdel-Magid, M. A. Abido. Optimal multiobjective design of robust power system stabilizers using genetic algorithms. IEEE Transactions on Power Systems, 2003, 18(3): 1225-1132
    [137]周保荣.电力系统阻尼控制器参数优化设计研究.天津大学博士学位论文, 2004
    [138] M. J. Gibbard. Robust design of fixed-parameter power system stabilisers over a wide range of operating conditions. IEEE Transactions on Power Systems, 1991, 6(2): 794-800
    [139]石颉,王成山.基于线性矩阵不等式理论的广域电力系统状态反馈控制器设计.电网技术, 2008, 32(6): 36-41
    [140]石颉,王成山.考虑广域信息延迟影响的H∞阻尼控制器.中国电机工程学报, 2008, 28(1): 30-34
    [141]辛焕海,吴荻,甘德强,邱家驹.基于饱和系统理论的电力系统稳定器性能分析方法.中国电机工程学报, 2007, 27(31): 14-19
    [142]卢强,梅生伟,郑少明.大型同步发电机组NR-PSS白山电厂300MW机组现场试验.中国科学E辑:技术科学, 2007, 37(7): 975-978
    [143] T. Hiyama, M. Kugimiya, H. Satoh. Advanced PID type fuzzy logic power system stabilizer. IEEE Transactions on Energy Conversion, 1994, 9(3): 514-520
    [144] F. Mrad, S. Karaki, B. Copti. An adaptive fuzzy-synchronous machine stabilizer. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 2000, 30(1): 131-137
    [145] R. You, H. J. Eghbali, M. H. Nehrir. An online adaptive neuron-fuzzy power system stabilizer for multimachine system. IEEE Transactions on Power Systems, 2003, 18(1): 128-135
    [146] Y. L. Abdel-Magid, M. A. Abido, S. Al-Baiyat, A. H. Mantawy. Simultaneous stabilization of multimachine power systems via genetic algorithms. IEEE Transactions on Power Systems, 1999, 14(4): 1428-1439
    [147] M. A. Abido, Y. L. Abdel-Magid. Robust design of multimachine power system stabilisers using tabu search algorithm. IEE Proceedings, Part C: Generation, Transmission and Distribution, 2000, 147(6): 387-394
    [148] M. A. Abido. Robust design of multimachine power system stabilizers using simulated annealing. IEEE Transactions on Energy Conversion, 2000, 15(3): 297-304
    [149] Y. L. Abdel-Magid, M. A. Abido. Robust tuning of power system stabilizers in multimachine power systems. IEEE Transactions on Power Systems, 2000, 15(2): 735-740
    [150] M. A. Abido. Optimal design of power-system stabilizers using particle swarm optimization. IEEE Transactions on Energy Conversion, 2002, 17(3): 406-413
    [151] M. A. Abido, Y. L. Abdel-Magid. Optimal design of power system stabilizers using evolutionary programming. IEEE Transactions on Power Systems, 2002, 17(4): 429-436
    [152] P. Kundur, M. Klein, G. J. Rogers, M. S. Zywno. Application of power system stabilizers for enhancement of overall system stability. IEEE Transactions on Power Systems, 1989, 4(2): 614-626
    [153] R. G. Harley, T. A. deMeillon, W. Janischewskyj. The transient stabilization of a synchronous machine by discontinuous supplementary excitation control. IEEE Transactions on Power Apparatus and Systems, 1985, PAS-104(6):1394-1399
    [154] R. Grondin, I. Kamwa, L. Soulieres, J. Potvin, R. Champagne. An approach to PSS design for transient stability improvement through supplementary damping of the common low-frequency. IEEE Transactions on Power Systems, 1993, 8(3): 954-963
    [155] K. T. Law, D. J. Hill, N. R. Godfrey. Robust controller structure for coordinated power system voltage regulator and stabilizer design. IEEE Transactions on Control Systems Technology, 1994, 2(3): 220-232
    [156] B. Chaudhuri, R. Majumder, B. C. Pal. Application of multiple-model adaptive control strategy for robust damping of interarea oscillations in power systems. IEEE Transactions on Power Systems, 2004, 12(5): 727-736
    [157] R. J. Koessler. Techniques for tuning excitation system parameters. IEEE Transactions on Power Systems, 1988, 3(4): 785-791
    [158]赵书强,常鲜戎,贺仁睦,马燕峰. PSS控制过程中的借阻尼现象与负阻尼效应.中国电机工程学报, 2004, 24(5): 7-11
    [159]陶向宇,刘增煌,赵红光.多机电力系统广泛配置PSS的可行性研究.电网技术, 2008, 32(22): 29-34
    [160]孙扬声.自动控制理论.北京:中国电力出版社, 2004
    [161]李基成.现代同步发电机励磁系统设计与应用.北京:中国电力出版社, 2002
    [162]陆继明.同步发电机微机励磁控制.北京:中国电力出版社, 2006
    [163]沈善德.电力系统辨识.北京:清华大学出版社, 1993
    [164]鞠平,代飞.电力系统广域测量技术.北京:机械工业出版社, 2008
    [165] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery. Numerical recipes: the art of scientific computation (3rd Edition). London: Cambridge University Press, 2007
    [166]房大中,牛伟,周保荣.多机系统中电力系统稳定器与可控串联补偿阻尼控制器的协调设计.天津大学学报, 2006, 39(8): 895-900
    [167]刘鹏程,纪晨.改进的模拟退火——单纯形综合反演方法.地球物理学报, 1995, 38(2): 199-205
    [168]曹治国,汪勇.基于模拟退火——单纯形法的目标函数的优化.华中科技大学学报(自然科学版), 2005, 33(6): 67-69
    [169]武志刚.用模拟退火算法进行并联电容补偿优化的研究.天津大学硕士学位论文, 1999
    [170] T. Athay, R. Podmore, S. Virmani. A practical method for the direct analysis of transient stability. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(2): 573-584
    [171] M. A. Pai. Energy function analysis for power system stability. Norwell, Massachusetts: Kluwer Academic Publishers, 1989
    [172] [Online] http://psdyn.ece.wisc.edu/IEEE_benchmarks/index.htm
    [173] R. Hooke, T. A. Jeeves. Direct search soluteion of numerical and statistical problems. Journal of the Association of Computing Machinery, 8 (1961): 212-229
    [174] R. M. Lewis, V. Torczon, M. W. Trosset. Direct search methods: then and now. Journal of Computational and Applied Mathematics, 124 (2000) : 191-207
    [175] R. M. Lewis, V. Torczon. Pattern search algorithm for bound constrained minimization. SIAM Journal on Optimization, 1999, 9(4): 1082-1099
    [176] R. M. Lewis, V. Torczon. A globally convergent augmented lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM Journal on Optimization, 2002, 12(4): 1075-1089
    [177] E. D. Dolan, R. M. Lewis, V. Torczon. On the local convergence of pattern search. SIAM Journal on Optimization, 2003, 14(2): 567-583
    [178] P. M. Frank. Introduction to system sensitivity theory. New York: Academic Press, 1978
    [179] M. Eslami. Theory of sensitivity in dynamic systems. New York: Springer, 1994
    [180] H. K. Khalil. Nonlinear systems (3rd Edition). New Jersey: Prentice Hall, 2001
    [181] C. C. Lee, O. T. Tan. A weighted-least-squares parameter estimator for synchronous machines. IEEE Transactions on Power Apparatus and Systems, 1977, PAS-96(1): 97-101
    [182] J. J. Sanchez-Gasca, C. J. Bridenbaugh, C. E. J. Bowler, J. S. Edmonds. Trajectory sensitivity based identification of synchronous generator and excitation system parameters. IEEE Transactions on Power Systems, 1988, 3(4): 1814-1822
    [183] S. M. Benchluch, J. H. Chow. A trajectory sensitivity method for the identification of nonlinear excitation system models. IEEE Transactions on Energy Conversion, 1993, 8(2): 159-164
    [184] Ian A. Hiskens. Nonlinear dynamic model evaluation from disturbance measurements. IEEE Transactions on Power Systems, 2001, 16(4): 702-710
    [185] M. J. Laufenberg, M. A. Pai. A new approach to dynamic security assessment using trajectory sensitivity. IEEE Transactions on Power Systems, 1998, 13(3): 953-958
    [186] I. A. Hiskens, M. Akke. Analysis of the Nordel power grid disturbance of January 1, 1997 using trajectory sensitivities. IEEE Transactions on Power Systems, 1999, 14(3): 987-993
    [187] I. A. Hiskens, M. A. Pai. Trajectory sensitivity analysis for hybrid systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(2): 204-220
    [188] I. A. Hiskens. Power system modeling for inverse problems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(3): 539-551
    [189] T. B. Nguyuen, M. A. Pai. Dynamic security-constrained rescheduling of power system using trajectory sensitivities. IEEE Transactions on Power Systems, 2003, 18(2): 848-854
    [190]周鲲鹏,陈允平.运用轨迹灵敏度的电力系统动态安全控制.电网技术, 2003, 27(12): 46-50
    [191] K. N. Shubhanga, A. M. Kulkarni. Determination of effectiveness of transient stability controls using reduced number of trajectory sensitivity compuations. IEEE Transactions on Power Systems, 2004, 19(1): 473-482
    [192]孙景强,房大中,周保荣.基于轨迹灵敏度的电力系统动态安全预防控制算法研究.电网技术, 2004, 28(21): 26-30
    [193]袁世强.基于混合算法与最小动能特性的暂态稳定预防控制研究.天津大学硕士学位论文, 2005
    [194] D. Z. Fang, S. Q. Yuan, T. S. Chung, K. P. Wong. Sensitivity-based hybrid approach for assessment of stability-constrained generation limit. IEE Proceedings, Part C: Generation, Transmission and Distribution, 2006, 153(3): 368-374
    [195]常乃超,陈得治,于文斌,郭志忠.基于受控微分——代数系统灵敏度分析的紧急控制.电力系统自动化, 2003, 27(17): 19-22
    [196]周保荣,房大中,孙景强.基于轨迹灵敏度分析的电力系统稳定器参数优化设计.电网技术, 2004, 28(19): 19-23
    [197] J. W. Park, I. A. Hiskens. Damping improvement through tuning controller limits of a series FACTS device. IEEE International Symposium on Circuits and Systems, 2005, 5: 5928-5301
    [198] D. Chatterjee, A. Ghosh. Transient stability assessment of power systems containing series and shunt compensators. IEEE Transactions on Power Systems, 2007, 22(3): 1210-1220
    [199]易海琼.基于轨迹灵敏度分析的电网临界切除时间的研究.重庆大学硕士学位论文, 2003
    [200]何仰赞,温增银,汪馥英,周勤慧电力系统分析.武汉:华中理工大学出版社, 1995
    [201]苏宏田.电力系统稳定性数字仿真算法的研究.天津大学硕士学位论文, 2005
    [202]杨晓东.基于组件树模型和双向迭代技术的暂态稳定仿真方法研究.天津大学博士学位论文, 2006
    [203] Michael T. Heath. Scientific Computation: an introductory survey (2nd Edition). New York: McGraw-Hill, 2002
    [204]胡寿松,王执铨,胡维礼.最优控制理论与系统(第二版).北京:科学出版社, 2005
    [205]孙景强.电力系统暂态稳定约束下的预防控制新算法研究.天津大学博士学位论文, 2005
    [206]房大中,孙景强.基于最优控制原理的暂态稳定预防控制模型.电力系统自动化, 2005, 29(1): 18-21
    [207]张芳.电力系统动态电压稳定控制算法研究.天津大学博士学位论文, 2006
    [208] D. Z. Fang, Y. Xiaodong, S. Jingqiang, Y. Shiqiang, Z. Yao. An optimal generation rescheduling approach for transient stability enhancement. IEEE Transactions on Power Systems, 2007, 22(1): 386-394
    [209]任伟,房大中,陈家荣,张芳.基于最优控制原理的电力系统紧急控制及应用.电网技术, 2009, 33(2): 8-13
    [210]王平洋,胡兆光.模糊数学在电力系统中的应用.北京:中国电力出版社, 1999
    [211] T. Hiyama. Robustness of fuzzy logic power system stabilizers applied to multimachine power system. IEEE Transactions on Energy Conversion, 1994, 9(3): 451-459
    [212] T. Hiyama, K. Miyazaki. Fuzzy logic excitation system for stability enhancement of power systems with multi-mode oscillations. IEEE Transactions on Energy Conversion, 1996, 11(2): 449-454
    [213] T. Hiyama, Y. Ueki, H. Andou. Integrated fuzzy logic generator controller for stability enhancement. IEEE Transactions on Energy Conversion, 1997, 12(4): 400-406
    [214] T. Hiyama, W. Hubbi. Fuzzy logic control scheme with variable gain for static VAR compensator to enhance power system stability. IEEE Transactions on Power Systems, 1999, 14(2): 186-191
    [215] C. W. Taylor, J. R. Mechenbier, C. E. Matthews. Transient excitation boosting at Grand Coulee Thired Power Plant: power system application and field test. IEEE Transactions on Power Systems, 1993, 8(3): 1291-1298
    [216] C. Liu. Laboratory verification of an excitation control system for increasing power transfer capability. International Journal of Electrical Power and Energy System, 1983, 5(2): 127-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700