用户名: 密码: 验证码:
1型多聚ADP核糖合成酶调控代谢性核受体转录激活的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:高胆固醇饮食(HCD)是引起高胆固醇血症的重要原因之一。本部分主要目的是研究在小鼠肝脏中PARP1参与调节高胆固醇血症的作用及机制。
     方法和结果:使用蛋白印迹实验等方法检测老鼠肝脏中PARP活性,血生化检测及病理学检查监测血及肝脏中胆固醇,低密度脂蛋白等脂质成分变化和肝脏脂质沉积水平。使用实时定量PCR法检测老鼠肝脏中胆固醇代谢相关基因RNA表达水平,凝胶迁移电泳检测老鼠肝脏中肝X受体α(LXRα)DNA结合能力。结果显示,HCD引起野生型老鼠肝脏PARP激活,使用PARP抑制剂改善HCD引起的血脂异常和肝脏脂质沉积。进一步的研究发现PARP抑制剂能够增强肝脏组织中LXRα的DNA结合能力,并显著增加老鼠肝脏中胆固醇代谢相关基因表达水平;然而PARP1基因敲除并不能改善血脂紊乱,反而抑制肝脏中LXRα胆固醇代谢相关靶基因表达。此外,PARP1基因敲除消除了PARP抑制剂降低血及肝脏胆固醇沉积,促进胆固醇相关基因表达等保护作用。
     结论:PARP1在HCD引起的胆固醇代谢紊乱的机制中起重要作用。
     目的:肝X受体α(LXRα)参与人体脂质代谢,细胞增殖、分化,免疫,炎症等生理活动。本部分主要目的是研究PARP1对LXRα转录调控的作用及机制。
     方法和结果:蛋白印迹实验、免疫沉淀实验、PARP活性检测等方法证实LXR人工配体能够降低体内外蛋白核糖化程度。凝胶迁移电泳、染色质免疫沉淀、报告基因、蛋白印迹、实时定量PCR等方法证实活化的PARP1可催化LXRα的核糖化,使其DNA结合能力下降,从而降低其转录活性。然而未核糖化的PARP1能够促进LXRα结合与靶基因启动子上的LXR结合位点,并增强其转录活性。
     结论:PARP1在LXRα转录调控中起重要作用。LXR的配体激活形式是通过抑制核糖化水平实现的,LXRα调控的强度及时程与由PARP1所致的核糖化水平相关。
     目的:法尼酯X受体(FXR)是重要的肝脏保护因子。本部分主要目的是研究PARP1对FXR转录调控的作用及机制。
     方法和结果:蛋白印迹、免疫沉淀技术等方法证实活化的PARP1可催化FXR配体结合域的核糖化。凝胶迁移电泳、染色质免疫沉淀、报告基因、实时定量PCR等方法使FXR的DNA结合能力下降,从而降低其转录活性。蛋白印迹实验、免疫沉淀实验、PARP活性检测、免疫沉淀技术、蛋白印迹实验等方法证实FXR人工配体能够降低核糖化程度,从而促进FXR的转录激活。
     结论:PARP1在FXR转录调控中起重要作用。FXR的配体激活形式是通过抑制核糖化水平实现的,FXR调控的强度及时程与由PARP1所致的核糖化水平相关。
Chronic high cholesterol diet (HCD) is one major cause of hypercholesterolemia. To explorewhether or not hepatic poly(ADP-ribose) polymerase (PARP)1is involved in the HCD-inducedabnormalities in cholesterol metabolism, we employed the rodent model of HCD-inducedhypercholesterolemia, and biochemically studied the role of PARP1in cholesterol metabolism.HCD-feeding promoted hepatic PARP1activation. Treatment with PARP inhibitor preventedHCD-induced hypercholesterolemia and hepatic lipid accumulation. Further studies revealed thatinhibition of PARP activity stimulated the hepatic expression of liver X receptor (LXR) α targetgenes involved in cholesterol metabolism, and enhanced the LXRα-LXR response element complexformation in nuclear extracts from liver tissues. Knockout of PARP1failed to prevent HCD-inducedabnormalities in cholesterol metabolism, and inhibited LXRα target gene expression in liver.Moreover, the effects of PARP inhibitor on the HCD induced hypercholesterolemia, hepatic lipidaccumulation and expression of LXRα target genes were also diminished in PARP1knock out(PKO) mice. These results illustmicee that activation of PARP1plays a crucial role inHCD-induced abnormalities in cholesterol metabolism.
     Liver X receptor α (LXRα) functions importantly in lipid metabolism, cell proliferation anddifferentiation, reproduction, growth and development, immune and inflammation. In the absenceof ligand, LXRα binds to target promoter and inhibits transcription by recruiting nuclearco-repressors. Ligand binding causes an exchange of co-repressor with co-activator, thusstimulating transcription. Here, we report that poly(ADP-ribosyl)ation plays an essential role in thecontrol of LXRα mediated transcription. PARP1mediated poly(ADP-ribosyl)ation of LXRα anditself prevents LXRα binding to the target promoter, thus inhibiting transcription.Un-poly(ADP-ribosyl)ated PARP1assists LXRα binding to target promoter through directassociation with LXRα, thereby promoting transcription. We further demonstrate that LXR ligandsare potent PARP1inhibitors. Inhibition of poly(ADP-ribosyl)ation mediates the ligand-inducedLXRα activation. Thus, the strength and duration of LXRα dependent transcription is controlled bypoly(ADP-ribosyl)ation levels.
     Farnesoid X receptor α (FXR) is highly expressed in liver and regulates the expression ofvarious genes involved in liver repair. In this study, we demonstrated that activatedpoly(ADP-ribose) polymerase1(PARP1) promoted cell death by inhibiting the expressionof FXR dependent hepatoprotective genes. PARP1could bind to andpoly(ADP-ribosyl)ated FXR. Poly(ADP-ribosyl)ation dissociated FXR from FXR responseelement (FXRE) present in the promoter of target genes, and blocked FXR mediated genetranscription. Moreover, FXR agonist treatment attenuated poly(ADP-ribosyl)ation of FXRand promoted FXR dependant gene expression in cultured hepatic cells. Thus, our resultsidentified poly(ADP-ribosyl)ation of FXR by PARP1as a key step in oxidativestress-induced cell death. The molecular cooperation between PARP1and FXR intranscription activation provided a new insight into the mechanism underlying theinhibition of PARP1prevents liver injury.
引文
1. Evans RM. The steroid and thyroid hormone receptor superfamily. Science.1988;240(4854):889–95.
    2. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily:the second decade. Cell.1995;83(6):835–9.
    3. Olefsky JM. Nuclear receptor minireview series. J. Biol. Chem..2001;276(40):36863–4.
    4. Shi Y.Orphan nuclear receptors in drug discovery. Drug Discov Today.2007Jun;12(11-12):440-5.
    5. Novac N, Heinzel T. Nuclear receptors: overview and classification. Curr DrugTargets Inflamm Allergy.2004;3(4):335–46.
    6. Wójcicka G, Jamroz-Wi niewska A, Horoszewicz K, et al. Liver X receptors(LXRs). Part I: structure, function, regulation of activity, and role in lipidmetabolism.Postepy Hig Med Dosw (Online).2007Dec3;61:736-59.
    7. Ulven SM, Dalen KT, Gustafsson JA, et al. Lxr is crucial in lipid metabolism.Prostaglandins Leukot Essent Fatty Acids.2005;73:59-63
    8. Michael DR, Ashlin TG, Buckley ML, et al. Liver X receptors, atherosclerosis andinflammation. Curr Atheroscler Rep.2012Jun;14(3):284-93.
    9. Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclearsterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol.2012; Mar14;13(4):213-24.
    10. Jonker JW, Liddle C, Downes M. FXR and PXR: potential therapeutic targets incholestasis. J Steroid Biochem Mol Biol.2012; Jul;130(3-5):147-58.
    11. Murakami T, Yamada N. Molecular mechanism of insulin resistance inhyperlipidemia.Nihon Rinsho.1999; Dec;57(12):2657-61.
    12. de Murcia JM, Niedergang C, Trucco C, et al. Requirement of poly(ADP-ribose)polymerase in recovery from DNA damage in mice and in cells. Proc Natl AcadSci USA1997;94:7303–7307.
    13. Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymeraseinhibitors. Pharmacol Rev.2002Sep;54(3):375-429.
    14. D'Amours D, Desnoyers S, D'Silva I, et al. Poly(ADP-ribosyl)ation reactions inthe regulation of nuclear functions. Biochem J.1999Sep1;342(Pt2):249-68.
    15. Miyamoto T, Kakizawa T, Hashizume K. Inhibition of nuclear receptor signallingby poly(ADP-ribose) polymerase. Mol Cell Biol.1999Apr;19(4):2644-9
    1. Levine, G. N., J. F. Keaney, Jr., and J. A. Vita.1995. Cholesterol reduction incardiovascular disease. Clinical benefits and possible mechanisms. N Engl J Med332:512-521.
    2. Lehrke, M., C. Lebherz, S. C. Millington, H. P. Guan, J. Millar, D. J. Rader, J. M.Wilson, and M. A. Lazar.2005. Diet-dependent cardiovascular lipid metabolism controlledby hepatic LXRalpha. Cell Metab1:297-308.
    3. Desvergne, B., L. Michalik, and W. Wahli.2006. Transcriptional regulation ofmetabolism. Physiol Rev86:465-514.
    4. Ory, D. S.2004. Nuclear receptor signaling in the control of cholesterolhomeostasis: have the orphans found a home? Circ Res95:660-670.
    5. Makishima, M.2005. Nuclear receptors as targets for drug development:regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci97:177-183.
    6. D'Amours D, Desnoyers S, D'Silva I, et al. Poly(ADP-ribosyl)ation reactions inthe regulation of nuclear functions. Biochem J.1999Sep1;342(Pt2):249-68.
    7. Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymeraseinhibitors. Pharmacol Rev.2002Sep;54(3):375-429.
    8. Kim, M. Y., T. Zhang, and W. L. Kraus.2005. Poly(ADP-ribosyl)ation by PARP-1:'PAR-laying' NAD+into a nuclear signal. Genes Dev19:1951-1967.
    9. Kraus, W. L.2008. Transcriptional control by PARP-1: chromatin modulation,enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol20:294-302.
    10. Huang, D., Y. Wang, C. Yang, et al.2009. Angiotensin II promotespoly(ADP-ribosyl)ation of c-Jun/c-Fos in cardiac fibroblasts. J Mol Cell Cardiol46:25-32.
    11. Huang, D., Yang, C., Wang, Y., et al.(2009b). PARP-1suppresses adiponectinexpression through poly(ADP-ribosyl)ation of PPAR gamma in cardiac fibroblasts.Cardiovasc Res81,98-107.
    12. Schmiesing, J. A., A. R. Ball, Jr., H. C. Gregson, et al.1998. Identification of twodistinct human SMC protein complexes involved in mitotic chromosome dynamics. ProcNatl Acad Sci U S A95:12906-12911.
    13. Lee, J. Y., and J. S. Parks.2005. ATP-binding cassette transporter AI and its role inHDL formation. Curr Opin Lipidol16:19-25.
    14. Kennedy, M. A., G. C. Barrera, K. Nakamura, et al.2005. ABCG1has a criticalrole in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. CellMetab1:121-131.
    15. Huuskonen, J., V. M. Olkkonen, M. Jauhiainen, et al.2001. The impact ofphospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis155:269-281.
    16. Jiang, X. C., C. Bruce, J. Mar, er al.1999. Targeted mutation of plasmaphospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J ClinInvest103:907-914.
    17. Curtiss, L. K. ApoE in atherosclerosis: a protein with multiple hats. ArteriosclerThromb Vasc Biol.2000Aug;20(8):1852-3.
    18. Sehayek, E., S. Shefer, L. B. Nguyen, et al.2000. Apolipoprotein E regulatesdietary cholesterol absorption and biliary cholesterol excretion: studies in C57BL/6apolipoprotein E knockout mice. Proc Natl Acad Sci U S A97:3433-3437.
    19. Wójcicka G, Jamroz-Wi niewska A, Horoszewicz K, et al. Liver X receptors(LXRs). Part I: structure, function, regulation of activity, and role in lipidmetabolism.Postepy Hig Med Dosw (Online).2007Dec3;61:736-59.
    20. Geyeregger, R., M. Zeyda, and T. M. Stulnig.2006. Liver X receptors incardiovascular and metabolic disease. Cell Mol Life Sci63:524-539.
    21. Peet, D. J., S. D. Turley, W. Ma, et al. Cholesterol and bile acid metabolism areimpaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell.1998May29;93(5):693-704.
    22. Alberti, S., G. Schuster, P. Parini, et al. Hepatic cholesterol metabolism andresistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest.2001Mar;107(5):565-73.
    23. Joseph, S. B., E. McKilligin, L. Pei,et al. Synthetic LXR ligand inhibits thedevelopment of atherosclerosis in mice. Proc Natl Acad Sci U S A.2002May28;99(11):7604-9.
    24. Bischoff, E. D., C. L. Daige, M. Petrowski, et al.2010. Non-redundant roles forLXRalpha and LXRbeta in atherosclerosis susceptibility in low density lipoprotein receptorknockout mice. J Lipid Res51:900-906.
    25. Zhao, C., and K. Dahlman-Wright.2010. Liver X receptor in cholesterolmetabolism. J Endocrinol204:233-240.
    1. Willy PJ, Umesono K, Ong ES, et al. LXR, a nuclear receptor that defines a distinctretinoid response pathway. Genes Dev.1995May1;9(9):1033-45.
    2. Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation bylipid-activated nuclear receptors. Nature454:470-477.
    3. Wójcicka G, Jamroz-Wi niewska A, Horoszewicz K, et al. Liver X receptors(LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism.Postepy Hig Med Dosw (Online).2007Dec3;61:736-59.
    4. Geyeregger R, Zeyda M, Stulnig TM (2006) Liver X receptors in cardiovascularand metabolic disease. Cell Mol Life Sci63:524-539.
    5. Ory DS (2004) Nuclear receptor signaling in the control of cholesterol homeostasis:have the orphans found a home? Circ Res95:660-670.
    6. Desvergne B, Michalik L, Wahli W (2006) Transcriptional regulation of metabolism.Physiol Rev86:465-514.
    7. Makishima M (2005) Nuclear receptors as targets for drug development: regulationof cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci97:177-183.
    8. Li AC, Glass CK (2004) PPAR-and LXR-dependent pathways controlling lipidmetabolism and the development of atherosclerosis. J Lipid Res45:2161-2173.
    9. Zelcer N, Tontonoz P (2006) Liver X receptors as integrators of metabolic andinflammatory signaling. J Clin Invest116:607-614.
    10.36. D'Amours D, Desnoyers S, D'Silva I, et al. Poly(ADP-ribosyl)ation reactionsin the regulation of nuclear functions. Biochem J.1999Sep1;342(Pt2):249-68.
    11. Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymeraseinhibitors. Pharmacol Rev.2002Sep;54(3):375-429.
    12. Murawska M, Hassler M, Renkawitz-Pohl R, et al.(2011) Stress-induced PARPactivation mediates recruitment of Drosophila Mi-2to promote heat shock gene expression.PLoS Genet7: e1002206.
    13. Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1:'PAR-laying'NAD+into a nuclear signal. Genes Dev.2005Sep1;19(17):1951-67.
    14. Kraus WL (2008) Transcriptional control by PARP-1: chromatin modulation,enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol20:294-302.
    15. Zhang S, Lin Y, Kim YS, et al.(2007) c-Jun N-terminal kinase mediates hydrogenperoxide-induced cell death via sustained poly(ADP-ribose) polymerase-1activation. CellDeath Differ14:1001-1010.
    16. Kennedy, M. A., G. C. Barrera, K. Nakamura, et al.2005. ABCG1has a criticalrole in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. CellMetab1:121-131.
    17. Joseph SB, McKilligin E, Pei L,et al. Synthetic LXR ligand inhibits thedevelopment of atherosclerosis in mice. Proc Natl Acad Sci U S A.2002May28;99(11):7604-9.
    18. Zhao C, Dahlman-Wright K (2010) Liver X receptor in cholesterol metabolism. JEndocrinol204:233-240.
    19. Bakir F, Kher S, Pannala M, et al.(2007) Discovery and structure-activityrelationship studies of indole derivatives as liver X receptor (LXR) agonists. Bioorg MedChem Lett17:3473-3479.
    20. Kher S, Lake K, Sircar I, et al.(2007)2-Aryl-N-acyl indole derivatives as liver Xreceptor (LXR) agonists. Bioorg Med Chem Lett17:4442-4446.
    21. Albers M, Blume B, Schlueter T, et al.(2006) A novel principle for partial agonismof liver X receptor ligands. Competitive recruitment of activators and repressors. J BiolChem281:4920-4930.
    22. Collins JL, Fivush AM, Watson MA,et al. Identification of a nonsteroidal liver Xreceptor agonist through parallel array synthesis of tertiary amines. J Med Chem.2002May9;45(10):1963-6.
    23. Travins JM, Bernotas RC, Kaufman DH, et al.(2010)1-(3-Aryloxyaryl)benzimidazole sulfones are liver X receptor agonists. Bioorg Med ChemLett20:526-530.
    24. Southan GJ, Szabo C (2003) Poly(ADP-ribose) polymerase inhibitors. Curr MedChem10:321-340.
    25. Jagtap PG, Baloglu E, Southan GJ, et al.(2005) Discovery of potentpoly(ADP-ribose) polymerase-1inhibitors from the modification ofindeno[1,2-c]isoquinolinone. J Med Chem48:5100-5103.
    26. Verschuren L, de Vries-van der Weij J, Zadelaar S, et al.(2009) LXR agonistsuppresses atherosclerotic lesion growth and promotes lesion regression in apoE*3Leidenmice: time course and mechanisms. J Lipid Res50:301-311.
    27. Huang, D., Yang, C., Wang, Y., et al.(2009b). PARP-1suppresses adiponectinexpression through poly(ADP-ribosyl)ation of PPAR gamma in cardiac fibroblasts.Cardiovasc Res81,98-107.
    28. Kotova E, Jarnik M, Tulin AV (2009) Poly (ADP-ribose) polymerase1is requiredfor protein localization to Cajal body. PLoS Genet5: e1000387.
    29. Huang, D., Yang, C.Z., Yao, L. et al.(2008). Activation and overexpression ofPARP-1in circulating mononuclear cells promote TNF-alpha and IL-6expression inpatients with unstable angina. Arch Med Res39,775-784.
    1. Kassam A, Miao B, Young PR, et al. Retinoid X receptor (RXR) agonist-inducedantagonism of farnesoid X receptor (FXR) activity due to absence of coactivatorrecruitment and decreased DNA binding. J Biol Chem278:10028-32,2003.
    2. Lee FY, Lee H, Hubbert ML,et al. FXR, a multipurpose nuclear receptor. TrendsBiochem Sci.2006Oct;31(10):572-80.
    3. Otte K, Kranz H, Kober I, et al. Identification of farnesoid X receptor beta as anovel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol23:864-72,2003.
    4. Seol W, Choi HS, Moore DD. Isolation of proteins that interact specifically withthe retinoid X receptor: two novel orphan receptors. Mol Endocrinol.1995Jan;9(1):72-85.
    5. Zhang Y and Edwards PA: FXR signaling in metabolic disease. FEBS Lett582:10-8,2008.
    6. Meng Z, Wang Y, Wang L, et al. FXR regulates liver repair after CCl4-inducedtoxic injury. Mol Endocrinol24:886-97,2010.
    7. Chen WD, Wang YD, Zhang L, et al. Farnesoid X receptor alleviates age-relatedproliferation defects in regenerating mouse livers by activating forkhead box m1btranscription. Hepatology51:953-62,2010.
    8. Zhang L, Wang YD, Chen WD, et al. Promotion of liver regeneration/repair byfarnesoid X receptor in both liver and intestine in mice. Hepatology56:2336-43,2012.
    9. Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymeraseinhibitors. Pharmacol Rev.2002Sep;54(3):375-429.
    10. Yamagoe S, Kohda T, Oishi M (1991) Poly(ADP-ribose) polymerase inhibitorssuppress UV-induced human immunodeficiency virus type1gene expression at theposttranscriptional level. Mol Cell Biol11:3522–3527.
    11. Komjáti K, Besson VC, Szabó C. Poly (adp-ribose) polymerase inhibitors aspotential therapeutic agents in stroke and neurotrauma. Curr Drug Targets CNS NeurolDisord.2005Apr;4(2):179-94.
    12. D'Amours D, Desnoyers S, D'Silva I, et al. Poly(ADP-ribosyl)ation reactions inthe regulation of nuclear functions. Biochem J.1999Sep1;342(Pt2):249-68.
    13. L nn P, van der Heide LP, Dahl M, et al. PARP-1attenuates Smad-mediatedtranscription. Mol Cell.2010Nov24;40(4):521-32
    14. Conner GE, Salathe M and Forteza R. Lactoperoxidase and hydrogen peroxidemetabolism in the airway. Am J Respir Crit Care Med166: S57-61,2002.
    15. Mangerich A and Burkle A. Pleiotropic cellular functions of PARP1in longevityand aging: genome maintenance meets inflammation. Oxid Med Cell Longev2012:321653,
    2012.
    16. Gibson GE, Zhang H, Xu H, et al. Oxidative stress increases internal calciumstores and reduces a key mitochondrial enzyme. Biochim Biophys Acta1586:177-89,
    2002.
    17. Wang YD, Yang F, Chen WD, et al. Farnesoid X receptor protects liver cells fromapoptosis induced by serum deprivation in vitro and fasting in vivo. Mol Endocrinol22:1622-32,2008.
    18. Oumouna-Benachour K, Hans CP, Suzuki Y, et al. Poly(ADP-ribose) polymeraseinhibition reduces atherosclerotic plaque size and promotes factors of plaque stability inapolipoprotein E-deficient mice: effects on macrophage recruitment, nuclear factor-kappaBnuclear translocation, and foam cell death. Circulation.2007May8;115(18):2442-50.
    19. Cavone L and Chiarugi A. Targeting poly(ADP-ribose) polymerase-1as apromising approach for immunomodulation in multiple sclerosis? Trends Mol Med18:92-100,2012.
    20. Koh SH, Park Y, Song CW, et al. The effect of PARP inhibitor on ischaemic celldeath, its related inflammation and survival signals. Eur J Neurosci.2004Sep;20(6):1461-72.
    21. Huang, D., Yang, C., Wang, Y., et al.(2009b). PARP-1suppresses adiponectinexpression through poly(ADP-ribosyl)ation of PPAR gamma in cardiac fibroblasts.Cardiovasc Res81,98-107.
    22. Huang D, Wang Y, Yang C, et al. Angiotensin II promotes poly(ADP-ribosyl)ationof c-Jun/c-Fos in cardiac fibroblasts. J Mol Cell Cardiol.2009Jan;46(1):25-32.
    23. Butler AJ, Ordahl CP. Poly(ADP-ribose) polymerase binds with transcriptionenhancer factor1to MCAT1elements to regulate muscle-specific transcription. Mol CellBiol.1999Jan;19(1):296-306.
    24. Cohen-Armon M, Visochek L, Rozensal D, et al.DNA-independent PARP-1activation by phosphorylated ERK2increases Elk1activity: a link to histone acetylation.Mol Cell.2007Jan26;25(2):297-308.
    25. Modica S, Gadaleta RM and Moschetta A. Deciphering the nuclear bile acidreceptor FXR paradigm. Nucl Recept Signal8: e005,2010.
    26. Frankenberg T, Miloh T, Chen FY, et al. The membrane protein ATPase class Itype8B member1signals through protein kinase C zeta to activate the farnesoid X receptor.Hepatology48:1896-905,2008.
    27. Kemper JK, Xiao Z, Ponugoti B, et al. FXR acetylation is normally dynamicallyregulated by p300and SIRT1but constitutively elevated in metabolic disease states. CellMetab10:392-404,2009.
    28. Kemper JK. Regulation of FXR transcriptional activity in health and disease:Emerging roles of FXR cofactors and post-translational modifications. Biochim BiophysActa1812:842-50,2011.
    29. Hollman DA, Milona A, van Erpecum KJ, et al. Anti-inflammatory and metabolicactions of FXR: insights into molecular mechanisms. Biochim Biophys Acta1821:1443-52,
    2012.
    1. Evans RM. The steroid and thyroid hormone receptor superfamily. Science.1988;240(4854):889–95.
    2. Olefsky JM. Nuclear receptor minireview series. J Biol Chem..2001;276(40):36863–4.
    3. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily:the second decade. Cell.1995;83(6):835–9.
    4. Shi Y.Orphan nuclear receptors in drug discovery. Drug Discov Today.2007Jun;12(11-12):440-5.
    5. Novac N, Heinzel T. Nuclear receptors: overview and classification. Curr DrugTargets Inflamm Allergy.2004;3(4):335–46.
    6. Escriva H, Langlois MC, Mendon a RL, et al. Evolution and diversification of thenuclear receptor superfamily. Annals of the New York Academy of Sciences.1998;839:143–6.
    7. Kumar R, Thompson EB. The structure of the nuclear hormone receptors. Steroids.1999;64(5):310–9.
    8. Klinge CM. Estrogen receptor interaction with co-activators andco-repressors. Steroids.2000;65(5):227–51.
    9. Reitzel AM, Pang K, Ryan JF, et al. Nuclear receptors from the ctenophoreMnemiopsis leidyi lack a zinc-finger DNA-binding domain: lineage-specific loss orancestral condition in the emergence of the nuclear receptor superfamily? Evodevo.2011;2(1):3.
    10. W rnmark A, Treuter E, Wright AP, et al. Activation functions1and2of nuclearreceptors: molecular strategies for transcriptional activation. Mol. Endocrinol..2003;17(10):1901–9.
    11. Francis GA, Fayard E, Picard F, et al. Nuclear receptors and the control ofmetabolism. Annu Rev Physiol.2003;65:261-311.
    12. Weatherman RV, Fletterick RJ, Scanlan TS. Nuclear-receptor ligands andligand-binding domains. Annu. Rev. Biochem..1999;68:559–81.
    13. Bridgham JT, Eick GN, Larroux C, et al. Protein evolution by molecular tinkering:diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoSBiol..2010;8(10).
    14. Wójcicka G, Jamroz-Wi niewska A, Horoszewicz K, et al. Liver X receptors(LXRs). Part I: structure, function, regulation of activity, and role in lipidmetabolism.Postepy Hig Med Dosw (Online).2007Dec3;61:736-59.
    15. Zhang Z, Burch PE, Cooney AJ, et al. Genomic analysis of the nuclear receptorfamily: new insights into structure, regulation, and evolution from the rat genome. GenomeRes.2004;14(4):580–90.
    16. Heery, D. M., Kalkhoven, E., et al.(1997)."A signature motif in transcriptionalco-activators mediates binding to nuclear receptors". Nature387(6634):733–736.
    17. Chen H, Lin RJ, Schiltz RL, Chakravarti D, et al."Nuclear receptor coactivatorACTR is a novel histone acetyltransferase and forms a multimeric activation complex withP/CAF and CBP/p300". Cell1994;90(6634):569–580.
    18. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions ofnuclear receptors. Genes Dev.2000;14(2):121–41.
    19. Benoit G, Cooney A, Giguere V, et al. International Union of Pharmacology. LXVI.Orphan nuclear receptors. Pharmacol. Rev..2006;58(4):798–836.
    20. Mohan R, Heyman RA. Orphan nuclear receptor modulators. Curr Top Med Chem.2003;3(14):1637–47.
    21. Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol.Rev..2001;81(3):1269–304.
    22. Copland JA, Sheffield-Moore M, Koldzic-Zivanovic N, et al. Sex steroid receptorsin skeletal differentiation and epithelial neoplasia: is tissue-specific intervention possible?Bioessays.2009;31(6):629–41.
    23. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets arethere?. Nature reviews. Drug discovery.2006;5(12):993–6.
    24. de Murcia JM, Niedergang C, Trucco C, et al. Requirement of poly(ADP-ribose)polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA1997;94:7303–7307.
    25. Helleday T, Bryant HE, Schultz N (2006)."Poly(ADP-ribose) polymerase(PARP-1) in homologous recombination and as a target for cancer therapy". Cell Cycle4(9):1176–8.
    26. Mazen A, Menissier de Murcia J, Molinete M, etal.(1989) Poly(ADP-ribose)polymerase: a novel finger protein. Nucleic Acids Res17:4689–4698.
    27. L nn P, van der Heide LP, Dahl M, et al. PARP-1attenuates Smad-mediatedtranscription. Mol Cell.2010Nov24;40(4):521-32
    28. de Murcia G, Menissier de Murcia J (1994) Poly(ADP-ribose) polymerase: amolecular nick-sensor. Trends Biochem Sci19:172–176.
    29. Paddock MN, Buelow BD, Takeda S, Scharenberg AM. The BRCT domain ofPARP-1is required for immunoglobulin gene conversion. PLoS Biol.2010Jul20;8(7):e1000428.
    30. Smith S.(2001) The world according to PARP. Trends Biochem Sci26:174–179.
    31. Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymeraseinhibitors. Pharmacol Rev.2002Sep;54(3):375-429.
    32. Yamagoe S, Kohda T, Oishi M (1991) Poly(ADP-ribose) polymerase inhibitorssuppress UV-induced human immunodeficiency virus type1gene expression at theposttranscriptional level. Mol Cell Biol11:3522–3527.
    33. Komjáti K, Besson VC, Szabó C. Poly (adp-ribose) polymerase inhibitors aspotential therapeutic agents in stroke and neurotrauma. Curr Drug Targets CNS NeurolDisord.2005Apr;4(2):179-94.
    34. Smith S, de Lange T (2000) Tankyrase promotes telomere elongation in humancells. Curr Biol10:1299–1302.
    35. Huletsky A, de Murcia G, Muller S, et al. The effect of poly(ADP-ribosyl)ation onnative and H1-depleted chromatin. A role of poly(ADP-ribosyl)ation on core nucleosomestructure. J Biol Chem.1989May25;264(15):8878-86.
    36. D'Amours D, Desnoyers S, D'Silva I, et al. Poly(ADP-ribosyl)ation reactions inthe regulation of nuclear functions. Biochem J.1999Sep1;342(Pt2):249-68.
    37. Doetsch M, Gluch A, Poznanovi G, et al. YY1-binding sites provide centralswitch functions in the PARP-1gene expression network. PLoS One.2012;7(8): e44125.
    38. Huang D, Wang Y, Wang L, et al. Poly(ADP-ribose) polymerase1is indispensablefor transforming growth factor-β Induced Smad3activation in vascular smooth muscle cell.PLoS One.2011;6(10): e27123.
    39. Le May N, Iltis I, Amé JC, et al. Poly (ADP-ribose) glycohydrolase regulatesretinoic acid receptor-mediated gene expression. Mol Cell.2012Dec14;48(5):785-98.
    40. Miyamoto T, Kakizawa T, Hashizume K. Inhibition of nuclear receptor signallingby poly(ADP-ribose) polymerase. Mol Cell Biol.1999Apr;19(4):2644-9
    41. Hassa PO, Buerki C, Lombardi C, et al. Transcriptional coactivation of nuclearfactor-kappaB-dependent gene expression by p300is regulated by poly(ADP)-ribosepolymerase-1. J Biol Chem.2003Nov14;278(46):45145-53.
    42. Huang, D., Yang, C., Wang, Y., et al.(2009b). PARP-1suppresses adiponectinexpression through poly(ADP-ribosyl)ation of PPAR gamma in cardiac fibroblasts.Cardiovasc Res81,98-107.
    43. Devalaraja-Narashimha K, Padanilam BJ. PARP1deficiency exacerbatesdiet-induced obesity in mice. J Endocrinol.2010Jun;205(3):243-52.
    44. Choi SK, Galán M, Kassan M, et al. Poly(ADP-ribose) polymerase1inhibitionimproves coronary arteriole function in type2diabetes mellitus. Hypertension.2012May;59(5):1060-8.
    45. Huang, D., Yang, C.Z., Yao, L. et al.(2008). Activation and overexpression ofPARP-1in circulating mononuclear cells promote TNF-alpha and IL-6expression inpatients with unstable angina. Arch Med Res39,775-784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700