用户名: 密码: 验证码:
一、芳香化酶基因多态性和十一酸睾酮药物避孕差异相关性的研究 二、利用米非司酮药物建立小鼠子宫出血模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前世界上仍没有一个临床上正式推广使用的男性避孕药,研制安全、有效、可逆和能广为接受的男性避孕药已经是当务之急。睾酮作为男性激素避孕药物进行系统研究,迄今已有三十余年,在已经完成的多项男性激素避孕的临床实验研究中,睾酮(或其衍生物)作为一种甾体药物应用于男性激素避孕,单独或配伍使用雌激素(和/或孕激素)类药物,取得了很好的避孕效果,是一个非常有前景的男性避孕药物。
     在研究过程中,发现人体对这类药物的反应具有多样性(药物反应存在着群体间和个体间的差异),可以观察到这类甾体药物对精子的抑制情况(如抑制精子发生的程度和显效时间的快慢等)在不同的人种间和个体间以及个体内都存在一定的差异,其发生的机制尚不清楚。
     在临床实验中观察到雌激素对下丘脑和垂体具有负反馈调控作用,睾酮对下丘脑和垂体的负反馈作用较雌二醇弱得多,外源性睾酮主要通过芳香化酶作用转化为雌激素从而在垂体中发挥作用。此外,临床中发现的芳香化酶功能缺陷患者激素水平的表现也支持这种调控方式,这些患者共有的基本表型就是体内检测不到雌激素,但睾酮和促性腺激素的水平高于正常。因此,有理由认为睾酮在中枢神经系统芳香化酶的催化作用下转化为雌二醇,对下丘脑和垂体起负反馈抑制作用导致FSH和LH分泌减少,LH的减少影响Leydig细胞合成睾酮,并最终引起精原细胞发育和精子排放障碍,是男性使用外源性睾酮激素避孕中抑制精子发生的根本原因。由于睾酮抑制精子发生的作用是男性生殖内分泌调控的结果,越来越多的证据表明雌激素在男性生殖内分泌的负反馈调控中具有重要作用。因此,芳香化酶,一个催化雄激素转化为雌激素的关键酶,是本研究的兴趣所在。
     同一药物在不同个体产生的效果不是完全相同的。环境因素和遗传因素都有可能产生和影响人体对药物反应的多样性,而这种差异首先是具有遗传差异基础的,是由于药物本身在不同个体体内活化、代谢、清除方面的差异所决定的。通过研究遗传多态性与个体对药物敏感性或耐受性之间的相关性,可以阐明遗传因素对药物效用的影响,从而为医生针对性的用药和药物的开发提供指导和依据。因此认识和阐明甾体药物反应群体和个体间差异产生和影响的机制,不仅对于提高药物作用的效果及未来个体化用药,同时对于揭示和完善甾体激素在人类生殖、发育和代谢中的作用机理以及男性生殖内分泌调控的具体机制具有极其重要的意义。
     为此本研究目的在于从基因组水平探索芳香化酶基因多态性和睾酮药物避孕中药物反应多样性的相关性,并进一步研究这种相关性产生的机制。
     方法:利用参加十一酸睾酮酯(TU)避孕有效性的多中心Ⅲ期临床研究的150名有生育史的正常中国河北两个地区汉族成年男性志愿者,对其中一组50名男子利用DHPLC和测序方法检测了CYP19基因的单核苷酸多态性,包括CYP19基因的9个编码外显子和PI.f及其各自上下游100~200bp范围序列共约7kb范围。对检测到的SNP位点进行相关表型的关联分析,并在另一组人群中进行了关联关系验证。对CYP19基囚检测到的多态性位点使用生物信息学工具对其进行了单体型界定和单体域分析,并进行表型的关联分析。对于发现的显著关联位点和区域通过核酸蛋白质结合反应对具体机制做了初步探讨。结果:在中国河北地区50名汉族男性中,检测出14个CYP19基因的多态性位点,其中有3个是首次检出,并与可检索到的人群相关数据进行了比较分析,认为CYP19多态性位点在编码区出现频率较少,在非编码区则出现的频率较多,其多态性在人群中的分布不均一,具有明显的人群差异性和种族差异性,并具有地区差异,提示芳香化酶的进化与环境因素相关。通过关联分析,人群的身高在位于intron 2和exon3的两个多态性位点的不同基因型间存在显著性差异(身高在GG和AA基因型间差距达4~5cm,P<0.05)。利用检测出的SNP位点,使用生物信息学工具,界定了15种单体型,其中4种常见单体型的频率在人群中占81.8%,并且发现其中1种单体型与外源性睾酮抑制精子发生程度密切相关,在有精子组和无精子组中存在显著差异(P<0.05)。在进一步单体域分析中,发现位于脑组织特异性启动子区域内的两个位点组成的单体型AC与外源性睾酮抑制精子发生程度密切相关,在有精子组和无精子组中存在显著性差异(P<0.05),单体型AC个体更容易完全抑制精子的发生;通过蛋白质核酸的特异性结合反应,发现其中一个位点附近区域序列可以和脑组织细胞核核蛋白提取物发生特异性结合反应。结论:芳香化酶基冈的多态性在人群中存在种族和地域的明显差异。该基因的两个多态性位点5845A/G和5998A/G与身高密切相关,分别位于intron2和exon3中。芳香化酶基因脑组织特异性启动子区域中的两个多态性位点组成的单体型AC与外源性睾酮抑制精子发生程度差异有关,认为芳香化酶基因多态性与外源性睾酮抑制精子程度差异有关;并且其中一个位点附近区域存在与脑组织细胞核提取物中的蛋白特异性结合位点,表明该区域含有与脑组织特异性转录相关的顺式作用元件。
     子宫内膜周期性的脱落、出血和再生是灵长类和其他月经动物特有的现象。人的子宫内膜是一个动态的组织,在宫内优势的内分泌和旁分泌环境的影响下,在适当时期未能受孕时,子宫内膜为准备下一次胚胎植入而经历一个极典型的大面积脱落、出血、修复、增殖和分化的循环,即存在一个反复的生理学损伤和修复重建过程。月经的状况直接关系着妇女的生殖健康。月经机制的研究受限于动物模型。可检索文献中仅有两个小鼠月经模型的报告,采用停止孕酮的注射或取出孕酮皮下埋植物模仿了灵长类分泌期黄体崩解所导致的情况。临床研究发现在黄体中晚期服用米非司酮常(Mifepristone,RU486)能促使子宫内膜脱落、出血,诱导月经提前出现。
     因此本研究目的在于利用米非司酮建立小鼠子宫出血模型。方法:成年雌性去势NIH小鼠在花生油诱导蜕膜化后,给予米非司酮灌胃,间隔8小时检测形态学和血清激素水平至给药后48小时,并利用阴道细胞学检查监测出血状况。同时,利用免疫组织化学和原位杂交方法检测了VEGF在出血不同时程中子宫内膜中的表达。结果:蜕膜化子宫内膜在给药后16小时崩解严重,24小时脱落,伴阴道出血。子宫内膜在24小时出现再生,至48小时基本恢复。此过程中血清孕酮浓度保持不变,而雌激素浓度升高。VEGF主要表达在子宫内膜的腺体上皮细胞和间质细胞,在模型中子宫内膜出血的初期(8h)、高峰时期(16h和24h)以及修复期(32h)表达量较高。结论:人工诱导蜕膜化后的小鼠,利用米非司酮模拟孕酮的药理撤退,能够成功诱导发生月经样的改变。VEGF检测结果提示VEGF在子宫发生出血和修复中具有重要作用。
From a public health perspective,the need for contraception has been greater. For man,although there existed few male-specific methods(withdrawal,condoms, and vasectomy),the shortcomings of the existing methods not being negligible,and so some new male contraceptive methods were in researching such as hormonal contraceptive,contraceptive vaccine and so on.
     Recent studying have demonstrated that the hormonal contraception is the new choice for male contraceptive methods,which is the most prospective in clinical application.Investigators have sought to develop a male hormonal contraceptive based on the observation that spermatogenesis depends on stimulation by gonadotropins,follicle-stimulating hormone(FSH) and luteinising hormone(LH). Most clinical trials demonstrated that exogenous high-dosage testosterone combined with or without progestin is a safe,effective and fully reversible method of male contraception.Compared with withdrawal and condoms,the participants' satisfaction with testosterone contraception was good.
     In those completed clinical trails,however,a consistent finding in these studies is that azoospermia is achieved in only 40- 70%of Caucasian men and 97%of Chinese, and the remainder show exhibited various degrees of oligozoospermia.This diverse polymorphism of response to TU were observed inter- and intra-races.The explanation for the nonuniform induction of azoospermia by testosterone remains unknown.
     Therefore,understanding the basis of the heterogeneity in response would not only provide important insights into the physiology of the male reproductive system but could,as a second step of development,also lead to a male contraceptive tailored to individual requirements
     In this study,based on extensive reviewing research of male hormone contraception,it is indicated that estrogen is important for spermatogenesis and is a major regulator of the gonadal-pituitary feedback for the gonadotropin axis in male hormone contraception with exogenous high-dosage testosterone.In other words, androgen contraceptives may inhibit spermatogenesis by negative feeback effect on hypothalamus-pituitary-testis axis of estrogen transformed from testosterone.
     Aromatase is the key enzyme responsible for the formation of estrogens from androgens.The aromatase gene encoding aromatase P450(estrogen synthetase) is expressed in several extragonadal sites and regulated in a tissue-specific fashion. Activation of each promoters give rise splicing of these untranslated alternative exons to form the mature transcript occurs at a common 3'-splice junction that is upstream of the translational start site.This means that although transcripts in different tissues have different 5'-termini,the coding region and thus the protein expressed in these various tissue sites are always the same.However,the promoter regions upstream of each of the several untranslated first exons have different cohorts of response elements,and so regulation of aromatase expression in each tissue that synthesizes estrogens is different.In human males,a number of tissues have the capacity to express aromatase and hence synthesize estrogens including testes and numerous sites in the brain such as several areas of the hypothalamus,limbic system,and cerebral cortex.
     So,we set out association studies between complex phenotype in response to male TU contraception and polymorphism of aromatase gene aiming at providing clues to explain the diversity of contraceptive action among the subjects using present TU contraceptive regimen.
     Methods:In this research,to identify and characterize of cyp19 gene polymorphism was performed by denaturing high-performance liquid chromatograph and sequencing in the population of which used TU contraception from China Hebei. The sequence of special promotor PI.f with 5' flanking region and all the cyp19 coding exons with some up and downstream sequences respectively were analysed. Then,we study the association within those found variation allele and phenotype in the population from hormone contraception by using ANOVA and some bioinformatic tools such as haplotyping etc.Finally,to determine whether we found the sequences strong related with nonuniform induction of azoospermia by testosterone in PI.f 5'flanking region can binding a certain transfactor,the electrophoretic mobility shift assay(EMSA) was used in analysis of DNA-protein interactions.
     Results:In our study,fourteen variable sites were identified within a span of 7kb and deep divergence in the distribution of some SNPs was noted.We have performed an association study using these 14 biallelic polymorphism of cyp19 and determined there are two loci are associated with variation in height in 142 adult males from Han Chinese(p<0.05).In association analysis within pheonotype and polymorphism of cyp19 gene used with haplotyping and haplotype blocking,we identified 15 haplotypes and 4 common haplotyps represent 81.8%of the study population with 8 variate allelels.Moreover,a haplotype block with two loci was found strong association with diverse induction of azzospermia by testosterone,which located that PI.f 5'flanking region.EMSA conformed that this special region in PI.f 5' flanking region can binding a certain protein.
     Conclusion:These observations indicate that in men,genetic variation in cyp19 are involved in determining normal adult height,and contribute to the diverse induction of azoospermia by testosterone.In PI.f promoter region,there exits a transcript regulation region which have two found viriate site.Moreover,the analyses of haplotype and haplotype block defined by the grouping and interaction of several variants rather than any individual SNP correlated with complex phonotypes is more effective.
     Humans and old-world primates differ from most other animals in that their endometrium undergoes bleeding,shedding,remodelling and subsequent regeneration if pregnancy is not established at the opportune time.Human endometrium is thus a dynamic tissue that,to prepare for implantation,undergoes well-defined cycles of proliferation,differentiation,and shedding(menstruation) in response to the prevailing endocrine and paracrine environment.The endometrium is consequently a site of recurrent physiological injury and repair。Research into menstrual mechanisms is hindered by the lack of availability of rodent models to assess the role of various factors in regulating menstrual function.Up to now,there are two reports about mouse menstrual-like model by physical progesterone withdrawl.In some clinical researching,RU 486,given to normally cycling women at midluteal and lateluteal phase,provokes uterine bleeding,shedding and menstruating in advanced.
     So,we set out study on model of uterus bleeding-like changes in mice by using mifepristone.Methods:Ovarectomized NIH female mice were administered with mifepristone following oil-induced decidualization.Morphology,hormone levels were evaluated at an interval of 8 hours in 48 hours after treatment and bleedings were monitored by using vaginal smears examination.Expression ofVEGF mRNA and protein were evaluated by in situ hybridization and immunohistochemistry during menstrual-like progressing in mice model.Results:Decidual endometrium was breakdown drastically by 16 h,and shed by 24h accompanying the bleeding.The endometrium regenerated from 24 h and restored completely by 48 h.Progesterone levels in serum remained invariable,estradiol levels in serum increased during the process.VEGF mRNA and protein were localized in both the stroma and glandular epithelium.Expression is increased in the decidual endometrium zone during early bleeding and in remnant stroma zone and regenerated epitheliums fllowing that.The high levels of VEGF were correlated with the increase of serum estradiol levels in control uterus com.Conclusions:Menstrual-like changes in artificial decidualization mice were provoked by using mifepristone which mimic withdrawal of progesterone on pharmacologicl level.The expression of the vascular endothelial growth factor suggested that VEGF plays an important role in bleeding and regeneration in the endometrium in mice menstrual-like model using mifepristione.
引文
[1]WHO.Contraceptive efficacy of testosterone-induced azoospermia and oligozoospermia in normal men.Fertil Steril 1996;65:821-829.
    [2]WHO.Contraceptive efficacy of testosterone-induced azoospermia in normal men.Lancet 1990;336:955-959.
    [3]WHO.Rates of testosterone-induced suppression to severe oligozoospermia or azoospermia in two multinational clinical studies.World Health Organization Task force on Methods for The Regulations of Male Fertility.Int J Androl 1995;18:157-165.
    [4]Kamischke A,Venherm S,Ploger D,von Eckardstein S,Nieschlag E.Intramuscular Testosterone Undecanoate and Norethisterone Enanthate in a Clinical Trial for Male Contraception.J Clin Endocrinol Metab 2000;86:303-309.
    [5]Kamischke A,Ploger D,Venherm S,von Eckardstein S,von Eckardstein A,Nieschlag E.Intramuscular testosterone undecanoate with or without oral levonorgestrel:a randomized placebo-controlled feasibility study for male contraception.Clin Endocrinol(Oxf) 2000;53:43-52.
    [6]Buchter D,von Eckardstein S,von Eckardstein A,Kamischke A,Simoni M,Behre HM,Nieschlag E.Clinical trial of transdermal testosterone and oral levonorgestrel for male contraception. J Clin Endocrinol Metab 1999; 84: 1244-1249.
    
    [7] Wallace EM, Gow SM, Wu FC. Comparison between testosterone enanthate-induced azoospermia and oligozoospermia in a male contraceptive study. I: Plasma luteinizing hormone, follicle stimulating hormone, testosterone, estradiol, and inhibin concentrations. J Clin Endocrinol Metab 1993; 77: 290-293.
    
    [8] Handelsman DJ, Wishart S, Conway AJ. Oestradiol enhances testosterone-induced suppression of human spermatogenesis. Hum Reprod 2000; 15: 672-679.
    
    [9] Martin CW, Riley SC, Everington D, Groome NP, Riemersma RA, Baird DT, Anderson RA. Dose-finding study of oral desogestrel with testosterone pellets for suppression of the pituitary-testicular axis in normal men. Hum Reprod 2000; 15: 1515-1524.
    
    [10] Yang Z, Wreford NG, Royce P, de Kretser DM, McLachlan RI. Stereological evaluation of human spermatogenesis after suppression by testosterone treatment: heterogeneous pattern of spermatogenic impairment. J Clin Endocrinol Metab 1998; 83: 1284-1291.
    
    [11] Wang C, Berman NG, Veldhuis JD, Der T, McDonald V, Steiner B, Swerdloff RS. Graded Testosterone Infusions Distinguish Gonadotropin Negative-Feedback Responsiveness in Asian and White Men-A Clinical Research Center Study. J Clin Endocrinol Metab 1998; 83:870-876.
    
    [12] Eckardstein SS, Schmidt A, Kamischke A, Simoni M, Gromoll J, Nieschlag E. CAG repeat length in the androgen receptor gene and gonadotrophin suppression influence the effectiveness of hormonal male contraception. Clin Endocrinol (Oxf) 2002; 57: 647-655.
    
    [13] Narula A, Gu YQ, O'Donnell L, Stanton PG, Robertson DM, McLachlan RI, Bremner WJ.Variability in sperm suppression during testosterone administration to adult monkeys is related to follicle stimulating hormone suppression and not to intratesticular androgens. J Clin Endocrino! Metab 2002; 87: 3399-3406.
    
    [14] Nieschlag E, Simoni M, Gromoll J, Weinbauer GF. Role of FSH in the regulation of spermatogenesis: clinical aspects. Clin Endocrinol (Oxf) 1999; 51: 139-146.
    
    [15] Amory JK, Anawalt BD, Bremner WJ, Matsumoto AM. Daily testosterone and gonadotropin levels are similar in azoospermic and nonazoospermic normal men administered weekly testosterone: implications for male contraceptive development. J Androl 2001; 22: 1053-1060.
    
    [16] Santner SJ, Albertson B, Zhang Gy, Zhang Gh, Santulli M, Wang C, Demers LM,Shackleton C, Santen RJ. Comparative Rates of Androgen Production and Metabolism in Caucasian and Chinese Subjects. J Clin Endocrinoi Metab 1998; 83: 2104-2109.
    
    [17] McLachlan RI, O'Donnell L, Meachem SJ, Stanton PG, de Kretser DM, Pratis K, Robertson DM. Identification of Specific Sites of Hormonal Regulation in Spermatogenesis in Rats,Monkeys, and Man. Recent Prog Horm Res 2002; 57: 149-179.
    [18] Johnston DS, Russell LD, Friel PJ, Griswold MD. Murine Germ Cells Do Not Require Functional Androgen Receptors to Complete Spermatogenesis Following Spermatogonial Stem Cell Transplantation. Endocrinology 2001; 142: 2405.
    
    [19] O'Donnell L, Narula A, Balourdos G, Gu YQ, Wreford NG, Robertson DM, Bremner WJ,McLachlan RI. Impairment of Spermatogonial Development and Spermiation after Testosterone-Induced Gonadotropin Suppression in Adult Monkeys (Macaca fascicularis). J Clin Endocrinol Metab 2001; 86: 1814-1822.
    
    [20] Zhengwei Y, Wreford NG, Schlatt S, Weinbauer GF, Nieschlag E, McLachlan RI. Acute and specific impairment of spermatogonial development by GnRH antagonist-induced gonadotrophin withdrawal in the adult macaque (Macaca fascicularis). J Reprod Fertil 1998;112: 139-147.
    
    [21] McLachlan RI, O'Donnell L, Stanton PG, Balourdos G, Frydenberg M, de Kretser DM,Robertson DM. Effects of Testosterone Plus Medroxyprogesterone Acetate on Semen Quality, Reproductive Hormones, and Germ Cell Populations in Normal Young Men. J Clin Endocrinol Metab 2002; 87: 546-556.
    
    [22] Saito K, O'Donnell L, McLachlan RI, Robertson DM. Spermiation Failure Is a Major Contributor to Early Spermatogenic Suppression Caused by Hormone Withdrawal in Adult Rats. Endocrinology 2000; 141: 2779-2785.
    
    [23] Weinbauer GF, Schlatt S, Walter V, Nieschlag E. Testosterone-induced inhibition of spermatogenesis is more closely related to suppression of FSH than to testicular androgen levels in the cynomolgus monkey model (Macaca fascicularis). J Endocrinol 2001; 168:25-38.
    
    [24] Ramaswamy S, Plant TM, Marshall GR. Pulsatile Stimulation with Recombinant Single Chain Human Luteinizing Hormone Elicits Precocious Sertoli Cell Proliferation in the Juvenile Male Rhesus Monkey (Macaca mulatta). Biol Reprod 2000; 63: 82-88.
    
    [25] Marshall GR, Zorub DS, Plant TM. Follicle-stimulating hormone amplifies the population of differentiated spermatogonia in the hypophysectomized testosterone-replaced adult rhesus monkey (Macaca mulatta). Endocrinology 1995; 136: 3504-3511.
    
    [26] Pentikainen V, Erkkila K, Suomalainen L, Parvinen M, Dunkel L. Estradiol Acts as a Germ Cell Survival Factor in the Human Testis in Vitro. J Clin Endocrinol Metab 2000; 85:2057-2067.
    
    [27] Hess RA, Bunick D, Lee KH, Bahr J, Taylor JA, Korach KS, Lubahn DB. A role for oestrogens in the male reproductive system. Nature 1997; 390: 509-512.
    
    [28] Aquila S, Sisci D, Gentile M, Middea E, Siciliano L, Ando S. Human Ejaculated Spermatozoa Contain Active P450 Aromatase. J Clin Endocrinol Metab 2002; 87:3385-3390.
    [29] Weniger JP. Estrogen production by fetal rat gonads. J Steroid Biochem Mol Biol 1993; 44:459-462.
    
    [30] Robertson KM, O'Donnell L, Jones ME, Meachem SJ, Boon WC, Fisher CR, Graves KH,McLachlan RI, Simpson ER. Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene. Proc Natl Acad Sci U S A 1999; 96: 7986-7991.
    
    [31] Hess RA, Bunick D, Bahr J. Oestrogen, its receptors and function in the male reproductive tract - a review. Molecular and Cellular Endocrinology 2001; 178: 29-38.
    
    [32] Hess RA, Bunick D, Lubahn DB, Zhou Q, Bouma J. Morphologic changes in efferent ductules and epididymis in estrogen receptor-alpha knockout mice. J Androl 2000; 21:107-121.
    
    [33] Hess RA. Oestrogen in fluid transport in efferent ducts of the male reproductive tract. Rev Reprod 2000; 5: 84-92.
    
    [34] Mahato D, Goulding EH, Korach KS, Eddy EM. Spermatogenic cells do not require estrogen receptor-alpha for development or function. Endocrinology 2000; 141: 1273-1276.
    
    [35] Makinen S, Makela S, Weihua Z, Warner M, Rosenlund B, Salmi S, Hovatta O, Gustafsson JK. Localization of oestrogen receptors alpha and beta in human testis. Mol Hum Reprod 2001; 7: 497-503.
    
    [36] Saunders PT, Sharpe RM, Williams K, Macpherson S, Urquart H, Irvine DS, Millar MR. Differential expression of oestrogen receptor alpha and beta proteins in the testes and male reproductive system of human and non-human primates. Mol Hum Reprod 2001; 7:227-236.
    
    [37] Pelletier G, El Alfy M. Immunocytochemical Localization of Estrogen Receptors {{alpha}} and {beta} in the Human Reproductive Organs. J Clin Endocrinol Metab 2000; 85:4835-4840.
    
    [38] Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1994; 331: 1056-1061.
    
    [39] Skynner MJ, Sim JA, Herbison AE. Detection of estrogen receptor alpha and beta messenger ribonucleic acids in adult gonadotropin-releasing hormone neurons.Endocrinology 1999; 140: 5195-5201.
    
    [40] Roy D, Angelini NL, Belsham DD. Estrogen directly respresses gonadotropin-releasing hormone (GnRH) gene expression in estrogen receptor-alpha (ERalpha)- and ERbeta-expressing GT1-7 GnRH neurons. Endocrinology 1999; 140: 5045-5053.
    
    [41] Butler JA, Sjoberg M, Coen CW. Evidence for oestrogen receptor alpha-immunoreactivity in gonadotrophin-releasing hormone-expressing neurones. J Neuroendocrinol 1999; 11: 331-335.
    
    [42] Losel R, Wehling M. Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 2003;4: 46-56.
    
    [43] Mauras N, O'Brien KO, Klein K.O, Hayes V. Estrogen Suppression in Males: Metabolic Effects. J Clin Endocrinol Metab 2000; 85: 2370-2377.
    
    [44] Wickman S, Dunkel L. Inhibition of P450 Aromatase Enhances Gonadotropin Secretion in Early and Midpubertal Boys: Evidence for a Pituitary Site of Action of Endogenous E. J Clin Endocrinol Metab 2001; 86: 4887-4894.
    
    [45] Hayes FJ, DeCruz S, Seminara SB, Boepple PA, Crowley WF, Jr. Differential Regulation of Gonadotropin Secretion by Testosterone in the Human Male: Absence of a Negative Feedback Effect of Testosterone on Follicle-Stimulating Hormone Secretion. J Clin Endocrinol Metab 2001; 86: 53-58.
    
    [46] Hayes FJ, Seminara SB, DeCruz S, Boepple PA, Crowley WF, Jr. Aromatase Inhibition in the Human Male Reveals a Hypothalamic Site of Estrogen Feedback. J Clin Endocrinol Metab 2000; 85: 3027-3035.
    
    [47] Schnorr JA, Bray MJ, Veldhuis JD. Aromatization Mediates Testosterone's Short-Term Feedback Restraint of 24-Hour Endogenously Driven and Acute Exogenous Gonadotropin-Releasing Hormone-Stimulated Luteinizing Hormone and Follicle-Stimulating Hormone Secretion in Young Men. J Clin Endocrinol Metab 2001; 86:2600-2606.
    
    [48] Jones ME, Boon WC, Proietto J, Simpson ER. Of mice and men: the evolving phenotype of aromatase deficiency. Trends Endocrinol Metab 2006; 17: 55-64.
    
    [49] Sasano H, Takashashi K, Satoh F, Nagura H, Harada N. Aromatase in the human central nervous system. Clin Endocrinol (Oxf) 1998; 48: 325-329.
    
    [50] Balthazart J, Baillien M, Charlier TD, Cornil CA, Ball GF. Multiple mechanisms control brain aromatase activity at the genomic and non-genomic level. J Steroid Biochem Mol Biol 2003; 86: 367-379.
    [1]Gibb W,Lavoie JC.Kinetic studies on the formation of estrogens from dehydroepiandrosterone sulfate by human placental microsomes.Endocrinology 1984;114:2323-2329.
    [2]Corbin CJ,Graham-Lorence S,McPhaul M,Mason JI,Mendelson CR,Simpson ER.Isolation of a full-length cDNA insert encoding human aromatase system cytochrome P-450and its expression in nonsteroidogenic cells.Proc Natl Acad Sci U S A 1988;85:8948-8952.
    [3]Meinhardt U,Mullis PE.The essential role of the aromatase/p450arom.Semin Reprod Med 2002;20:277-284.
    [4]Sebastian S,Bulun SE.A highly complex organization of the regulatory region of the human CYP19(aromatase) gene revealed by the Human Genome Project.J Clin Endocrinol Metab 2001;86:4600-4602.
    [5]Simpson ER.Mahendroo MS,Means GD,Kilgore MW,Hinshelwood MM,Lorence S,Amarneh B,Ito Y,Fisher CR,Michael MD.Aromatase cytochrome P450,the enzyme responsible for estrogen biosynthesis.Endocr Rev 1994;15:342-355.
    [6]Carreau S,Genissel C,Bilinska B,Levallet J.Sources ofoestrogen in the testis and reproductive tract of the male.Int J Androl 1999;22:211-223.
    [7]Pereyra-Martinez AC,Roselli CE,Stadelman HL,Resko JA.Cytochrome P450 aromatase in testis and epididymis of male rhesus monkeys. Endocrine 2001; 16: 15-19.
    
    [8] Carreau S. Germ cells: a new source of estrogens in the male gonad. Molecular and Cellular Endocrinology 2001; 178: 65-72.
    
    [9] Janulis L, Bahr JM, Hess RA, Janssen S, Osawa Y, Bunick D. Rat testicular germ cells and epididymal sperm contain active P450 aromatase. J Androl 1998; 19: 65-71.
    
    [10] Nitta H, Bunick D, Hess RA, Janulis L, Newton SC, Millette CF, Osawa Y, Shizuta Y, Toda K, Bahr JM. Germ cells of the mouse testis express P450 aromatase. Endocrinology 1993;132: 1396-1401.
    
    [11] Levallet J, Bilinska B, Mittre H, Genissel C, Fresnel J, Carreau S. Expression and immunolocalization of functional cytochrome P450 aromatase in mature rat testicular cells.Biol Reprod 1998; 58: 919-926.
    
    [12] Wiszniewska B. Primary culture of the rat epididymal epithelial cells as a source of oestrogen. Andrologia 2002; 34: 180-187.
    
    [13] Aquila S, Sisci D, Gentile M, Middea E, Siciliano L, Ando S. Human Ejaculated Spermatozoa Contain Active P450 Aromatase. J Clin Endocrinol Metab 2002; 87:3385-3390.
    
    [14] Lambard S, Galeraud-Denis I, Saunders PT, Carreau S. Human immature germ cells and ejaculated spermatozoa contain aromatase and oestrogen receptors. J Mol Endocrinol 2004;32: 279-289.
    
    [15] Lambard S, Galeraud-Denis I, Bouraima H, Bourguiba S, Chocat A, Carreau S. Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility. Mol Hum Reprod 2003; 9: 117-124.
    
    [16] Sasano H, Takashashi K, Satoh F, Nagura H, Harada N. Aromatase in the human central nervous system. Clin Endocrinol (Oxf) 1998; 48: 325-329.
    
    [17] Lephart ED. A review of brain aromatase cytochrome P450. Brain Res Brain Res Rev 1996;22: 1-26.
    
    [18] Chen S. Modulation of aromatase activity and expression by environmental chemicals. Front Biosci 2002; 7: d1712-d1719.
    
    [19] Zhao Y, Nichols JE, Valdez R, Mendelson CR, Simpson ER. Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Mol Endocrinol 1996; 10:1350-1357.
    
    [20] Zhao Y, Nichols JE, Bulun SE, Mendelson CR, Simpson ER. Aromatase P450 gene expression in human adipose tissue. Role of a Jak/STAT pathway in regulation of the adipose-specific promoter. J Biol Chem 1995; 270: 16449-16457.
    
    [21] Brueggemeier RW, Richards JA, Petrel TA. Aromatase and cyclooxygenases: enzymes in breast cancer. J Steroid Biochem Mol Biol 2003; 86: 501-507.
    
    [22] Chen S, Itoh T, Wu K, Zhou D, Yang C. Transcriptional regulation of aromatase expression in human breast tissue. J Steroid Biochem Mol Biol 2002; 83: 93-99.
    
    [23] Toda K, Akira S, Kishimoto T, Sasaki H, Hashimoto K, Yamamoto Y, Sagara Y, Shizuta Y. Identification of a transcriptional regulatory factor for human aromatase cytochrome P450 gene expression as nuclear factor interleukin-6 (NF-IL6), a member of the CCAAT/enhancer-binding protein family. Eur J Biochem 1995; 231: 292-299.
    
    [24] O'Donnell L, Robertson KM, Jones ME, Simpson ER. Estrogen and Spermatogenesis. Endocr Rev 2001; 22: 289-318.
    
    [25] Lanzino M, Catalano S, Genissel C, Ando S, Carreau S, Hamra K, McPhaul MJ. Aromatase messenger RNA is derived from the proximal promoter of the aromatase gene in Leydig,Sertoli, and germ cells of the rat testis. Biol Reprod 2001; 64: 1439-1443.
    
    [26] Michael MD, Kilgore MW, Morohashi K, Simpson ER. Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. J Biol Chem 1995; 270: 13561-13566.
    
    [27] Simpson ER. Role of aromatase in sex steroid action. J Mol Endocrinol 2000; 25: 149-156.
    
    [28] Genissel C, Levallet J, Carreau S. Regulation of cytochrome P450 aromatase gene expression in adult rat Leydig cells: comparison with estradiol production. J Endocrinol 2001; 168: 95-105.
    
    [29] Bourguiba S, Genissel C, Lambard S, Bourai, ma H, Carreau S. Regulation of aromatase gene expression in Leydig cells and germ cells. J Steroid Biochem Mol Biol 2003; 86:335-343.
    
    [30] Bourguiba S, Chater S, Delalande C, Benahmed M, Carreau SR. Regulation of Aromatase Gene Expression in Purified Germ Cells of Adult Male Rat: Effects of Transforming Growth Factor {beta}, Tumor Necrosis Factor {alpha}, and cyclic AMP. Biol Reprod 2003.
    
    [31] Caussanel V, Tabone E, Hendrick JC, Dacheux F, Benahmed M. Cellular distribution of transforming growth factor betas 1, 2, and 3 and their types I and II receptors during postnatal development and spermatogenesis in the boar testis. Biol Reprod 1997; 56:357-367.
    
    [32] Olaso R, Pairault C, Habert R. Expression of type I and II receptors for transforming growth factor beta in the adult rat testis. Histochem Cell Biol 1998; 110: 613-618.
    
    [33] Pentikainen V, Erkkila K, Suomalainen L, Otala M, Pentikainen MO, Parvinen M, Dunkel L. TNFalpha down-regulates the Fas ligand and inhibits germ cell apoptosis in the human testis. J Clin Endocrinol Metab 2001; 86: 4480-4488.
    
    [34] Pezzi V, Sirianni R, Chimento A, Maggiolini M, Bourguiba S, Delalande C, Carreau S,Ando S, Simpson ER, Clyne CD. Differential expression of steroidogenic factor-1/adrenal 4 binding protein and liver receptor homolog-1 (LRH-l)/fetoprotein transcription factor in the rat testis: LRH-1 as a potential regulator of testicular aromatase expression. Endocrinology 2004; 145: 2186-2196.
    
    [35] Lephart ED, Lund TD, Horvath TL. Brain androgen and progesterone metabolizing enzymes: biosynthesis, distribution and function. Brain Res Brain Res Rev 2001; 37: 25-37.
    
    [36] Abe-Dohmae S, Takagi Y, Harada N. Autonomous expression of aromatase during development of mouse brain is modulated by neurotransmitters. J Steroid Biochem Mol Biol 1997; 61: 299-306.
    
    [37] Balthazart J, Baillien M, Ball GF. Phosphorylation processes mediate rapid changes of brain aromatase activity. J Steroid Biochem Mol Biol 2001; 79: 261-277.
    [1] Yang Z, Wreford NG, Royce P, de Kretser DM, McLachlan RI. Stereological evaluation of human spermatogenesis after suppression by testosterone treatment: heterogeneous pattern of spermatogenic impairment. J Clin Endocrinol Metab 1998; 83: 1284-1291.
    
    [2] WHO. Contraceptive efficacy of testosterone-induced azoospermia and oligozoospermia in normal men. Fertil Steril 1996; 65: 821-829.
    
    [3] WHO. Contraceptive efficacy of testosterone-induced azoospermia in normal men. Lancet 1990; 336: 955-959.
    
    [4] WHO. Rates of testosterone-induced suppression to severe oligozoospermia or azoospermia in two multinational clinical studies. World Health Organization Task force on Methods for The Regulations of Male Fertility. Int JAndrol 1995; 18: 157-165.
    
    [5] Wallace EM, Gow SM, Wu FC. Comparison between testosterone enanthate-induced azoospermia and oligozoospermia in a male contraceptive study. I: Plasma luteinizing hormone, follicle stimulating hormone, testosterone, estradiol, and inhibin concentrations. J Clin Endocrinol Metab 1993; 77: 290-293.
    
    [6] Handelsman DJ, Wishart S, Conway AJ. Oestradiol enhances testosterone-induced suppression of human spermatogenesis. Hum Reprod 2000; 15: 672-679.
    
    [7] Martin CW, Riley SC, Everington D, Groome NP, Riemersma RA, Baird DT, Anderson RA.Dose-finding study of oral desogestrel with testosterone pellets for suppression of the pituitary-testicular axis in normal men. Hum Reprod 2000; 15: 1515-1524.
    
    [8] Plant TM, Marshall GR. The functional significance of FSH in spermatogenesis and the control of its secretion in male primates. Endocr Rev 2001; 22: 764-786.
    
    [9] Narula A, Gu YQ, O'Donnell L, Stanton PG, Robertson DM, McLachlan RI, Bremner WJ.Variability in sperm suppression during testosterone administration to adult monkeys is related to follicle stimulating hormone suppression and not to intratesticular androgens. J Clin Endocrinol Metab 2002; 87: 3399-3406.
    
    [10] Nieschlag E, Simoni M, Gromoll J, Weinbauer GF. Role of FSH in the regulation of spermatogenesis: clinical aspects. Clin Endocrinol (Oxf) 1999; 51: 139-146.
    
    [11] Buchter D, von Eckardstein S, von Eckardstein A, Kamischke A, Simoni M, Behre HM,Nieschlag E. Clinical trial of transdermal testosterone and oral levonorgestrel for male contraception. J Clin Endocrinol Metab 1999; 84: 1244-1249.
    
    [12] Eckardstein SS, Schmidt A, Kamischke A, Simoni M, Gromoll J, Nieschlag E. CAG repeat length in the androgen receptor gene and gonadotrophin suppression influence the effectiveness of hormonal male contraception. Clin Endocrinol (Oxf) 2002; 57: 647-655.
    [13] Amory JK, Anawalt BD, Bremner WJ, Matsumoto AM. Daily testosterone and gonadotropin levels are similar in azoospermic and nonazoospermic normal men administered weekly testosterone: implications for male contraceptive development. J Androl 2001;22: 1053-1060.
    
    [14] Santner SJ, Albertson B, Zhang Gy, Zhang Gh, Santulli M, Wang C, Demers LM,Shackleton C, Santen RJ. Comparative Rates of Androgen Production and Metabolism in Caucasian and Chinese Subjects. J Clin Endocrinol Metab 1998; 83: 2104-2109.
    
    [15] Mauras N, O'Brien KO, Klein KO, Hayes V. Estrogen Suppression in Males: Metabolic Effects. J Clin Endocrinol Metab 2000; 85: 2370-2377.
    
    [16] Hayes FJ, DeCruz S, Seminara SB, Boepple PA, Crowley WF, Jr. Differential Regulation of Gonadotropin Secretion by Testosterone in the Human Male: Absence of a Negative Feedback Effect of Testosterone on Follicle-Stimulating Hormone Secretion. J Clin Endocrinol Metab 2001; 86: 53-58.
    
    [17] Jones ME, Boon WC, Proietto J, Simpson ER. Of mice and men: the evolving phenotype of aromatase deficiency. Trends Endocrinol Metab 2006; 17: 55-64.
    
    [18] Nelson MR, Marnellos G, Kammerer S, Hoyal CR, Shi MM, Cantor CR, Braun A.Large-scale validation of single nucleotide polymorphisms in gene regions. Genome Res 2004; 14: 1664-1668.
    
    [19] Collins FS, Brooks LD, Chakravarti A. A DNA Polymorphism Discovery Resource for Research on Human Genetic Variation. Genome Res 1998; 8: 1229-1231.
    
    [20] Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N,Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ,Lipshutz R, Chee M, Lander ES. Large-Scale Identification, Mapping, and Genotyping of Single-Nucleotide Polymorphisms in the Human Genome. Science 1998; 280: 1077-1082.
    
    [21] Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487-491.
    
    [22] Brookes AJ. The essence of SNPs. Gene 1999; 234(2) : 177-86.
    
    [23] Ma CX, Adjei AA, Salavaggione OE, Coronel J, Pelleymounter L, Wang L, Eckloff BW,Schaid D, Wieben ED, Adjei AA, Weinshilboum RM. Human aromatase: gene resequencing and functional genomics. Cancer Res 2005; 65: 11071-11082.
    
    [24] Li WH, Sadler LA. Low nucleotide diversity in man. Genetics 1991; 129: 513-523.
    
    [25] Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson RG, Stengard J, Salomaa V,Vartiainen E, Boerwinkle E, Sing CF. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet 1998; 19: 233-240.
    [26] Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R,Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O,. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12: 1-51.
    
    [27] Schnorr JA, Bray MJ, Veldhuis JD. Aromatization Mediates Testosterone's Short-Term Feedback Restraint of 24-Hour Endogenously Driven and Acute Exogenous Gonadotropin-Releasing Hormone-Stimulated Luteinizing Hormone and Follicle-Stimulating Hormone Secretion in Young Men. J Clin Endocrinol Metab 2001; 86:2600-2606.
    
    [28] Wang N, Akey JM, Zhang K, Chakraborty R, Jin L. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history,recombination, and mutation. Am J Hum Genet 2002; 71: 1227-1234.
    
    [29] Barrett JC, Fry B, Mailer J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263-265.
    
    [30] Ellis JA, Stebbing M, Harrap SB. Significant Population Variation in Adult Male Height Associated with the Y Chromosome and the Aromatase Gene. J Clin Endocrinol Metab 2001; 86:4147-4150.
    
    [31] Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 1995; 80: 3689-3698.
    
    [32] Bruch HR, Wolf L, Budde R, Romalo G, Schweikert HU. Androstenedione metabolism in cultured human osteoblast-like cells. J Clin Endocrinol Metab 1992; 75: 101-105.
    
    [33] Blain H. [Osteoporosis in men: epidemiology, physiopathology, diagnosis, prevention and treatment]. Rev Med Interne 2004; 25 Suppl 5: S552-S559.
    
    [34] Salisbury BA, Pungliya M, Choi JY, Jiang R, Sun XJ, Stephens JC. SNP and haplotype variation in the human genome. Mutat Res 2003; 526: 53-61.
    
    [35] Wu X, Zhao H, Amos CI, Shete S, Makan N, Hong WK, Kadlubar FF, Spitz MR p53 Genotypes and Haplotypes Associated With Lung Cancer Susceptibility and Ethnicity. J Natl Cancer fast 2002; 94: 681-690.
    
    [36] Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T,Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB,Nunez G, Cho JH. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603-606.
    
    [37] Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet 2001; 29: 229-232.
    [38] Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH,Marjoribanks C, McDonough DP, Nguyen BT, Norris MC, Sheehan JB, Shen N, Stern D,Stokowski RP, Thomas DJ, Trulson MO, Vyas KR, Frazer KA, Fodor SP, Cox DR. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294: 1719-1723.
    
    [39] Gabriel SB, Schaffher SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R,Lander ES, Daly MJ, Altshuler D. The structure of haplotype blocks in the human genome.Science 2002; 296: 2225-2229.
    
    [40] Sasano H, Takashashi K, Satoh F, Nagura H, Harada N. Aromatase in the human central nervous system. Clin Endocrinol (Oxf) 1998; 48: 325-329.
    
    [41] Lephart ED, Lund TD, Horvath TL. Brain androgen and progesterone metabolizing enzymes: biosynthesis, distribution and function. Brain Res Brain Res Rev 2001; 37: 25-37.
    
    [42] Carreau S, Bourguiba S, Lambard S, Silandre D, Delalande C. The promoter(s) of the aromatase gene in male testicular cells. Reprod Biol 2004; 4: 23-34.
    
    [43] Michael MD, Kilgore MW, Morohashi K, Simpson ER. Ad4BP/SF-l regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. J Biol Chem 1995; 270: 13561-13566.
    
    [44] Zhao Y, Nichols JE, Valdez R, Mendelson CR, Simpson ER Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Mol Endocrinol 1996; 10:1350-1357.
    [1]Farquhar C M,Lethaby A,Sowter M,et al.An evaluation of risk factors for endometrial hyperplasia in premenopausal women with abnormal menstrual bleeding.Am J Obstet Gynecol.1999,181(3):525-529.
    [2] Markee J E. Menstruation in intraocular endometrial transplants in the rhesus monkey. Contr Embryol Carnegie Instn. 1940, 177: 211-308.
    
    [3] Finn C A, Pope M. Vascular and cellular changes in the decidualized endometrium of the ovariectomized mouse following cessation of hormone treatment: a possible model for menstruation. J. Endocrinol. 1984, 100(3):295-300.
    
    [4] Brasted M, White C A, Kennedy T G,et al. Mimicking the events of menstruation in the murine uterus. Biol. Reprod. 2003, 69(4): 1273-1280.
    
    [5] Schaison G, George M, Lestrat N, et al. Effects of the antiprogesterone steroid RU 486 during midluteal phase in normal women. J Clin Endocrinol Metab.1985, 61(3): 484-489.
    
    [6] Garzo V G, Liu J, Ulmann A, et al. Effects of an antiprogesterone (RU486) on the hypothalamic-hypophyseal-ovarian-endometrial axis during the luteal phase of the menstrual cycle. J Clin Endocrinol Metab. 1988, 66(3): 508-517.
    
    [7] Swahn M L, Johannisson E, Daniore V, et al. The effect of RU486 administered during the proliferative and secretory phase of the cycle on the bleeding pattern, hormonal parameters and the endometrium. Hum Reprod. 1988, 3(7): 915-921.
    
    [8] Milligan S R, Cohen P E. Silastic implants for delivering physiological concentrations of progesterone to mice. Reprod. Fertil. Dev. 1994, 6(2): 235-239.
    
    [9] Nap A W, Griffioen A W, Dunselman G A, et al. Antiangiogenesis therapy for endometriosis. J Clin Endocrinol Metab. 2004, 89(3): 1089-1095.
    
    [10] Nayak N R, Brenner R M. Vascular proliferation and vascular endothelial growth factor expression in the rhesus macaque endometrium. J Clin Endocrinol Metab JT - The Journal of clinical endocrinology and metabolism. 2002, 87(4):1845-1855.
    
    [11] Brenner R M, Nayak N R, Slayden O D, et al. Premenstrual and menstrual changes in the macaque and human endometrium: relevance to endometriosis. Ann. N. Y. Acad. Sci. 2002, 955: 60-74.
    
    [12] Hornung D, Lebovic D I, Shifren J L, et al. Vectorial secretion of vascular endothelial growth factor by polarized human endometrial epithelial cells. Fertil Steril. 1998, 69(5): 909-915.
    
    [13] Li M, Bullock C M, Knauer D J, et al. Identification of two prokineticin cDNAs:recombinant proteins potently contract gastrointestinal smooth muscle. Mol Pharmacol. 2001, 59(4): 692-698.
    
    [14] Albrecht E D, Aberdeen G W, Niklaus A L, et al. Acute temporal regulation of vascular endothelial growth/permeability factor expression and endothelial morphology in the baboon endometrium by ovarian steroids. J Clin Endocrinol Metab. 2003, 88(6): 2844-2852.
    
    [15] Gargett C E, Lederman F L, Lau T M, et al. Lack of correlation between vascular endothelial growth factor production and endothelial cell proliferation in the human endometrium. Hum Reprod. 1999, 14(8): 2080-2088.
    
    [16] Niklaus A L, Aberdeen G W, Babischkin J S, et al. Effect of estrogen on vascular endothelial growth/permeability factor expression by glandular epithelial and stromal cells in the baboon endometrium. Biol Reprod. 2003, 68(6): 1997-2004.
    
    [17] Mueller M D, Lebovic D I, Garrett E, et al. Neutrophils infiltrating the endometrium express vascular endothelial growth factor: potential role in endometrial angiogenesis. Fertil Steril. 2000, 74(1): 107-112.
    
    [18] Gargett C E, Lederman F, Heryanto B, et al. Focal vascular endothelial growth factor correlates with angiogenesis in human endometrium. Role of intravascular neutrophils. Hum Reprod. 2001, 16(6): 1065-1075.
    
    [19] Ylikorkala O, Makila U M. Prostacyclin and thromboxane in gynecology and obstetrics. Am J Obstet Gynecol. 1985, 152(3): 318-329.
    
    [20] Popovici R M, Irwin J C, Giaccia A J, et al. Hypoxia and cAMP stimulate vascular endothelial growth factor (VEGF) in human endometrial stromal cells: potential relevance to menstruation and endometrial regeneration. J Clin Endocrinol Metab. 1999, 84(6): 2245-2248.
    
    [21] Bicknell R, Harris A L. Novel angiogenic signaling pathways and vascular targets. Annu Rev Pharmacol Toxicol. 2004, 44: 219-238.
    
    [22] Zhang J, Salamonsen L A. In vivo evidence for active matrix metalloproteinases in human endometrium supports their role in tissue breakdown at menstruation. J.Clin. Endocrinol. 2002, 87(5): 2346-2351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700