用户名: 密码: 验证码:
农田氮转化运移及流失量模拟预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田排水对水环境的影响正日益受到国内外的关注,大量研究表明,地下排水中硝态氮的损失是地表水和地下水水质恶化的主要污染源,已构成水质环境恶化的一大威胁。由于农业生产活动对水土环境的影响是一个涉及多因素的复杂过程,因此,定量分析模型是目前研究农业水肥管理及氮污染控制预测的有效工具。
     本文在对现有模型进行综述和分析的基础上,建立了有机或无机肥应用模式的农田土壤中氮转化运移的机理模型。以建立在水动力学基础和水平衡基础上的土壤水热运动模型SWAP及DRAINMOD(DM)中的水热动态输出变量作为氮转化运移模型的驱动因子,构建了基于SWAP和DM水热模型的氮转化运移集成模型,构成农田水肥管理及氮肥对水土环境影响的评价模型,特别是预测农田排水沟(管)排出水中的硝态氮流失量。
     采用施用无机肥田间试验条件下3年的地下水位、地表和地下排水量、地表和地下硝态氮流失量的动态观测值,通过图形显示和统计参数指标分析方法,对集成DM水热模型的氮转化运移模型进行了性能检验;采用施用有机肥田间试验条件下1年的地下排水量、地下排水硝态氮流失量、土壤硝态氮含量动态观测值,对集成SWAP水热模型的氮转化运移模型进行了性能检验,模拟结果和实测结果吻合较好。采用不同土地利用条件下径流试验小区的地表径流观测值对地表径流子模块SCS法进行了检验,结果表明,SCS法可以较好的模拟地表径流量,其应用误差主要是系统性偏差。为消除系统误差,提出通过建立径流修正系数与降雨量的关系对模拟计算的径流过程进行改进的方法。
     对影响氮转化运移各过程的主要参数进行了敏感性分析,探讨了主要参数变化对氮动态的影响,对采用本文提出的模型或其它相似模型进行水土环境定量评价时参数的率定提供了判别标准。结合模型的应用预测评价、试验研究数据的对比分析及以往研究成果,对氮肥管理、灌溉管理、地下水位控制、耕作措施、作物系统、排水资源化利用对氮流失量的影响效果进行了分析,提出合理的农田管理措施。
The impacts of farmland drainage on water environment have received increasingly great attention from both at home and abroad. A number of studies have shown that nitrate-nitrogen (NO3--N) loss through subsurface drainage is a major source of pollution for surface and groundwater bodies and thus threatens the water environment. The complexity of factors and processes evaluating environmental impacts of agricultural activities makes model development an important tool in the agricultural water-fertilizer management and nitrogen pollution controlling.
     Based on summarization and analysis of available models, this paper developed a mechanism model of nitrogen transport and transformation in the farmland soil that is suitable for organic and inorganic fertilizer application. Coupled with soil water and heat model SWAP or DRAINMOD (DM), an integrated nitrogen-model that simulates vertical transport of water, nitrogen and heat flow and NO3--N loss was developed.
     By graphical display and statistical comparison of observed and simulated data, three-year field data receiving inorganic fertilizer application, including water table, daily surface runoff and subsurface drainage flow, and NO3--N losses, were used to test the nitrogen-model coupled with DM. In the same way, one-year field data from four test plots receiving liquid hog manure, including daily subsurface drainage flow and NO3--N losses, soil NO3--N content, were used to test the nitrogen-model coupled with SWAP. Results showed that the simulated and observed values were in good agreement. The event rainfall-runoff data from field runoff plots under different land uses were used to test the surface runoff sub-model SCS in the nitrogen-model. The result showed that SCS method could simulate satisfactorily the surface runoff, and the error of SCS application is mainly systemic bias. To reduce the potentially systemic biases, an improved method for runoff process was proposed, namely, a relationship between runoff correction coefficient and rainfall was used to improve the runoff process.
     The paper also carried out the sensitivity analysis of main parameters influencing nitrogen transport and transformation, discussed the impacts of main parameters variation on nitrogen transport, and provided the judgment for model calibration. Combined with model evaluation, comparison and analysis of experimental data, and previous researches, the impacts of farmland management measures on nitrogen losses were analyzed, including fertilizer and irrigation management, water-table controlling, tillage measures, crop system and drainage reuse, the reasonable farmland management measures were proposed.
引文
[1]曹志洪.施肥与水体环境质量.土壤, 2003, 35(5):353-363.
    [2]陈防,鲁剑巍,万开元.有机无机肥料对农业环境影响述评.长江流域资源与环境, 2004, 13 (3):258-261.
    [3]陈国湖.农业非点源污染模型AGNPS及GIS的应用.人民长江,1998, 29 (4):20-22.
    [4]陈军峰,陈秀万. SWAT模型的水量平衡及其在梭磨河流域的应用.北京大学学报:自然科学版, 2004, 40 (20):256-270
    [5]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析.农业工程学报, 2000, 16(5):44-47.
    [6]戴贤波. SCS模型在苏南地区的探索(EB/OL). [2007-9-27]. http://www.paper.edu.cn
    [7]丁丽.毕节市小麦微机优化配方施肥数学模型初探.贵州农业科学, 2004,32 (2):16-17.
    [8]段永惠,张乃明,张玉娟.农田径流氮磷污染负荷的田间施肥控制效应.水土保持学报, 2004, 18 (3):130-132.
    [9]冯绍元.排水条件下饱和非饱和土壤中氮素运移与转化规律的研究.武汉:武汉水利水电大学, 1993.
    [10]贺宝根,周乃,高效江,等.农田非点源污染研究中的降雨径流关系.环境科学研究, 2001, 14(3):41-51.
    [11]何萍,王家骧.非点源污染控制与管理研究的现状、困境与挑战.农业环境保护, 1999,18(5):234-237.
    [12]胡宏祥,洪天求,马友华.农业非点源污染及其防治策略研究.中国农学通报, 2005, 21(4):315-347.
    [13]胡雪涛,陈吉宁,张天柱.非点源污染模型研究.环境科学, 2002, 23 (3):124-128.
    [14]黄国勤,王兴祥,钱海燕,等.施用化肥对农业生态环境的负面影响及对策.生态环境,2004, 13(4):656-660.
    [15]黄俊,张旭,彭炯,等.暴雨径流污染负荷的时空分布与输移特性研究.农业环境科学学报, 2004, 23(2):255-258.
    [16]黄满湘,章申,张国梁,等.北京地区农田氮素养分随地表径流流失机理.地理学报, 2003, 58(1):147-154.
    [17]金洁,杨京平.从水环境角度探析农田氮素流失及控制对策.应用生态学报, 2005, 16(3):579-582.
    [18]金相灿.中国湖泊环境.北京:海洋出版社, 1995.
    [19]雷志栋,杨诗秀,谢传森.土壤水动力学.北京:清华大学出版社, 1988.
    [20]李保国,胡克林,黄元仿,等.土壤溶质运移模型的研究及应用.土壤, 2005, 37(4):345-352.
    [21]李志博,王起超,陈静.农业生态系统的氮素循环研究进展.土壤与环境, 2002, 11(4):417-421.
    [22]李志勇,陈建军,王璞.不同水氮优化组合模式对冬小麦产量形成及水氮资源利用效率的影响.华北农学报, 2005, 20 (2):66-71.
    [23]廖晓勇,张杨珠,刘学军,等.农田生态系统中土壤氮素行为的研究现状与展望.西南农业学报, 2001,14 (3):94-98.
    [24]刘枫,王华东,刘培桐.流域非点源污染的量化识别方法及其在于桥水库流域的应用.地理学报, 1988,43 (3):329-339.
    [25]鲁彩艳,陈欣.土壤氮矿化-固持周转(MIT)研究进展.土壤通报, 2003,34(5):473-477.
    [26]马军花,任理,龚元石,等.冬小麦生长条件下土壤氮素运移动态的数值模拟.水利学报, 2004,35(3):103-110
    [27]孟军,任喜英,葛家麒.有机肥对玉米生产效应的研究.东北农业大学学报, 1999,30(3): 235-239.
    [28]任理,马军花.考虑土壤中硝态氮转化作用的传递函数模型.水利学报, 2001,32(5):39-45.
    [29]施为光.四川省清平水库流域非点源污染负荷计算.重庆环境科学, 2000,22 (2):33-36.
    [30]王继红,刘景双,于君宝,等.农田生态系统氮、磷肥的环境效应.吉林农业大学学报, 2003, 25(3):327-331.
    [31]王丽,王金生,杨志峰,等.不流动水对包气带溶质运移的影响研究进展.水利学报, 2001, 32(12):68-73.
    [32]汪珊,张宏达,汪林.宁夏青铜峡灌区水土盐量的衰减和积聚进程分析.水利学报, 2005, 36 (3):365-377.
    [33]王少丽, Prasher S O, Yang Chun-chieh.排水氮运移模型对地表和地下排水量及硝态氮损失的模拟评价.水利学报, 2004,35 (9):111-117.
    [34]王少丽,许迪,方树星,等.水管理策略对土壤水盐动态和区域地下排水影响的模拟评价.水利学报, 2005,36 (7): 799-805.
    [35]王栓全,刘冬梅,张成娥,等.陕北新修梯田地膜小麦优化施肥栽培模式研究.西北农林科技大学学报:自然科学版, 2001,29 (6):18-21.
    [36]王小治,高人,朱建国,等.麦季施用不同尿素的氮排水和渗漏损失.农村生态环境, 2005, 21(1): 24-29.
    [37]王兴鹏,马轶,张维江,等. SCS模型在黄土丘陵因子径流场中的应用.宁夏工程技术, 2005, 4(2): 157-159.
    [38]王艳芳.土壤氮素转化与运移理论的研究进展.宁夏农学院学报, 2004, 25 (1):53-56.
    [39]王中根,刘昌明,黄友波. SWAT模型的原理、结构及应用研究.地理科学进展, 2003, 22(1):79 -86.
    [40]夏星辉,周劲松,杨志峰,等.黄河流域河水氮污染分析.环境科学学报, 2001, 21(5):563-568
    [41]邢光熹.中国农田N2O排放的分析估算与减缓对策.农村生态环境, 2000, 16 (4):1-6.
    [42]熊正琴.太湖地区湖、河和井水中氮污染状况的研究.农村生态环境, 2002,18 (2):29-33.
    [43]许月卿,邵晓梅.基于GIS和RUSLE的土壤侵蚀量计算.北京林业大学学报, 2006, 28(4):67-71.
    [44]杨树青,史海滨.微咸水灌溉条件下环境因子动态变化的预测.沈阳农业大学学报, 2004, 35(5/6):480-482.
    [45]叶优良,李隆,张福锁,等.灌溉对大麦/玉米带田土壤硝态氮累积和淋失的影响.农业工程学报, 2004,20 (5):105-109
    [46]于涛,陈静生.农业发展对黄河水质和氮污染的影响-以宁夏灌区为例.干早区资源与环境, 2004,18 (5):1-7.
    [47]张水龙,庄季屏.辽西易旱区典型小流域农业非点源污染形成的规律.水土保持学报, 2001, 15(3):81-84.
    [48]张思聪,吕贤弼,黄永刚.灌溉施肥条件下氮素在土壤中迁移转化的研究.水利水电技术, 1999,30 (5): 6-8.
    [49]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报, 1995,1 (2):80-87.
    [50]张兴昌.耕作及轮作对土壤氮素径流流失的影响.农业工程学报, 2002,18 (1):70-73.
    [51]张雪松,郝芳华,杨志峰.基于SWAT模型的中尺度流域产流产沙模拟研究.水土保持研究, 2003,10 (4):38-42.
    [52]张瑜芳,张蔚榛,沈荣开,等.排水农田中氮素转化运移和流失.武汉:中国地质大学出版社, 1997.
    [53]张玉铭,董文旭,曾江海,等.玉米地土壤反硝化速率与N2O排放通量的动态变化.中国生态农业学报, 2001, 9 (4):70-72.
    [54]张智,李灿,曾晓岚,等. QUAL2E模型在长江重庆段水质模拟中的应用研究.环境科学与技术, 2006,29 (1):1-3.
    [55]赵刚,张天柱,陈吉宁.用AGNPS模型对农田侵蚀控制方案的模拟.清华大学学报:自然科学版, 2002,42 (5):705-707.
    [56]赵允格,邵明安.不同施肥条件下农田硝态氮迁移的试验研究.农业工程学报, 2002, 18(4):37-40.
    [57]周春华,何锦,郭建青,等.降雨灌溉入渗条件下土壤水分运动的数值模拟.中国农村水利水电, 2007(3):40-43.
    [58]周志华,肖化云,刘丛强.土壤氮素生物地球化学循环的研究现状与进展.地球与环境, 2004,32 (3/4):21-26.
    [59]朱兆良.土壤氮素.北京:科学出版社,1988.
    [60] Adams M A, Attiwill P M. Nutrient cycling and nitrogen mineralization in eucalypt forests of southeastern Australia. II. Indices of nitrogen mineralization. Plant and Soil, 1986, 92(3):341-362.
    [61] Ahuja L R, DeCoursey D G, Barnes B B, et al. Characteristics of macropore transport studied with the ARS root zone water quality model. Trans ASAE, 1993, 36(2):369–380.
    [62] Alexander M. Introduction to soil microbiology. John Wiley and Sons, Inc., NY, 1977.
    [63] Bakhsh A, Kanwar R S, Jaynes D B, et al. Prediction of NO3–N losses with subsurface drainage water from manured and UAN–fertilized plots using GLEAMS. Trans ASAE, 2000, 43 (1): 69–77.
    [64] Balderston W L, Sherr B, Payne W J. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl Environ Microbiol, 1976, 31(4):504-508.
    [65] Beauchamp A E. Response of corn to nitrogen in preplant and sidedress application of liquid cattle manure. Can J Soil Sci, 1983, 63: 377-386.
    [66] Bengtson R L, Carter C E, Morris H F, et al. Reducing water pollution with subsurface drainage. Trans ASAE, 1984, 27(1):80-83.
    [67] Bicknell B R, Imhoff J C, Kittle J L, et al. Hydrological simulation program FORTRAN user’s manual for release 11. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA, 1997.
    [68] Boers P C M. Nutrient emissions from agriculture in the Netherlands: causes and remedies. Wat Sci Tech, 1996, 33(4/5):183-189.
    [69] Bowman R A, Focht D D. The influence of glucose and nitrate concentrations upon denitrification rates in a sandy soil. Soil Biol Biochem, 1974,6(5):297–301.
    [70] BrevéM A, Skaggs R W, Parsons J E, et al. DRAINMOD-N, A nitrogen model for artificially drained soils. Trans ASAE, 1997, 40 (4):1067-1075.
    [71] Brission N, Seguin B, Bertuzzi P. Agrometeorological soil water balance for crop simulation models. Agric For Meteorol, 1992, 59(3/4):267-278.
    [72] Burford J R, Bremner J M. Relationships between the denitrification capacities of soils and total water soluble and readily decomposable soil organic matter. Soil Biol Biochem, 1975, 7(6):389-394
    [73] Burton C H, Turner C T. Manure management: treatment strategies for sustainable agriculture. Silsoe Research Institute, UK, 2003.
    [74] Chambers B J, Lord E I, Nicholson F A, et al. Predicting nitrogen availability and losses following application of organic manures to arable land: MANNER. Soil Use Manage, 1999, 15(3):137-143
    [75] Christen E W, Skehan D. Design and management of subsurface horizontal drainage to reduce salt loads. J Irrig Drain Eng, 2001, 127(3): 148-155.
    [76] Chung S W, Gassman P W, Kramer L A, et al. Validation of EPIC for two watersheds in southwest Iowa. J Environ Qual, 1999, 28(3):971-979.
    [77] Coats J C, Smith B D. Dead-end pore volume and dispersion in porous and unsaturated sandstone. Soil Sci Soc Am Proc, 1964, 27: 258-262
    [78] Davis D M, Gowda P H, Mulla D J, et al. Modeling nitrate-nitrogen leaching in response to nitrogen fertilizer rate and tile drain depth or spacing for southern Minnesota, USA. J Environ Qual, 2000, 29(5):1568-1581.
    [79] De Smedt F, Wierenga P J. A generalized solution for solute flow in soils with mobile and immobile water. Wat Resour Res, 1979, 15(5): 1137-1141.
    [80] Elmaloglou St, Malamos N. Simulation of soil moisture content of a prairie field with SWAP93. Agric Water Manage, 2000, 43(2):139-149.
    [81] El-sadek A, Feyen J, Berlamont J. Comparison of models for computing drainage discharge. J Irrig Drain Eng, 2001,127(6): 363-369.
    [82] Eno C F. Nitrate production in the field by incubating the soil in polyethylene bags. Soc Am Proc, 1960, 24:277-279.
    [83] Feddes R A, Kowalik P J, Zaradny H. Simulation of field water use and crop yield. Simulation Monographs, Pudoc Wageningen, 1978.
    [84] Fisher M J, Fausey N R, Subler S E, et al. Water table management, nitrogen dynamics, and yields of corn and soybean. Soil Sci Soc Am J, 1999, 63(6):1786-1795.
    [85] Follett R F, Hatfield J L. Nitrogen in the environment: Sources, problems, and management. Amsterdam, The Netherlands, 2001.
    [86] Garcia L A, Manguerra H B, Gates T K. Irrigation-drainage design and management model development. J Irrig Drain Eng, 1995, 121(1): 71-82.
    [87] Hengnirun S. A computer simulation model for manurial nitrogen management: environmental aspects [D]. Macdonald Campus of McGill University, Canada, 1996.
    [88] Hubner C, Redl G, Wurst F. In situ methodology for studying N-mineralization in soils using anion exchange resins. Soil Biol Biochem, 1991, 23(7):701-702.
    [89] Hutchinson G L, Mosier A R. Improved soil cover method for field measurement of nitrous oxidefluxes. Soil Sci Soc Am J, 1981, 45(2):311-316.
    [90] Hutson J L, Wagenet R J. LEACHM: Leaching Estimation And Chemistry Model: A process based model of water and solute movement transformations, plant uptake and chemical reactions in the unsaturated zone. SCAS Research Series No.92-3. New York: CornellUniversity, Ithaca, NY, 1992.
    [91] Jaynes D B,Colvin T S, Karlen D L, et al. Nitrate Loss in Subsurface Drainage as Affected by Nitrogen Fertilizer Rate. J Environ Qual, 2001, 30(4):1305-1314.
    [92] Jenny H. Factors of soil formation. MCGraw-hill, New York, 1938.
    [93] Johnsson H, Bergstrom L, Jansson P E, et al. Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric Ecosyst Environ, 1987,18(4):333-356.
    [94] Jokela W E. Nitrogen fertilizer and dairy manure effects on corn yield and soil nitrate. Soil Sci Soc Am J, 1992, 56(1): 148-154.
    [95] Kaffka S, Oster J, Corwin D. Forage production and soil reclamation using saline drainage water // Proc of National Alfafa Symp and 34th CA Alfafa Symp San Diego, CA. Department of Agricultural and Range Science Cooperative Extension, UC Davis, USA, 2004: 247-253.
    [96] Kanwar R S, Baker J L. Tillage and chemical management effects on groundwater quality // Proc Agric Res to Protect Water Quality, Minneapolis, MN. Soil and Water Conserv Soc, Ankeny, IA, 1993: 455–459.
    [97] Kanwar R S,Colvin T S, Karlen D L. Ridge, moldboard, chisel, and no-till effects on tile water quality beneath two cropping systems. J Prod Agric, 1997, 10:227-234.
    [98] Karlen D L, Wollenhaupt N C, Erbach D C, et al. Long-term tillage effects on soil quality. Soil Tillage Res, 1994, 32(4):313-327.
    [99]Katupitiya A, Eisenhauer D E, Ferguson R B, et al. Long-term tillage and crop rotation effects on residual nitrate in the crop root zone and nitrate accumulation in the intermediate vadose zone. Trans ASAE, 1997, 40(5): 1321-1327.
    [100]Keeny D R, Bremner J M. A chemical index of soil nitrogen availability. Nature, 1966, 211(5051):892-893.
    [101]Kimball J M, Bartlett R J, McIntosh J L, et al. Fate of nitrate from manure and inorganic nitrogen in a clay soil cropped to continuous corn. J Environ Qual, 1972,1(4): 413-415.
    [102]Kirchmann H, Bergstrom L. Do organic farming practices reduce nitrate leaching. Commun Soil Sci Plant Anal, 2001, 32 (7/8): 997-1028.
    [103]Klemedtsson L, Svensson B H, Linberg T, et al. The use of acetylene inhibition of nitrous oxide reductase in quantifying denitrification in soils. Swed J Agric Res, 1978, 7:179-185.
    [104]Knisel W G. CREAMS:A field scale model of chemicals, runoff and erosion from agricultural management system. Report No.26. ARS, USDA, 1980.
    [105]Knisel W G, Davis F M, Leonard R A, et al. GLEAMS version 2.10 USDA-ARS, coastal plain experiment station. southeast watershed research laboratory. Tifton, Georgia,1993.
    [106]Kronvang B, Gr?sball P, Larsen S E, et al. Diffuse Nutrient Losses in Denmark. Wat Sci Tech, 1996, 33 (4): 81-88.
    [107]Lahlou M, Shoemaker L, Paquette M, et al. Better assessment science integrating point and non-point sources, BASINS Version 1.0 User’s Manual. EPA 823-R-96-001. U.S. Environmental Protection Agency, Office of Water, Washington, DC, 1996.
    [108]Lapidus L, Amundson N R. Mathematics of adsorption in beds VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns. J Phys Chem, 1952, 56(8): 984-988
    [109]Legg J O, Meisinger J J. Soil nitrogen budgets // Stevenson F J. Nitrogen in Agricultural Soils. Agron Monogr 22 ASA Madison WI, 1982:503-566.
    [110]Line D E, McLaughlin R A, Osmond D L, et al. Nonpoint Sources. Wat Environ Res, 1998, 70(4): 895-912
    [111]Luo W, Skaggs R W, Chescheir G M. DRAINMOD modifications for cold conditions. Trans ASAE, 2000, 43(6): 1569-1582
    [112]Luo W, Skaggs R W, Madani A, et al. Predicting field hydrology in cold conditions with DRAINMOD. Trans ASAE, 2001, 44(4): 825-834.
    [113]Maas E V, Hoffman G J. Crop salt tolerance-current assessment. J Irrig Drain Div, ASCE, 1977, 103(2):115-134
    [114]Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Wat Resour Res, 1976, 12(3):513-522.
    [115]Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool user’s manual: Version 2000. Temple, Texas: Blackland Research Center, Texas Agricultural Experiment Station, 2001.
    [116]Pain B F, Phillips V R, Clarkson C R, et al. Loss of nitrogen through NH3 volatilization during and following application of pig or cattle slurry to grassland. J Sci Food Agric, 1989, 47(1):1-12
    [117]Perret J, Prasher S O, Kantzas A, et al. A two-domain approach using CAT scanning to model solute transport in soil. J Environ Qual, 2000, 29(3): 995-1010.
    [118]Qadir M, Oster J D. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ, 2004, 323(1/2/3):1-19.
    [119]Randall G W, Iragavarapu T K. Impact of long-term tillage systems for continuous corn on nitrate leaching to tile drainage. J Environ Qual, 1995, 24(2):360-366
    [120]Randall G W, Huggins D R, Russell M P, et al. Nitrate losses through subsurface tile drainage in conservation reserve program, alfalfa, and row crop systems. J Environ Qual, 1997, 26(5):1240-1247
    [121]Rawls W J, Brakensiek D L. Estimation of soil water retention and hydraulic properties// Morel-Seytoux H J. Unsaturated flow in hydrologic modeling, theory and practice, Kluwer Academic Publ, Dordrecht, 1988.
    [122]Richter J, Nuske A. Optimized nitrogen mineralization parameters of loess soils from incubation experiments. Plant and Soil, 1982, 68 (3):379-388.
    [123]Sarwar A, Bastiaanssen W G M, Boers Th M, et al. Evaluating drainage design parameters for the fourth drainage project, Pakistan by using SWAP model: Part I– calibration. IrrigDrain Sys, 2000,14:257-280.
    [124]Shaffer M J, Halvorson A D, Pierce F J. Nitrate leaching and economic analysis package (NLEAP): Model description and application // Follett R.F, Keeney D R, Cruse R M, Eds. Managing nitrogen for groundwater quality and farm profitability. Madison, WI: Soil Science Society of America, 1991:285-322.
    [125]Shannon M C, Grieve C M. Options for using low-quality water for vegetable crops. Hort Sci, 2000, 35 (6): 1058-1062.
    [126]Shukla M B, Prasher S O, Madani A, et al. Field validation of DRAINMOD in Atlantic Canada. Can Agric Eng, 1994, 36(4): 205-213.
    [127]Simunek J, Van Genuchten M Th. Manual of HYDRUS-2D computer program for simulating water flow, heat, and solute transport in variably saturated porous media. USDA, Riverside, CA, 1999.
    [128]Singh P, Kanwar R S. Preferential solute transport through macropores in large undisturbed soil columns. J Environ Qual, 1991, 20 (1): 295-300.
    [129]Skaggs R W. A water management model for shallow water table soils. Technical Report134. Univ of North Carolina Water Resources Research Institute, Raleigh NC, 1978.
    [130]Skaggs R W. DRAINMOD reference report. Interim technical release, Biological and Agricultural Engineering Department, North Carolina State University, Raleigh NC, 1989.
    [131]Stanford G, Smith S J. Nitrogen mineralization potentials of soils. Soc Am Proc, 1972, 36 (4): 65-72.
    [132]Stanford G, Legg J O, Smith S J. Soil nitrogen availability evaluations based on nitrogen mineralization potentials of soils and uptake of labled and unlabled nitrogen by plants. Plant and Soil, 1973, 39(1):113-124.
    [133]Stanford G, Dzienia S, Vanderpol R A. Effects of temperature on denitrification rate in soil. Soil Sci Soc Am J, 1975, 39(5):867-870.
    [134]U.S. Department of Agriculture, Soil Conservation Service (USDA-SCS). National Engineering Handbook, Hydrology Section 4, Washington, DC, USA, 1972.
    [135]USEPA. PLOAD Version 3.0– An Arc/View GIS tool to calculate non-point sources pollution in watershed and storm water project, User’s manual[EB/OL]. [2001-01]. http://www.epa.gov/waterscience/basins/b3docs/PLOAD_v3.pdf
    [136]Vanclooster M, Viaene P, Diels J, et al. WAVE, a mathematical model for simulating water and agrochemicals in the soil and the vadose environment, reference and user’s manual, release 2.0, Inst for Land and Water Mgmt, Katholieke Universiteit Leuven, Leuven, Belgium, 1994.
    [137]Van Dam J C, Huygen J, Wesseling J G, et al. Theory of SWAP version 2.0. Simulation of water, solute transport and plant growth in the soil-water-atmosphere-plant environment. Report 71. Dep. Water Resources, Wageningen Agricultural University, 1997.
    [138]Van Drecht G, Bouwmann A F, Knoop J M, et al. Global pollution of surface waters from point and nonpoint sources of nitrogen. Sci World J, 2001, 2: 632-641.
    [139]Van Genuchten M Th, Wierenga P J. Mass transfer studies in sorbing porous media I, Analytical solutions. Soil Sci Soc Am J, 1976, 40(4): 473-480.
    [140]Van Genuchten M Th. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J, 1980, 44(5): 892-898.
    [141]Van Genuchten M Th, Wierenga P J. Two-site/two-region models for pesticide transport and degradation: Theoretical development and analytical solutions. Soil Sci Soc Am J, 1989, 53(5):1303-1310
    [142]Van Kessel J S, Reeves J B, Meisinger J J. Nitrogen and carbon mineralization of potential manure components. J Environ Qual, 2000, 29(5):1669-1677.
    [143]Van Vosselen A, Verplanckea H, Van Ranst E. Assessing water consumption of banana: traditional versus modelling approach. Agric Water Manage, 2005, 74 (3): 201-218.
    [144]Waring S A, Bremner J M. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature, 1964, 201(4922): 951-952.
    [145]Wesstrom I, Messing I. Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops. Agric Water Manage, 2007, 87(3): 229-240.
    [146]Young R A. AGNPS: A non-point source pollution model for evaluating agricultural watersheds. J Soil Wat Conserv, 1989, 44 (2): 168-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700