用户名: 密码: 验证码:
利用绿色化学法合成具有光伏性能的半导体纳米晶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,半导体纳米晶由于具有优良的光伏性能而被广泛应用于发光二级管、光检测器以及太阳能电池等领域。但是现有半导体纳米晶的合成方法对环境污染非常严重,人们迫切希望开发绿色环保的方法用于合成高质量半导体纳米晶。本论文中,我们先后开发了“一锅法”、“反向热注射法”以及“烷基硫醇辅助溶解硒粉法”等无膦方法用于合成高质量的油溶性半导体纳米晶,并对水相半导体纳米晶的生长机理进行了研究,成功的合成出不同尺寸、荧光量子效率、表面配体的水溶性半导体纳米晶,最终实现绿色合成这一目标,有力推动了半导体纳米晶在光伏领域的应用。
     第一,我们开发了“一锅法”以及“反向热注射法”用于合成ZnSe和Cu_(2-x)Se等二元半导体纳米晶,并通过改变实验条件有效调控它们的尺寸、形貌以及晶型。Cu_2-xSe半导体纳米晶具有优异的光伏性能,将其制成器件后,得到了很好的光检测性能。
     第二,我们开发了“烷基硫醇辅助溶解硒粉法”用于合成基于铜的多元硒化物半导体纳米晶。利用这种方法合成出的Cu_2ZnSnSe_4、Cu(InGa)Se_2以及Co~(2+)、Fe~(2+)掺杂的Cu_2SnSe_3半导体纳米晶具有非常小的尺寸以及均匀的尺寸分布。用它们制成的光检测器具有非常好的光伏性能。
     第三,我们详细研究了静电相互作用对水相半导体纳米晶生长速率以及荧光量子效率的影响,实现了通过改变实验条件,合成任意尺寸、不同荧光量子效率、不同表面配体的CdTe半导体纳米晶。进一步将这些CdTe半导体纳米晶与聚对苯撑乙烯复合,制备了具有双层结构的杂化太阳能电池器件,并得到了很好的光电转换效率。
Exploring novel approaches to produce low-cost, high-efficiency photovoltaic cellshas attracted great interests because of the urgent need for clean and renewable energysources. Recently, the advances of colloidal synthesis of semiconductor nanocrystalshave opened the door to address this challenge. Various II-VI and I-III-VI2semiconductors, such as CdSe, CdTe, CuInS2, CuInSe2, and Cu(InGa)Se2have beenstudied intensively. Despite their appealing photovoltaic performance, the intrinsictoxicity of the reagents used sheds a doubt on the future applicability of thesenanocrystals. Since1993, Murray et al. gave the first report for synthesizinghigh-quality CdSe nanocrystals, which involved the pyrolysis of cadmiumorganometallic precursor Cd(CH3)2in tri-n-octylphosphine oxide and a hot injection ofSe source, this method has been used for more than twenty years, although Cd(CH3)2isextremely toxic, pyrophoric, expensive, unstable at room temperature, and explosive atelevated temperature with releasing large amount of toxic gas. Later, Peng et al.developed a relatively simple and convenient “green chemistry” route, namely, usinginexpensive and little toxic CdO rather than Cd(CH3)2and using octadecene as thenon-coordinating solvent, while the alkylphosphine, such as trioctylphosphine andtributylphosphine, have still to be used, which are hazardous and unstable. In this thesis,we develop some environment-friendly and phosphine-free routes for synthesizing highquality semiconductor nanocrystals with the photovoltaic property. Because these routes are simple and convenient, it is reasonable to expect that they will promote the practicalapplications of semiconductor nanocrystals in solar cells.
     In chapter2, we demonstrate a “one-pot” strategy for synthesizing ZnSenanocrystals in liquid paraffin firstly. The resultant ZnSe nanocrystals possess highphotoluminescence quantum yields and narrow size distribution. Moreover, byregulating the experimental variables, it is found that the precursor concentration, theZn:Se ratio, and the heating rate greatly influence the growth kinetics of nanocrystals. Ingeneral, high precursor concentration facilitate the formation of small nanocrystals,whereas high Zn:Se ratio improve the PLQYs of nanocrystals. However, as the Zn:Seratio higher than1:0.25, the morphology of nanocrystals transfer from dots to rods,simultaneously with a crystal phase transition from zinc blende to wurtzite. Moreover,the increase of heating rate also facilitates the formation of rod-like nanocrystals.Secondly, we indicate a simple and convenient method for synthesizing high-qualityCu2-xSe Nanocrystals through modified hot-injection strategy. Systematic studies revealthat the key in the current synthesis is the ability to tune the reactivity of Se byregulating the experimental variables, such as the reaction time, Se concentration,reaction temperature, and particularly the addition of noncoordinating solvent of Se. Ingeneral, the formation of Cu2-xSe is facilitated at high Se concentration, high reactiontemperature, and low coordinative ability of the solvent. At last, a photoresponse deviceis fabricated by sandwiching the Cu2-xSe nanocrystals between two blank ITO glasseswith a device configuration of ITO/Cu2-xSe/ITO, which possesses the obviousphotoresponsive behavior.
     In chapter3, we demonstrate the dissolution of elemental Se in oleylamine byalkylthiol reduction at room temperature, which generate soluble alkylammoniumselenide. By using this Se precursor, we have successfully synthesized manyhigh-quality selenide nanocrystals, such as Cu2ZnSnSe4, Cu(InGa)Se2, Co2+-andFe2+-doped Cu2SnSe3nanocrystals. As a result from the existence of dodecanethiol, which suppress the growth of bigger nanocrystals by forming strong metal-S bondingon nanocrystal surface, the nanocrystals all possess small size and size monodispersity.The proposed reduction reaction between Se powder and dodecanethiol is investigated,which shows that Se powder is reduced by dodecanethiol, whereas dodecanethiol isoxidized to disulfides. The formation of disulfides is verified both by nuclear magneticresonance and mass spectra. Since the copper-based multinary selenide nanocrystalshave been regarded as potential candidates because of the suitable band gap, highabsorption coefficient, good photostability, and low toxicity, high photovoltaicefficiency, a photoresponse device with metal/semiconductor/metal structure isfabricated, which shows a promising photoresponsive behavior.
     In chapter4, we demonstrate the effect of electrostatic repulsion on the growth rateand photoluminescence quantum yields of aqueous nanocrystals. In general, the growthof aqueous nanocrystals involves two stages; the initial nucleation stage and thefollowing growth stage. Electrostatic factors play different role in these two stages. Atthe former stage, the growth is mainly through the agglomeration and fusion of smallclusters and monomers. The growth rate is dependent on the equilibrium of variousinterparticle interactions. The experimental variables that lower electrostatic repulsionfacilitate the formation of bigger nucleus. At the following growth stage, nanocrystalgrowth is mainly through monomer diffusion. The experimental variables that benefitmonomer diffusion increase nanocrystal growth rate. It could be understood on twoaspects. Firstly, a high ionic strength (the concentration effect, the salt effect, and the pHeffect) will reduce the surface potentials and the thickness of diffuse layer, making iteasier for monomer diffusion. Secondly, the neutral monomer is easier to migratethrough diffuse layer than the charged ones, thus presenting a rapid growth ofnanocrystals. High growth rate of nanocrystals not always lead to highphotoluminescence quantum yields, since the photoluminescence quantum yields aregoverned by the nature of nanocrystal adsorbed layer and the array of Cd and ligands on nanocrystal surface. In general, it should be considered both with the physical diffusionand with the chemical adsorption of monomers. Based on these understanding, we cansynthesize aqueous nanocrystals with various sizes, photoluminescence quantum yields,and ligands. At last, a bilayer photovoltaic device composed ofpoly(p-phenylene-vinylene) and CdTe nanocrystals heterojunction is prepared. Theopen-circuit voltage, short-circuit current, fill factor, and power conversion efficiency ofthe device are0.62V,16.77mA/cm2,0.38%, and3.99%respectively.
引文
[1] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterizationof nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductornanocrystallites [J]. J. Am. Chem. Soc.,1993,115:8706-8715.
    [2] SUN S, MURRAYC B, WELLER D, et al. Monodisperse FePt nanoparticles andferromagnetic FePt nanocrystal superlattices [J]. Science,2000,287:1989-1992.
    [3] PARK J, JOO J, KWON C G, et al. Synthesis of monodisperse sphericalnanocrystals.[J]. Angew. Chem. Int. Ed.,2007,46:4630-4660.
    [4] PARK J, AN K, HWANG C G, et al. Ultra-large-scale syntheses of monodispersenanocrystals [J]. Nat. Mater.,2004,3:891-895.
    [5] YIN Y, ALIVISATOS A P. Colloidal nanocrystal synthesis and theorganic–inorganic interface [J]. Nature,2005,437:664-670.
    [6] CHO K S, TALAPIN D V, GASCHLER W, et al. Designing PbSe nanowires andnanorings through oriented attachment of nanoparticles [J]. J. Am. Chem.Soc.,2005,127:7140-7147.
    [7] SHEVCHENKO E V, Bodnarchuk M I, Kovalenko, M. V, et al. Gold/Iron OxideCore/Hollow-Shell Nanoparticles [J]. Adv. Mater.,2008,20:4323-4329.
    [8] TALAPIN D V, NELSON J H, SHEVCHENKO E V, et al. Seeded growth ofhighly luminescent CdSe/CdS nanoheterostructures with rod and tetrapodmorphologies [J]. Nano Lett.,2007,7:2951-2959.
    [9] CARBONE L, NOBILE C, DE GIORGI M, et al. Synthesis and micrometer-scaleassembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach[J]. Nano Lett.,2007,7:2942-2950.
    [10] MILLIRON D J, HUGHES S M, CUI Y, Colloidal nanocrystal heterostructureswith linear and branched topology [J]. Nature,2004,430:190-195.
    [11] ZENG H, SUN S. Syntheses, properties, and potential applications ofmulticomponent magnetic nanoparticles [J]. Adv. Funct. Mater.,2008,18:391-400.
    [12] COZZOLI P D, PELLEGRINO T, MANNA L. Synthesis, properties andperspectives of hybrid nanocrystal structures [J]. Chem. Soc. Rev.,2006,35:1195-1208.
    [13] KWON S G, PIAO Y, PARK J, et al. Kinetics of monodisperse iron oxidenanocrystal formation by “heating-up” process [J]. J. Am. Chem. Soc.,2007,129:12571-12584.
    [14] SHEVCHENKO E V, TALAPIN D V, SCHNABLEGGER H, et al. Study ofnucleation and growth in the organometallic synthesis of magnetic alloynanocrystals: the role of nucleation rate in size control of CoPt3nanocrystals [J]. J.Am. Chem. Soc.,2003,125:9090-9101.
    [15] de MELLO DONEGA C, LILJEROTH P, VANMAEKELBERGH D.Physicochemical evaluation of the hot-injection method, a synthesis route formonodisperse nanocrystals [J]. Small,2005,1:1152-1162.
    [16] TALAPIN D V, ROGACH A L, KORNOWSKI A, et al. Highly luminescentmonodisperse CdSe and CdSe/ZnS nanocrystals synthesized in ahexadecylamine-trioctylphosphine oxide-trioctylphospine mixture [J]. Nano Lett.,2001,1:207-211.
    [17] BLACKMAN B, BATTAGLIA D M, MISHIMA T D, et al. Control of themorphology of complex semiconductor nanocrystals with a type II heterojunction,dots vs peanuts, by thermal cycling [J]. Chem. Mater.,2007,19:3815-3821.
    [18] PENG Z A, PENG X. Nearly monodisperse and shape-controlled CdSenanocrystals via alternative routes: nucleation and growth [J]. J. Am. Chem.Soc.,2002,124:3343-3353.
    [19] STEIGERWALD M L, ALIVISATOS A P, GIBSON J M, et al. Surfacederivatization and isolation of semiconductor cluster molecules [J]. J. Am. Chem.Soc.,1988,110:3046-3050.
    [20] MORELLO G, de GIGOGI M, KUDERA S, et al. Temperature and sizedependence of nonradiative relaxation and exciton-phonon coupling in colloidalCdTe quantum dots [J]. J. Phys. Chem. C,2007,111:5846-5849.
    [21] YONG K-T, SAHOO Y, SWIHART M T, et al. Shape control of CdSnanocrystals in one-pot synthesis [J]. J. Phys. Chem. C,2007,111:2447-2458.
    [22] MI I O I, CURTIS C J, JONES K M, et al. Synthesis and characterization ofInP quantum dots [J]. J. Phys. Chem.,1994,98:4966-4969.
    [23] DIMITRIJEVI N M, RAJH T, AHRENKIEL P, et al. Charge separation inheterostructures of InP nanocrystals with metal particles [J]. J. Phys. Chem. B,2005,109:18243-188249.
    [24] TALAPIN D B, ROGCH A L, SHEVCHENKO E V, et al. Dynamic distributionof growth rates within the ensembles of colloidal II-VI and III-V semiconductornanocrystals as a factor governing their photoluminescence efficiency [J]. J. Am.Chem. Soc.,2002,124:5782-5790.
    [25] BATTAGLIA D, PEN X. Formation of high quality InP and InAs nanocrystals ina noncoordinating solvent [J]. Nano Lett.,2002,2:1027-1030.
    [26] HINES M A, SCHOLES G D. Colloidal PbS nanocrystals with size-tunablenear-infrared emission: observation of post-synthesis self-narrowing of theparticle size distribution [J]. Adv. Mater.,2003,15,1844-1849.
    [27] LIN W, FRITZ K, GUERIN G, et al. Highly luminescent lead sulfide nanocrystalsin organic solvents and water through ligand exchange with poly(acrylic acid)[J].Langmuir,2008,24:8215-8219.
    [28] LEE S-M, JUN Y-W, CHO S-N, et al. Single-crystalline star-shapednanocrystals and their evolution: programming the geometry of nano-buildingblocks [J]. J. Am. Chem. Soc.,2002,124:11244-11245.
    [29] CADEMARTIRI L, BERTOLOTTI J, SAPIENZA R, et al. Multigram scale,solventless, and diffusion-controlled route to highly monodisperse PbSnanocrystals [J]. J. Phys. Chem. B,2006,110:671-673.
    [30] ABEL K, SHAN J N, BOYER J C, et al. Highly photoluminescent PbSnanocrystals: the beneficial effect of trioctylphosphine [J]. Chem. Mater.,2008,20:3794-3796.
    [31] TALAPIN D V, MURRAY C B. PbSe nanocrystal solids for n-and p-channelthin film field-effect transistors [J]. Science,2005,310:86-89.
    [32] URBAN J J, TALAPIN D V, SHEVCHENKO E V, et al. Self-assembly of PbTequantum dots into nanocrystal superlattices and glassy films [J]. J. Am.Chem.Soc.,2006,128:3248-3255.
    [33] PENG X, WICKHAM J, ALIVISATOS A P. Kinetics of II-VI and III-V colloidalsemiconductor nanocrystal growth:“focusing” of size distributions [J]. J. Am.Chem. Soc.,1998,120:5343-5344.
    [34] CHEN Y, JOHNSON E, Peng X. Formation of monodisperse andshape-controlled MnO nanocrystals in non-injection synthesis: self-focusing viaripening [J]. J. Am. Chem. Soc.,2007,129,10937-10947.
    [35] EFROS A L. Sov. Phys. Semicond.,1982,16,772-775.
    [36] BRUS L. Electronic wave functions in semiconductor clusters: experiment andtheory [J]. J. Phys. Chem.,1986,90:2555-2560.
    [37] TALAPIN D V, MEKIS L, G TZINGER S, et al. CdSe/CdS/ZnS andCdSe/ZnSe/ZnS core-shell-shell nanocrystals [J]. J. Phys. Chem. B,2004,108:18826-18831.
    [38] REISS P, BLEUSE J, PRON A. Highly luminescent CdSe/ZnSe core/shellnanocrystals of low size dispersion [J]. Nano Lett.,2002,2:781-784.
    [39] QU L, PENG X. Control of photoluminescence properties of CdSe nanocrystals ingrowth [J]. J. Am. Chem. Soc.,2002,124,2049-2055.
    [40] ANIKEEVA P O, HALPERT J E, BAWENDI A G, et al. Electroluminescencefrom a mixed red-green-blue colloidal quantum dot monolayer [J]. Nano Lett.,2007,7:2196-2200.
    [41] PENG X, SCHLAMP M C, KADAVANICH A V, et al. Epitaxial growth of highlyluminescent CdSe/CdS core/shell nanocrystals with photostability and electronicaccessibility [J]. J. Am.Chem. Soc.,1997,119,7019-7029.
    [42] GAPONIK N, TALAPIN D B, ROGACH A L, et al. Thiol-capping of CdTenanocrystals: an alternative to organometallic synthetic routes [J]. J. Phys. Chem.B,2002,106:7177-7185.
    [43] SHAVEL A, GAPONIK N, EYCHMüLLER A J. Factors governing the quality ofaqueous CdTe nanocrystals: calculations and experiment [J]. Phys. Chem. B2006,110:19280-19284.
    [44] ROGACH A L, FRANZL F, KLAR T A, et al. Aqueous synthesis of thiol-cappedCdTe nanocrystals: state-of-the-art [J]. J. Phys. Chem. C,2007,111:14628-14637.
    [45] RAJH T, MI I O I, NOZIK A J. Synthesis and characterization ofsurface-modified colloidal cadmium telluride quantum dots [J]. J. Phys. Chem.,1993,987:11999-12003.
    [46] VOSSMEYER T, KATSIKAS L, GIERISG M, et al. CdS nanoclusters: synthesis,characterization, size dependent oscillator strength, temperature shift of theexcitonic transition energy, and reversible absorbance shift [J]. J. Phys.Chem.1994,98:7665-7673.
    [47] ROGACH A L, KORNOWKSI A, GAO M Y, et al. Synthesis and characterizationof a size series of extremely small thiol-stabilized CdSe nanocrystals [J]. J. Phys.Chem. B,1999,103:3065-3069.
    [48] ROGACH A L, KERSHAW S, BURT M, et al. Colloidally prepared HgTenanocrystals with strong room-temperature infrared luminescence [J]. Adv. Mater.,1999,11:552-555.
    [49] PANG Q, ZHAO L, CAI Y, et al. CdSe nano-tetrapods: controllable synthesis,structure analysis, and electronic and optical properties [J]. Chem. Mater.,2005,17:5263-5267.
    [50] ASOKAN S, KRUEGER K M, COLVIN V L, et al. Shape-controlled synthesis ofCdSe tetrapods using cationic surfactant ligands [J]. Small,2007,3:1164-1169.
    [51] MANNA L, MILLIRON D J, MEISEL A, et al. Controlled growth oftetrapod-branched inorganic nanocrystals [J]. Nat. Mater.,2003,2:382-385.
    [52] COZZOLI P D, MANNA L, CURRI M L, et al. Shape and phase control ofcolloidal ZnSe nanocrystals [J]. Chem. Mater.,2005,17:1296-1306.
    [53] HU J, BANDO Y, GOLDBERG D. Sn-catalyzed thermal evaporation synthesis oftetrapod-branched ZnSe nanorod architectures [J]. Small2005,1:95-99.
    [54] ZHANG J W, YU W W. Formation of CdTe nanostructures with dot, rod, andtetrapod shapes [J]. Appl. Phys. Lett.,2006,89:123108-123111.
    [55] CHEMSEDDINE A, MORITZ T. Nanostructuring titania: control overnanocrystal structure, size, shape, and organization [J]. Eur. J. Inorg. Chem.,1999,2:235-245.
    [56] PENN R L. Kinetics of oriented aggregation [J]. J. Phys. Chem. B,2004,108:12707-12712.
    [57] BANFIELD J F, WELCH S A, ZHANG H, et al. Aggregation-based crystalgrowth and microstructure development in natural iron oxyhydroxidebiomineralization products [J]. Science,2000,289:751-754.
    [58] PENN R L, BANFIELD J F. Imperfect oriented attachment: dislocationgeneration in defect-free nanocrystals [J]. Science,1998,281:969-971.
    [59] TRENTLER T J, HICKMAN K N, GOEL S C, et al. Solution-liquid-solid growthof crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth [J].Science,1995,270:1791-1794.
    [60] TANG Z, KOTOV N A, GIERSIG M. Spontaneous organization of single CdTenanoparticles into luminescent nanowires [J]. Science,2002,297:237-240.
    [61] PRADHAN N, XU H, PENG X. Colloidal CdSe quantum wires by orientedattachment [J]. Nano Lett.,2006,6:720-724.
    [62] YU J H, JOO J, PARK H M, et al. Synthesis of quantum-sized cubic ZnSnanorods by the oriented attachment mechanism [J]. J. Am. Chem. Soc.,2005,127:5662-5670.
    [63] YONG K-T, SAHOO Y, ZENEG H, et al. Formation of ZnTe nanowires byoriented attachment [J]. Chem. Mater.,2007,19:4108-4110.
    [64] YU H, BUHRO W E. Solution-liquid-solid growth of soluble GaAs nanowires [J].Adv. Mater.,2003,15:416-419.
    [65] GUDIKSEN M S, LIEBRE C M. Diameter-selective synthesis of semiconductornanowires [J]. J. Am. Chem. Soc.,2000,122:8801-8802.
    [66] WU Y, YANG P J. Direct observation of vapor-liquid-solid nanowire growth [J]. J.Am. Chem. Soc.,2001,123:3165-3166.
    [67] WAGNER R S, ELLIS W C. Vapro-liquid-solid mechanism of single crystalgrowth [J]. Appl. Phys. Lett.,1964,4:89-90.
    [68] HEITSCH A T, FANFAIR D D, TUAN H-Y, et al. Solution-liquid-solid (SLS)growth of silicon nanowires [J]. J. Am.Chem. Soc.,2008,130:5436-5437.
    [69] HSU Y-J, LU S-Y. Vapor-solid growth of Sn nanowires: growth mechanism andsuperconductivity [J]. J. Phys. Chem. B,2005,109:4398-4403.
    [70] LU X, FANFAIR D D, JOHNSTON K P, et al. High yield solution-liquid-solidsynthesis of germanium nanowires [J]. J. Am. Chem. Soc.2005,127:15718-15719.
    [71] FANFAIR D D, KORGEL B A. Bismuth nanocrystal-seeded III-V semiconductornanowire synthesis [J]. Cryst. Growth Des.,2005,5:1971-1976.
    [72] SMIGELSKAS A D, KIRKENDALL E O. Institute of metals division-thedeformation of unalloyed titanium sheet as function of orientation and strain rate[J]. Trans. AIME,1947,171:130-132.
    [73] YIN Y D, RIOUX R M, ERDONMEZ C K, et al. Formation of hollownanocrystals through the nanoscale kirkendall effect [J]. Science,2004,304:711-714.
    [74] LIU N, PRALL B S, KLIMOV V I. Hybrid gold/silica/nanocrystal-quantum-dotsuperstructures: synthesis and analysis of semiconductor-metal interactions [J]. J.Am. Chem. Soc.,2006,128:15362-15363.
    [75] HINES M A, GUYOT-SIONNEST P. Synthesis and characterization of stronglyluminescing ZnS-capped CdSe nanocrystals [J]. J. Phys. Chem.,1996,100:468-471.
    [76] KUNO M, LEE J K, DABBOUSI B O, et al. The band edge luminescence ofsurface modified CdSe nanocrystallites: probing the luminescingstate [J]. J. Chem.Phys.,1997,106:9869-9882.
    [77] DABBOUSI B O, RODRIGUEZ-VIEJO J, MIKULEC F V, et al.(CdSe)ZnScore-shell quantum dots: synthesis and characterization of a size series of highlyluminescent nanocrystallites [J]. J. Phys. Chem. B,1997,101:9463-9475.
    [78] KIM H, ACHERMANN M, BALET L P, et al. Synthesis and characterization ofCo/CdSe Core/Shell nanocomposites: bifunctional magnetic-optical nanocrystals[J]. J. Am. Chem. Soc.,2005,127:544-546.
    [79] ZIMMER J P, KIM S-W, OHNISHI S, et al. Size series of small indiumarsenide-zinc selenide core-shell nanocrystals and their application to in vivoimaging [J]. J. Am. Chem. Soc.,2006,128:2526-2527.
    [80] CAO Y W, BANIN U. Growth and properties of semiconductor core/shellnanocrystals with InAs cores [J]. J. Am. Chem. Soc.,2000,122:9692-9702.
    [81] XIE R, BATTAGLIA D, PENG X. Colloidal InP nanocrystals as efficient emitterscovering blue to near infrared [J]. J. Am. Chem. Soc.,2007,129:15432-15433
    [82] PIRYATINSKI A, IVANOV S A, TRETIAK S, et al. Effect of quantum anddielectric confinement on the exciton-exciton interaction energy in type IIcore/shell semiconductor nanocrystals [J]. Nano Lett.,2007,7:108-115.
    [83] HE J, LO SS, KIM J, et al. Control of exciton spins relaxation by electron-holedecoupling in type-II nanocrystal heterostructures [J]. Nano Lett.,2008,8:4007-4013.
    [84] KIM S, FISHER B, EISLER H-J, et al. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe (core/shell) heterostructures [J]. J. Am. Chem. Soc.,2003,125:11466-11467.
    [85] GUR I, FROMER N A, GEIER M L, et al. Air-stable all-inorganic nanocrystalsolar cells processed from solution [J]. Science,2005,310:462-465.
    [86] IVANOV S A, NANDA J, PIRVATINSKI A, et al. Light amplification usinginverted core/shell nanocrystals: towards lasing in the single-exciton regime [J].J. Phys. Chem. B,2004,108:10625-10630.
    [87] GAO J, ZHANG B,GAO Y, et al. Fluorescent magnetic nanocrystals bysequential addition of reagents in a one-pot reaction: a simple preparation formultifunctional nanostructures [J]. J. Am. Chem.Soc.,2007,129:11928-11935.
    [88] Lee J-S, Shevchenko E V, Talapin D V. Au-PbS core-shell nanocrystals:plasmonic absorption enhancement and electrical doping via intra-particle chargetransfer [J]. J. Am. Chem.Soc.,2008,130:9673-9675.
    [89] KUDERA S, CARBONEL, CASULA M F, et al. Selective growth of PbSe on oneor both tips of colloidal semiconductor nanorods [J]. Nano Lett.,2005,5:445-449.
    [90] MOKARI T, ROTHENBERG E, POPOV I. Selective growth of metal tips ontosemiconductor quantum rods and tetrapods [J]. Science,2004,304:1787-1790.
    [91] ROBINSON R D, SADTLER B, DEMCHENKO D O, et al. Spontaneoussuperlattice formation in nanorods through partial cation exchange [J]. Science,2007,317:355-358.
    [92] DENG Z, CAO L, TANG F, et al. A new route to zinc-blende CdSe nanocrystals:mechanism and synthesis [J]. J. Phys. Chem. B,2005,109:16671-16675.
    [93] JASIENIAK J, BULLEN C, van EMBDEN J, et al. Phosphine-free synthesis ofCdSe nanocrystals [J]. J. Phys. Chem. B,2005,109:20665-20668.
    [94] WEI Y, YANG J, LIN A W H, et al [J]. Highly reactive Se precursor for thephosphine-free synthesis of metal selenide nanocrystals. Chem. Mater.,2010,22:5672–5677.
    [95] GUO J, YANG W, WANG C. Systematic study of the photoluminescencedependence of thiol-capped CdTe nanocrystals on the reaction conditions [J]. J.Phys. Chem. B,2005,109:17467-17473.
    [96] SHAVEL A, GAPONIK N, EYCHMüLLER A. Factors governing the quality ofaqueous CdTe nanocrystals: calculations and experiment [J]. J. Phys. Chem. B,2006,110:19280-19284.
    [97] ROGACH A L, FRANZL T, KLAR T A, et al. Aqueous synthesis of thiol-cappedCdTe nanocrystals: state-of-the-art [J]. J. Phys, Chem. C,2007,111:14628-14637.
    [98] ZHAO K, LI J, WANG H, et al. Stoichiometric ratio dependentphotoluminescence quantum yields of the thiol capping CdTe nanocrystals [J]. J.Phys. Chem. C,2007,111:5618-5621.
    [99] LIU Y, CHEN W, JOLY A G, et at. Comparison of water-soluble CdTenanoparticles synthesized in air and in nitrogen [J]. J. Phys. Chem. B,2006,110:16992-17000.
    [100] ZHENG Y, YANG Z, YING J Y. Aqueous synthesis of glutathione-capped ZnSeand Zn1-xCdxSe alloyed quantum dots [J]. Adv. Mater.,2007,19:1475-1479.
    [101] HARRISON M T, KERSHAW S V, BURT M G, et al. Wet chemical synthesis andspectroscopic study of CdHgTe nanocrystals with strong near-infraredluminescence [J]. Mater. Sci. Eng. B,2000,69-70:355-360.
    [102] HARRISON M T, KERSHAW S V, ROGACH A L, et al. Wet chemical synthesisof highly luminescent HgTe/CdS core/shell nanocrystals [J]. Adv. Mater.,2000,12:123-125.
    [103] ZHANG L, GAPONIK N, MüLLER J, et al. Branched wires of CdTenanocrystals using amphiphilic molecules as templates [J]. Small,2005,1:524-527.
    [104] TANG Z, ZHANG Z, WANG Y, et al. Self-assembly of CdTe nanocrystals intofree-floating sheets [J]. Science,2006,314:274-278.
    [105] ZHANG H, WANG D, M HWALD H. Ligand-selective aqueous synthesis ofone-dimensional CdTe nanostructures [J]. Angew Chem. Int. Ed.,2006,45:748-751.
    [106] NIU H, GAO M. Diameter-tunable CdTe nanotubes templated by1D nanowiresof cadmium thiolate polymer [J]. Angew Chem. Int. Ed.,2006,45:6462-6466.
    [107] BAO H, WANG E, DONG S. One-pot Synthesis of CdTe nanocrystals and shapecontrol of luminescent CdTe-cystine nanocomposites [J]. Small,2006,2:476-480.
    [108] TANG B, YANG F, LIN Y, et al. Synthesis and characterization ofwavelength-tunable, water-soluble, and near-infrared-emitting CdHgTe nanorods[J]. Chem. Mater.,2007,19:1212-1214.
    [109] COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-emitting diodes madefrom cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature1994,370:354-357.
    [110] SCHLAMP M C, PENG X G, ALIVISATOS A P. Improved efficiencies in lightemitting diodes made with CdSe(CdS) core/shell type nanocrystals and asemiconducting polymer [J]. J. Appl. Phys.,1997,82:5837-5842.
    [111] MATTOUSSI H, RADZILOWSKI L H, DABBOUSI B O, et al.Electroluminescence from heterostructures of poly(phenylene vinylene) andinorganic CdSe nanocrystals [J]. J. Appl. Phys.,1998,83:7965-7974.
    [112] CHAUDHARY S, OZKAN M, CHAN W C W. Trilayer hybrid polymer-quantumdot light-emitting diodes [J]. Appl. Phys. Lett.,2004,84:2925-2927.
    [113] COE-SULLIVAN S, STEKEL J S, WOO W K, et al. Large-area orderedquantum-dot monolayers via phase separation during spin-casting [J]. Adv. Funct.Mater.,2005,15:1117-1024.
    [114] STECKEL J S, SNEE P, COE-SULLIVAN S, et al. Color-saturated green-emittingQD-LEDs [J]. Angew. Chem., Int. Ed.,2006,45:5796-5799.
    [115] CARGUE J M, HALPERT J E, BULVIC V, et al. NiO as an inorganichole-transporting layer in quantum-dot light-emitting devices [J]. Nano Lett.,2006,6:2991-2994.
    [116] SUN Q.WANG A, LI L S, et al. Bright, multicoloured light-emitting diodes basedon quantum dots [J]. Nat. Photon.,2007,1:717-722.
    [117] MUELLER A H, PETRUSKA M A, ACHERMANN M, et al. Multicolorlight-emitting diodes based on semiconductor nanocrystals encapsulated in GaNcharge injection layers [J]. Nano Lett.,2005,5:1039-1044.
    [118] COE-SULLIVAN S, WOO W-K, STECKEL J S, et al. Tuning the performance ofhybrid organic/inorganic quantum dot lightemitting devices [J]. Org. Electron.,2003,4:123-130.
    [119] COE-SULLIVAN S, WOO W-K, BAWENDI M, et al. Electroluminescence fromsingle monolayers of nanocrystals in molecular organic devices.[J]. Nature2002,420:800-803.
    [120] ZHAO J, BARDECKER J A, MUNRO A M, et al. Efficient CdSe/CdS quantumdot light-emitting diodes using a thermally polymerized hole transport layer [J].Nano Lett.,2006,6:463-467.
    [121] ROGACH A L, GAPONIK N, LUPTON J M, et al. Light-emitting diodes withsemiconductor nanocrystals [J]. Angew. Chem., Int. Ed.,2008,47:6538-6549.
    [122] Schubert, E. F. Light-Emitting Diodes [B]. Cambridge University Press, San Jose,2006.
    [123] SARGENT E H. Solar cells, photodetectors, and optical sources from infraredcolloidal quantum dots [J]. Adv. Mater.,2008,20:3958-3964.
    [124] ROGACH A L, EYCHMULLER A, HICHKEY S G, et al. Infrared-emittingcolloidal nanocrystals: synthesis, assembly, spectroscopy, and applications [J].Small,2007,3:536-557.
    [125] KERSHAW S V, HARRISON M, ROGACH A L, et al. Development ofIR-emitting colloidal II-VI quantum-dot materials [J]. IEEE J. Sel. Top. QuantumElectron.,2000,6:534-543.
    [126] GREEN M, WAKEFIELD G, DOBSON P J. A simple metalorganic route toorganically passivated mercury telluride nanocrystals [J]. J. Mater. Chem.,2003,13:1076-1078.
    [127] HIGGINSON K A, KUNO M, BONEVICH J, et al. Synthesis andcharacterization of colloidal β-HgS quantum dots [J]. J. Phys. Chem.,2002,106:9982-9985.
    [128] HARRISON M T, KERSHAW S V, BURT M G, et al. Investigation of factorsaffecting the photoluminescence of colloidally-prepared HgTe nanocrystals [J]. J.Mater. Chem.,1999,9:2721-2723.
    [129] GUZELIAN A A, BOWEN-KATARI J, KADAVANICH A, et al. Synthesis ofsize-selected, surface-passivated InP nanocrystals [J]. J. Phys. Chem.,1996,100:7212-7219.
    [130] GUZELIAN A A, BANIN U, KADAVANICH A V, et al. Colloidal chemicalsynthesis and characterization of InAs nanocrystal quantum dots [J]. Appl. Phys.Lett.,1996,69:1432-1434.
    [131] HINES M A, SCHOLES G D. Colloidal PbS nanocrystals with size-tunablenear-infrared emission: observation of post-synthesis self-narrowing of theparticle size distribution [J]. Adv. Mater.,2003,15:1844-1849.
    [132] JOO J, NA H B, YU T, et al. Generalized and facile synthesis of semiconductingmetal sulfide nanocrystals [J]. J. Am. Chem. Soc.,2003,125:11100-11105.
    [133] LOBO A, MOLLER T, NAGEL M, et al. Photoelectron spectroscopicinvestigations of chemical bonding in organically stabilized PbS nanocrystals [J].J. Phys. Chem. B,2005,109:17422-17428.
    [134] SAPRA S, NANDA J, PIETRYGA J M, et al. Unraveling internal structures ofhighly luminescent PbSe nanocrystallites using variable-energy synchrotronradiation photoelectron spectroscopy [J]. J. Phys. Chem. B,2006,110:15244-15250.
    [135] MURRAY C B, SUN S H, GASCHLER W, et al. Colloidal synthesis ofnanocrystals and nanocrystal superlattices [J]. IBM J. Res. Dev.,2001,45:47-56.
    [136] WEHRENBERG B L, WANG C, GUYOT-SIONNEST P. Interband and intrabandoptical studies of PbSe colloidal quantum dots [J]. J. Phys. Chem. B,2002,106:10634-10640.
    [137] DU H, CHEN C, KRISHNAN R, et al. Optical properties of colloidal PbSenanocrystals [J]. Nano Lett.,2002,2:1321-1324.
    [138] YU W W, FALKNER J C, SHIH B S, et al. Preparation and characterization ofmonodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent [J].Chem. Mater.,2004,16:3318-3322.
    [139] LILJEROTH P, EMMICHOVEN P A Z V, HICKEY S G, et al. Density of statesmeasured by scanning-tunneling spectroscopy sheds new light on the opticaltransitions in PbSe nanocrystals [J]. Phys. Rev. Lett.,2005,95:086801-086804.
    [140] URPHY J E, BEARD M C, NORMAN A G, et al. PbTe colloidal nanocrystals:synthesis, characterization, and multiple exciton generation [J]. J. Am. Chem. Soc.,2006,128:3241-3247.
    [141] HUYNH W U, DITTMER J J, ALIVISATOS A P. Hybrid nanorod-polymer solarcells [J]. Science,2002,295:2425-2427.
    [142] SUN B Q, MARX E, GREENHAM N C. Photovoltaic devices using blends ofbranched CdSe nanoparticles and conjugated polymers [J]. Nano Lett.,2003,3:961-963.
    [143] GUR I, FROMER N A, CHEN C-P, et al. Hybrid solar cells with prescribednanoscale morphologies based on hyperbranched semiconductor nanocrystals [J].Nano Lett.,2007,7:409-414.
    [144] Beek W J E, Wienk M M, Janssen R A J. Hybrid solar cells fromregioregular polythiophene and ZnO nanoparticles [J]. Adv. Funct. Mater.,2006,16:1112-1116.
    [145] BEEK W J E, WIENK M M, JANSSEN R A J. Efficient hybrid dolar cells fromzinc oxide nanoparticles and a conjugated polymer [J]. Adv. Mater.,2004,16:1009-1013.
    [146] GUNES S, NEUGEBAUER H, SARICIFTCI N S, et al. Hybrid solar cells usingHgTe nanocrystals and nanoporous TiO2electrodes [J]. Adv. Funct. Mater.,2006,16:1095-1099.
    [147] FRITZ K P, GUENES S, LUTHER J, et al. IV-VI nanocrystal-polymer solar cells[J]. J. Photochem. Photobiol. A: Chem.,2008,195:39-46.
    [148] GUNES S, FRITZ K P, NEUGEBAUER H, et al. Solar energy materials and solarcells [J]. Sol. Energy Mater. Sol. Cells,2007,91:420-423.
    [149] ZHANG S, CYR P W, MCDANLD S A, et al. Enhanced infrared photovoltaicefficiency in PbS nanocrystal/semiconducting polymer composites:600-foldincrease in maximum power output via control of the ligand barrier [J]. Appl.Phys. Lett.,2005,87:233101-233103.
    [150] CUI D H, XU J, ZHU T, et al. Harvest of near infrared light in PbSenanocrystalpolymer hybrid photovoltaic cells [J]. Appl. Phys. Lett.,2006,88:183111-183113.
    [151] SORENI-HARARI M, YAACOBI-GROSS N, STEINER D, et al. Tuningenergetic levels in nanocrystal quantum dots through surface manipulations [J].Nano Lett.,2008,8:678-684.
    [152] WU Y, WADIA C, MA W, et al. Synthesis and photovoltaic application ofcopper(I) sulfide nanocrystals [J]. Nano Lett.,2008,8:2551-2555.
    [153] MILLER A, MACKINNON A, WEAIRE D. Solid State Phys. Adv. Res. Appl.,1981,36:119.
    [154] RAMANATHAN K, CONTRERAS M A, PERKIN C L, et al. Properties of19.2%efficiency ZnO/CdS/CuInGaSe2thin-film solar cells [J]. Prog.PhotoVoltaics,2003,11:225-230.
    [155] REPINS I, CONTRERAS M A, EGASS B, et al.19.9%-efficientZnO/CdS/CuInGaSe2solar cell with81.2%fill factor [J]. Prog. PhotoVoltaics,2008,16:235-239.
    [156] MITZI D B, YUAN M, LIU W, et al. A high-efficiency solution-depositedthin-film photovoltaic device [J]. Adv. Mater.,2008,20:3657-3662.
    [157] CASTRO S L, BAILEY S G, RAFFAELLE R P, et al. Synthesis andcharacterization of colloidal CuInS2nanoparticles from a molecular single-sourceprecursor [J]. J. Phys. Chem. B,2004,108:12429-12435.
    [158] BANGER K K, JIN M H C, HARRIS J D, et al. A new facile route for thepreparation of single-source precursors for bulk, thin-film, and nanocrystalliteI-III-VI semiconductors [J]. Inorg. Chem.,2003,42:7713-7315.
    [159] CZEKELIUS C, HILGENDORFF M, SPANHEL L, et al. A simple colloidal routeto nanocrystalline ZnO/CuInS2bilayers [J]. Adv. Mater.,1999,11:643-646.
    [160] CASTRO S L, BAILEY S G, RAFFAELLE R P, et al. Nanocrystallinechalcopyrite materials (CuInS2and CuInSe2) via low-temperature pyrolysis ofmolecular single-source precursors [J]. Chem. Mater.,2003,15:3142-3147.
    [161] CHOI S-H, KIM E-G, HYEON T. One-pot synthesis of copper-indium sulfidenanocrystal heterostructures with acorn, bottle, and larva shapes [J]. J. Am. Chem.Soc.,2006,128:2520-2521.
    [162] TANG J, HINDS S, KELLEY S O, et al. Synthesis of Colloidal CuGaSe2,CuInSe2, and Cu(InGa)Se2Nanoparticles [J]. Chem. Mater.,2008,20:6906-6910.
    [163] PANTHANI M G, AKHAVAN V, GOODFELLO B, et al. Synthesis of CuInS2,CuInSe2, and Cu(InxGa1-x)Se2(CIGS) nanocrystal “inks” for printablephotovoltaics [J]. J. Am. Chem. Soc.,2008,130:16770-16777.
    [164] Allen P M, Bawendi, M G. Ternary I-III-VI quantum dots luminescent in the redto near-infrared [J]. J. Am. Chem. Soc.,2008,130:9240-9241.
    [165] KOLEILAT G I, LEYINA L, SHULA H, et al. Efficient, stable infraredphotovoltaics based on solution-cast colloidal quantum dots [J]. ACS Nano,2008,2:833-840.
    [166] JOHNSTON K W, PATTANTYUS-ABRAHAM A G, CLIFFORD J P, et al.Efficient schottky-quantum-dot photovoltaics: the roles of depletion, drift, anddiffusion [J]. Appl. Phys. Lett.,2008,92:122111-122113.
    [167] SARGENT E H. Solution-processed infrared optoelectronics: photovoltaics,sensors, and sources [J]. IEEE J. Select. Top. Quantum Electron.,2008,14:1223-1229.
    [168] KLEM E J D, MACNEIL D D, LEVINA L, et al. Solution processed photovoltaicdevices with2%infrared monochromatic power conversion efficiency:performance optimization and oxide formation [J]. Adv. Mater.,2008,20:3433-3439.
    [169] LUTHER J M, LAW M, BEARD M C, et al. Schottky solar cells based oncolloidal nanocrystal films [J]. Nano Lett.,2008,8:3488-3492.
    [170] LAW M, BEARD M C, CHOI S, et al. Determining the internal quantumefficiency of PbSe nanocrystal solar cells with the aid of an optical model [J].Nano Lett.,2008,8:3904-3910.
    [171] BROWN P, KAMAT V P. Quantum dot solar cells. electrophoretic deposition ofCdSe-C60composite films and capture of photogenerated electrons with nC60cluster shell [J]. J. Am. Chem. Soc.,2008,130:8890-8891.
    [172] ROBEL I, SUBRAMANIAN V, KUNO M, et al. Quantum dot solar cells.Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopicTiO2films [J]. J. Am. Chem. Soc.,2006,128:2385-2393.
    [173] KAMAT P V. Quantum dot solar cells. Semiconductor nanocrystals as lightharvesters [J]. J. Phys. Chem. C.,2008,112:18737-18753.
    [174] PETER L M, RILEY D J, TULL E, J, et al. Photosensitization of nanocrystallineTiO2by self-assembled layers of CdS quantum dots [J]. Chem. Commun.,2002,1030-1031.
    [175] GERISCHER H, LUBKE M J. A particle size effect in the sensitization of TiO2electrodes by a CdS deposit [J]. Electroanal. Chem.,1986,204:225-227.
    [176] VOGEL R, POHL K, WELLER H. Sensitization of highly porous, polycrystallineTiO2electrodes by quantum sized CdS [J]. Chem. Phys. Lett.,1990,174:241-248.
    [177] ZZBAN A, MICIC O I, GREG B A, et al. Photosensitization of nanoporous TiO2electrodes with InP quantum dots [J]. Langmuir,1998,14:3153-3156.
    [178] YU P, ZHU K, NORMAN A G, et al. Nanocrystalline TiO2solar cells sensitizedwith InAs quantum dots [J]. J. Phys. Chem. B,2006,110:25451-25454.
    [179] VOGEL R, HOYER P, WELLER H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, andBi2S3particles as sensitizers for various nanoporous wide-bandgapsemiconductors [J]. J. Phys. Chem.,1994,98:3183-3188.
    [180] PLASS R, PELET S, KRUEGER J, et al. Quantum dot sensitization oforganic-inorganic hybrid solar cells [J]. J. Phys. Chem. B,2002,106:7578-7580.
    [181] PETER L M, WIJAYANTHA K G U, RILEY D J, Band-edge tuning inself-assembled layers of Bi2S3nanoparticles used to photosensitizenanocrystalline TiO2[J]. J. Phys. Chem. B,2003,107:8378-381.
    [182] SUAREZ R, NAIR P K, KAMAT P V, et al. Photoelectrochemical behavior ofBi2S3nanoclusters and nanostructured thin films [J]. Langmuir,1998,14:3236-3241.
    [183] LEE H J, YUM J-H, LEVENTIS H C, et al. CdSe quantum dot-sensitized solarcells exceeding efficiency1%at full-sun intensity [J]. J. Phys. Chem. C,2008,112:11600-11608.
    [184] HENGLEIN A. Small-particle research physicochemical properties of extremelysmall colloidal metal and semiconductor particles [J]. Chem. Rev.,1989,89:1861-1873.
    [185] WANG Y, HERRON N. Nanometer-sized semiconductor clusters materialssynthesis, quantum size effects, and photophysical properties [J]. J. Phys. Chem.,1991,95:525-532.
    [186] HEATH J R. The chemistry of size and order on the nanometer scale [J]. Science,1995,270:1315-1316.
    [187] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J].Science,1996,271:933-937.
    [188] DUAN X, HUANG Y, CUI Y, et al. Indium phosphide nanowires as buildingblocks for nanoscale electronic and optoelectronic devices [J]. Nature,2001,409:66-70.
    [189] TESSLER N, MEDVEDEV V, KAZES M, et al. Efficient near-infrared polymernanocrystal light-emitting diodes [J]. Science,2002,295:1506-1508.
    [190] KLIMOV I V, MIKHAILOVSKY A A, XU S, et al. Optical gain and stimulatedemission in nanocrystal quantum dots [J]. Science,2000,290:314-317.
    [191] CHAN W C W, NIE S. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection [J]. Science,1998,281:2016-2018.
    [192] LARSON D R, ZIPFEL W R, WILLIAMS R M, et al. Water-soluble quantumdots for multiphoton fluorescence imaging in vivo [J]. Science,2003,300:1434-1436.
    [193] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for livecells, in vivo imaging, and diagnostics [J]. Science,2005,307:538-544.
    [194] PENG Z A, PENG X. Formation of high-quality CdTe, CdSe, and CdSnanocrystals using CdO as precursor.[J]. J. Am. Chem. Soc.,2001,123:183-184.
    [195] YU W W, PENG X. Formation of high-quality CdS and other II-VI semiconductornanocrystals in noncoordinating solvents: tunable reactivity of monomers [J].Angew. Chem. Int. Ed.,2002,41:2368-2371.
    [196] LI S L, PRADHAN N, WANG Y, et al. High quality ZnSe and ZnS nanocrystalsformed by activating zinc carboxylate precursors [J]. Nano Lett.,2004,4:2261-2264.
    [197] TALAPIN D V, ROGACH A L, HAASE M, et al. Evolution of an ensemble ofnanoparticles in a colloidal solution theoretical study [J]. J. Phys. Chem. B,2001,105:12278-12285.
    [198] DONEG C D M, HICKEY S G, WUISTER S F, et al. Single-step synthesis tocontrol the photoluminescence quantum yield and size dispersion of CdSenanocrystals [J]. J. Phys. Chem. B,2003,107:489-496.
    [199] DAI Q, XIAO N, NING J, et al. Synthesis and mechanism of particle-andflower-shaped ZnSe nanocrystals green chemical approaches toward greennanoproducts [J]. J. Phys. Chem. C,2008,112:7567-7571.
    [200] PIEPENBROCK M-O M, STIRNER T, O’NEILL M, et al. Growth dynamics ofCdTe nanoparticles in liquid and crystalline phases [J]. J. Am. Chem. Soc.,2007,129:7674-7679. D
    [201] PENG Z A, PENG X. Mechanisms of the shape evolution of CdSe nanocrystals[J]. J. Am. Chem. Soc.,2001,123:1389-1395.
    [202] SHIM M, GUYOT-SIONNEST P. Permanent dipole moment and charges incolloidal semiconductor quantum dots [J]. J. Chem. Phys.,1999,111:6955-6964.
    [203] HALDER A, RAVISHANKAR N. Ultrafine single-crystalline Gold nanowirearrays by oriented attachment [J]. Adv. Mater.,2007,19:1854-1858.
    [204] LILLY G D, LEE J, SUN K, et al. Media effect on CdTe nanowire growthmechanism of self-assembly, ostwald ripening, and control of NW geometry [J]. J.Phys. Chem. C,2008,112:370-377.
    [205] FENG H, YANG Y, YOU Y, et al. Simple and rapid synthesis of ultrathin goldnanowires, their self-assembly and application in surface-enhanced Ramanscattering [J]. Chem. Commun.,2009,1984-1986.
    [206] LU W, GAO P, JIAN W B. et al. Perfect orientation ordered in-situone-dimensional self-assembly of Mn-doped PbSe nanocrystals.[J]. J. Am. Chem.Soc.,2004,126:14816-14821.
    [207] ZHANG J, WANG Y, ZHENG J, et al. Oriented attachment kinetics for ligandcapped nanocrystals coarsening of thiol-PbS nanoparticles [J]. J. Phys. Chem. B,2007,111:1449-1454.
    [208] LU A H, SALABAS E L, SCHüTH F. Magnetic nanoparticles: synthesis,protection, functionalization, and application [J]. Angew, Chem. Int. Ed.,2007,46:1222-1224.
    [209] YU W W, WANG Y A, PENG X. Formation and stability of size-, shape-, andstructure-controlled CdTe nanocrystals: ligand effects on monomers andnanocrystals [J]. Chem. Mater.,2003,15:4300-4308.
    [210] JIN R, CAO Y C, HAO E, et al. Controlling anisotropic nanoparticle growththrough plasmon excitation [J]. Nature,2003,425:487-490.
    [211] KOVALENKO M V, SCHEELE M, TALAPIN D V. Colloidal nanocrystals withmolecular metal chalcogenide surface ligands [J]. Science,2009,324:1417-1420.
    [212] HINES M A, GUYOT-SIONNEST P. Bright UV-blue luminescent colloidal ZnSenanocrystals [J]. J. Phys. Chem. B,1998,102:3655-3657.
    [213] JUN Y, LEE S M, KANG N J. Controlled synthesis of multi-armed CdS nanorodarchitectures using monosurfactant system [J]. J. Am. Chem. Soc.,2001,123:5150-5151.
    [214] BURDA C, CHEN X, NARAYANAN R, et al. Chemistry and properties ofnanocrystals of different shapes [J]. Chem. Rev.,2005,105:1025-1102.
    [215] LUTHER J M, BEARD M C, SONG Q, et al. Multiple exciton generation in filmsof electronically coupled PbSe quantum dots [J]. Nano Lett.,2007,7:1779-1784.
    [216] MALIK M A, O’BRIEN P, REVAPRASADU N. A novel route for the preparationof CuSe and CuInSe2nanoparticles [J]. Adv. Mater.,1999,11:1441-1444.
    [217] WANG D, ZHENG W, HAO C, et al. General synthesis of I-III-VI2ternarysemiconductor nanocrystals [J]. Chem. Commun.,2008,2556-2558.
    [218] CHIANG M Y, CHANG S H, CHEN C Y, et al. Quaternary CuIn(S1xSex)2nanocrystals: facile heating-up synthesis, band gap tuning, and gram-scaleproduction [J]. J. Phys. Chem. C,2011,115:1592-1599.
    [219] PAN D, AN L, SUN Z, et al. Synthesis of Cu-In-S ternary nanocrystals withtunable structure and composition [J]. J. Am. Chem. Soc.,2008,130:5620-5621.
    [220] CONNOR S T, HSU C M, WEIL B D, et al. Phase transformation of biphasicCu2S-CuInS2to monophasic CuInS2nanorods [J]. J. Am. Chem. Soc.,2009,131:4962-4966.
    [221] WANG Y H A, ZHANG X, BAO N, et al. Synthesis of shape-controlledmonodisperse wurtzite CuInxGa1–xS2semiconductor nanocrystals with tunableband gap [J]. J. Am. Chem. Soc.,2011,133:11072-11075.
    [222] DERFUS A M, CHAN W C W, BHATIA S N. Probing the cytotoxicity ofsemiconductor quantum dots [J]. Nano Lett.,2004,4:11-18.
    [223] GUO Q, HILLHOUSE H W, AGRAWAL R. Synthesis of Cu2ZnSnS4nanocrystalink and its use for solar cells [J]. J. Am. Chem. Soc.,2009,131:11672-11673.
    [224] RIHA S C, PARKINSON B A, PRIETO A L. Solution-based synthesis andcharacterization of Cu2ZnSnS4nanocrystals [J]. J. Am. Chem. Soc.,2009,131:12054-12055.
    [225] SHAVEL A, ARBIOL J, CABOT A. Synthesis of quaternary chalcogenidenanocrystals: stannite Cu2ZnxSnySe1+x+2y[J]. J. Am. Chem. Soc.,2010,132:4514-4515.
    [226] HAAS W, RATH T, PEIN A, et al. The stoichiometry of single nanoparticles ofcopper zinc tin selenide [J]. Chem. Commun.,2011,47:2050-2052.
    [227] ZENG R, ZHANG T, DAI G, et al. Highly emissive, color-tunable, phosphine-freeMn: ZnSe/ZnS core/shell and Mn: ZnSeS shell-alloyed doped nanocrystals [J]. J.Phys. Chem. C,2011,115:3005-3010.
    [228] RIHA S C, PARKINSON B A, PRIETO A L. Compositionally tunableCu2ZnSn(S1–xSex)4nanocrystals: probing the effect of Se-inclusion in mixedchalcogenide thin films [J]. J. Am. Chem. Soc.,2011,133:15272-15275.
    [229] KHARE A, WILLS A W, AMMERMAN L M, et al. Size control and quantumconfinement in Cu2ZnSnS4nanocrystals [J]. Chem. Commun.,2011,47:11721-11723.
    [230] SHAVEL A, CADAVID D, IBá EZ M, et al. Continuous production ofCu2ZnSnS4nanocrystals in a flow reactor [J]. J. Am. Chem. Soc.,2012,134:1438-1441.
    [231] KOVALENKO M V, BODNARCHUK M I, ZAUMSEIL J, et al. Nanocrystalsuperlattices with thermally degradable hybrid inorganic-organic capping ligands[J]. J. Am. Chem. Soc.,2010,132:10085-10092.
    [232] PARK D, NAM D, JUNG S, et al. Optical characterization of Cu2ZnSnSe4grownby thermal co-evaporation [J]. Thin Solid Films,2011,519:7386-7389.
    [233] ALTOSAAR M, RAUDOJA J, TIMMO K, et al. Cu2Zn1–xCdxSn(Se1–ySy)4solidsolutions as absorber materials for solar cells [J]. Phys. Stat. Sol.(a),2008,205:167-170.
    [234] GILLORIN A, BALOCCHI A, MARIE X, et al. Synthesis and optical propertiesof Cu2CoSnS4colloidal quantum dots [J]. J. Mater. Chem.,2011,21:5615-5619.
    [235] MANEEPRAKORN W, MALIK M A, O’BRIEN P. The preparation of cobaltphosphide and cobalt chalcogenide (CoX, X=S, Se) nanoparticles from singlesource precursors [J]. J. Mater. Chem.,2010,20:2329-2335.
    [236] LIU Y, YAO D, SHEN L, et al. Alkylthiol-enabled Se powder dissolution inoleylamine at room temperature for the phosphine-free synthesis of copper-basedquaternary selenide nanocrystals [J]. J. Am. Chem. Soc.,2012,134:7207-7210.
    [237] HAAS W, RATH T, PEIN A, et al. The stoichiometry of single nanoparticles ofcopper zinc tin selenide [J]. Chem. Commun.,2011,47:2050-2052.
    [238] CHANE-CHING J Y, GILLORIN A, ZABERCA O, et al. Highly-crystallizedquaternary chalcopyrite nanocrystals via a high-temperaturedissolution-reprecipitation route [J]. Chem. Commun.,2011,47:5229-5231.
    [239] XIE R, RUTHERFORD M, PENG X, et al. Formation of high-quality I-III-VIsemiconductor nanocrystals by tuning relative reactivity of cationic precursors [J].J. Am. Chem. Soc.,2009,131:5691-10180.
    [240] GAO M, KIRSTEIN S, M HWALD H, et al. Strongly photoluminescent CdTenanocrystals by proper surface modification [J]. J. Phys. Chem. B,1998,102:8360-8363.
    [241] ZHANG H, ZHOU Z, YANG B, et al. The influence of carboxyl groups on thephotoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J].J. Phys. Chem. B,2003,107:8-13.
    [242] ZHANG H, WANG L, XIONG H, et al. Hydrothermal synthesis for high-qualityCdTe nanocrystals [J]. Adv. Mater.,2003,15:1712-1715.
    [243] GREEN M, HARWOOD H, BARROWMAN C, et al. A facile route to CdTenanoparticles and their use in bio-labelling [J]. J. Mater. Chem.,2007,17:1989-1994.
    [244] VOSSMEYER T, KATSIKAS L, GIERSIG M, et al. CdS nanoclusters: synthesis,characterization, size dependent oscillator strength, temperature shift of theexcitonic transition energy, and reversible absorbance shift [J]. J. Phys. Chem.,1994,98:7665-7673.
    [245] CHOW M K, ZUKOSKI C F. Gold sol formation mechanisms: role of colloidalstability [J]. J. Colloid Interface Sci.,1994,165:97-109.
    [246] ROGACH A L, NAGESHA D, OSTRANDER J W, et al.“Raisin bun”-typecomposite spheres of silica and semiconductor nanocrystals [J]. Chem. Mater.,2000,12:2676-2685.
    [247] GIERSIG M, PASTORIZA-SANTOS I, LIZ-MARZáN A M. Evidence of anaggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide [J]. J. Mater. Chem.,2004,14:607-610.
    [248] COSGROVE T. Colloid Science: Principles, Methods and Applications,Blackwell, Oxford (UK)2005.
    [249] KIM T, LEE K, GONG M S, et al. Control of gold nanoparticle aggregates bymanipulation of interparticle interaction [J]. Langmuir,2005,21:9524-9528.
    [250] TANG Z Y, OZTURK B, WANG Y, et al. Simple preparation strategy andone-dimensional energy transfer in CdTe nanoparticle chains [J]. J. Phys. Chem. B,2004,108:6927-6931.
    [251] DAGTEPE P, CHIKAN V, JASINSKI J, et al. Quantized growth of CdTe quantumdots; observation of magic-sized CdTe quantum dots [J]. J. Phys. Chem. C,2007,111:14977-14983.
    [252] ZHAGN H, LIU Y, ZHAGN J H, et al. Influence of interparticle electrostaticrepulsion in the initial stage of aqueous semiconductor nanocrystal growth [J]. J.Phys. Chem. C,2008,112:1885-1889.
    [253] KIM T, LEE K, GONG M S, JOO S W. Control of gold nanoparticle aggregatesby manipulation of interparticle interaction [J]. Langmuir,2005,21:9524-9528.
    [254] GUO J, YANG W, WANG C. Systematic study of the photoluminescencedependence of thiol-capped CdTe nanocrystals on the reaction conditions [J]. J.Phys. Chem. B,2005,109:17467-17473.
    [255] LI C, MURASE N. Surfactant-dependent photoluminescence of CdTenanocrystals in aqueous solution [J]. Chem. Lett.,2005,34:92-93.
    [256] WANG C L, ZHANG H, ZHANG J H, et al. Ligand dynamics of aqueous CdTenanocrystals at room temperature [J]. J. Phys. Chem. C,2008,112:6330-6336.
    [257] ZHANG H, WANG D Y, YANG B, et al. Manipulation of aqueous growth ofCdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures[J]. J. Am. Chem. Soc.,2006,128:10171-10180.
    [258] YOUNG A G, GREEN D P, MCQUILLAN A J. IR spectroscopic studies ofadsorption of dithiol-containing ligands on CdS nanocrystal films in aqueoussolutions [J]. Langmuir,2007,23:12923-12931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700