用户名: 密码: 验证码:
基于连续累积损伤的疲劳启裂和裂纹扩展的统一模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程构件的疲劳失效过程通常被分为疲劳启裂和裂纹扩展两个阶段。在现行的疲劳分析框架下,主要采用连续介质力学方法和断裂力学方法,分别分析疲劳启裂寿命和扩展寿命。但从损伤力学角度出发,两个阶段不是两个彼此独立的阶段,而是同属于一个连续的疲劳失效过程。因此,基于疲劳损伤理论,建立统一疲劳启裂和裂纹扩展两个阶段的缺口件全寿命预测方法具有重要的理论价值和现实的工程意义。
     基于“扩展裂纹”动态裂纹扩展方式和裂纹尖端的疲劳损伤的连续累积过程,确立了疲劳损伤累积过程与裂纹扩展速率之间的数学关系,提出了一个新的、适合描述常幅和变幅加载的“基于连续累积损伤的疲劳启裂和裂纹扩展统一模型”。提出的统一模型构筑了疲劳启裂和裂纹扩展之间的桥梁。克服了现有的模型不能很好地考虑加载历史以及残余应力场和裂纹表面接触之间的交互作用对裂纹扩展影响的缺陷。
     结合能描述材料非Masing特性的Armstrong-Frederick(A-F)类循环塑性理论和多轴疲劳损伤理论,分别提出了一种基于有限元法的缺口件疲劳寿命预测方法和一种预测非Masing缺口件的疲劳寿命的多轴局部应力应变近似方法。第一种方法考虑了局部塑性变形对缺口根部应力状态的影响。第二种方法适合描述小塑性变形缺口件的多轴应力状态。通过16MnR钢的缺口疲劳试验验证,表明两种方法都能较好地预测拉扭复合加载下的缺口件的疲劳寿命。
     运用提出的统一模型,预测了缺口件在常幅、高低幅顺序加载和过载下的疲劳启裂寿命、裂纹扩展速率和疲劳全寿命。通过裂纹扩展试验结果验证,表明提出的统一模型不仅能较好地描述缺口件的疲劳启裂和裂纹扩展两个阶段,而且能定量地预测过载或高低幅顺序加载下的裂纹扩展“瞬间加速”和“延时延迟”现象。基于16MnR缺口件的二维有限元数值分析,研究了裂纹扩展过程中裂纹尖端的应力和疲劳累积损伤的演化历史,结果表明:缺口塑性区和裂纹表面接触是缺口短裂纹现象的两个重要影响因素,残余应力场、裂纹表面接触和裂纹本身延伸三者之间的交互机制决定着变幅加载下的疲劳裂纹扩展过程。
Fatigue process is often described as the nucleation and growth of cracks to final failure. Under the frame of the fatigue analysis, continuum mechanics methods and fracture mechanics concepts are adopted for the crack initiation life and the propagating life, respectively. However, the nucleation and growth of cracks are not two independent stages, but closely related to the continuous fatigue damage process. Therefore, the establishment of an analysis method on predicting the total life of notched components unifying the fatigue nucleation and growth of cracks has both values of theory and engineering application.
     On the basis of the propagating crack scheme and the continuous accumulated process of the fatigue damage of the crack tip, the nonlinear mathematical relation between the accumulative history of fatigue damage and the crack growth rate was established. A new model unifying the fatigue nucleation and crack growth based on the continuous accumulated damage was proposed. This model can be applied to the constant and variable amplitude loading. The proposed unified model bridges the gap between fatigue nucleation and growth of cracks during the fatigue damage process. The model can describe well the effects of the loading history and the interaction mechanism between the residual stress and the crack contact on the crack growth behavior.
     Two fatigue life prediction methods was proposed based on the Armstrong-Frederick type cyclic plasticity theory well describing the non-Masing behavior and the multiaxial fatigue damage theory. One was the fatigue life prediction method based on the finite element method. The other was the multiaxial local stress-strain approximate method predicting the notched component with the non-Masing behavior. The first method considers the effect of the local plastic deformation on the stress state at the notch root. The second method is fit for the notched components with small plastic deformation. The capability of predicting fatigue life for the two methods was checked against the fatigue experimental data of the notched components made of 16MnR steel. It is found that two methods can predict well the fatigue lives of notched components under the axial-torsion loading.
     The fatigue initiation life, the crack growth rate and the fatigue total life of notched components under the constant amplitude loading, the high-low block loading and the over-loading were predicted based on the proposed model. The unified model was verified by the crack growth experimental results of the notched components made of 16MnR steel. It shows that not only both crack nucleation and crack growth can be modeled simultaneously, but also the initial acceleration and the delayed retardation of crack growth under the overload or the high-low sequence loading can be prediced quantitatively. The histories of the stress and the accumulated fatigue damage of the crack tip were studied based on the 2D finite element method. It shows that the notch influencing zone and the contact of the cracked surfaces are the most important factors resulting in the short crack behavior. The overall crack growth process under the variable amplitude loading is controlled by the interaction mechamsm among the crack surface contact and the residual stress field and the enhanced cyclic plasticity due to the crack advance.
引文
[1]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [2]张行,赵军.金属构件应用疲劳损伤力学[M].北京:国防工业出版社,1998.
    [3]杨继运,张行,张王民.基于疲劳裂纹形成曲线的裂纹扩展分析数值方法[J].机械工程学报,2004,40(7):55-62.
    [4]Jiang Y.A continuum mechanics approach for crack initiation and crack growth predictions[J].Materialwissenschaft und Werkstofftechnik,2006,37(9):738-746.
    [5]Jiang Y,Ding F,Feng M.An approach for fatigue life prediction[J].ASME Journal of Engineering Materials and Technology,2007,129(2):182-189.
    [6]Sehitoglu H,Gall K,Garc(?)a A.Recent advances in fatigue crack growth modeling[J].International Journal of Fracture,1996,80(2):165-192.
    [7]Kujawski D.A new(△KKmax)~(0.5) driving force parameter for crack growth in aluminum alloys[J].International Journal of Fatigue,2001,23(8):733-740.
    [8]Dinda S,Kujawski D.Correlation and prediction of fatigue crack growth for different R-ratios using Kmax and △K+ parameters[J].Engineering Fracture Mechanics,2004,71(12):1779-1790.
    [9]Noroozi AH,Glinka G,Lambert S.A two parameter driving force for fatigue crack growth analysis[J].International Journal of Fatigue,2005,27(10-12):1277-1296.
    [10]Hurley PJ,Evans WJ.A new method for predicting fatigue crack propagation rates[J].Materials Science and Engineering:A,2007,466(1-2):265-273.
    [11]Oliva V,Cseplo L,Materna A,Blahova L.FEM simulation of fatigue crack growth[J].Materials Science and Engineering A,1997,234-236:517-520.
    [12]Zhang J,Zhang J,Du S.Elastic-plastic finite element analysis and experimental study of short and long fatigue crack growth[J].Engineering Fracture Mechanics,2001,68(14):1591-1605.
    [13]Suresh S,王中光(译).材料的疲劳[M].北京:国防工业出版社,1998.
    [14]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [15]尚德广,王德俊.多轴疲劳强度[M].北京:科学出版社,2007.
    [16]李玉春,姚卫星.应力场强法在多轴疲劳寿命估算中的应用[J].机械强度,2002,24(2):258-261.
    [17]Chu CC.Multiaxial fatigue life prediction method in the ground vehicle industry[J].International Journal of Fatigue,1997,19(93):325-330.
    [18]陈旭,焦荣,田涛.棘轮效应预测及其循环本构模型研究进展[J].力学进展,2003,33(4):461-470.
    [19]康国政,高庆.棘轮行为及其本构模型和工程应用的研究进展[J].应用力学学报,2008,25(3):455-461.
    [20]Jiang Y,Sehitoglu H.Cyclic ratchetting of 1070 steel under multiaxial stress states[J].International Journal of Plasticity,1994,10(5):579-608.
    [21]Jiang Y,Sehitoglu H.Multiaxial cyclic ratchetting under multiple step loading[J].International Journal of Plasticity,1994,10(8):849-870.
    [22]Hassan T,Kyriakides S.Ratchetting in cyclic plasticity.Part Ⅰ:Uniaxial behavior[J].International Journal of Plasticity,1992,8:91-116.
    [23]Ohno N,Wang JD.Kinematic hardening rules with critical state of dynamic recovery:Part Ⅰ-Formulation and basic features for ratchetting behavior[J].International Journal of Plasticity,1993,9(3):375-390.
    [24]Ohno N,Wang JD.Kinematic hardening rules with critical state of dynamic recovery:Part Ⅱ-Application to experiments of ratchetting behavior[J].International Journal of Plasticity,1993,9(3):391-403.
    [25]Jiang Y,Sehitoglu H.Modeling of cyclic ratchetting plasticity,Part Ⅰ:Development of constitutive relations[J].ASME Journal of applied mechanics 1996,63(3):720-725.
    [26]Jiang Y,Sehitoglu H.Modeling of cyclic ratchetting plasticity,Part Ⅱ:Comparison of model simulations with experiments[J].Journal of Applied Mechanics,1996,63(3):726-733.
    [27]Zhang J,Jiang Y.Constitutive modeling of cyclic plasticity deformation of a pure polycrystalline copper [J].International Journal of Plasticity,2008,24(10):1890-1915.
    [28]Kang GZ,Ohno N,Nebu A.Constitutive modeling of strain range dependent cyclic hardening[J].International Journal of Plasticity,2003,19(10):1801-1819.
    [29]Chen X,Jiao R.Modified kinematic hardening rule for multiaxial ratcheting prediction[J].International Journal of Plasticity,2004,20(4-5):871-898.
    [30]Jiang Y,Kurath P.Characteristics of the Armstrong-Frederick type plasticity models[J].International Journal of Plasticity,1996,12(3):387-415.
    [31]Yip M,Jen Y.Biaxial fatigue crack initiation life prediction of solid cylindrical specimens with transverse circular holes[J].International Journal of Fatigue,1996,18(2):111-117.
    [32]Savaidis A,Savaidis G,Zhang C.FE fatigue analysis of notched elastic-plastic shaft under multiaxial loading consisting of constant and cyclic components[J].International Journal of Fatigue,2001,23(4):303-315.
    [33]Jen YM,Wang WW.Crack initiation life prediction for solid cylinders with transverse circular holes under in-phase and out-of-phase multiaxial loading[J].International Journal of Fatigue,2005,27(5):527-539.
    [34]孙国芹,尚德广,陈建华,邓静.缺口件两轴循环弹塑性有限元分析及寿命预测[J].机械工程学报,2008,44(2):134-138.
    [35]Firat M,Kozan R,Ozsoy M,Mete OH.Numerical modeling and simulation of wheel radial fatigue tests [J].Engineering Failure Analysis,2009,In Press,Corrected Proof.
    [36]Ye DY,Hertel O,Vormwald M.A unified expression of elastic-plastic notch stress-strain calculation in bodies subjected to multiaxial cyclic loading[J].International Journal of Solids and Structures,2008,45(24):6177-6189.
    [37]Lim JY,Hong SG,Lee SB.Application of local stress-strain approaches in the prediction of fatigue crack initiation life for cyclically non-stabilized and non-Masing steel[J].International Journal of Fatigue,2005,27(10-12):1653-1660.
    [38]Hoffmann M,Seeger T.A generalized method for estimating multiaxial elastic-plastic notch stresses and strains[J].ASME Journal of Engineering Materials and Technology,1985,107(44):250-260.
    [39]Moftakhar A,Buczynski A,Glinka G.Calculation of elasto-plastic strains and stresses in notches under multiaxial loading[J].International Journal of Fracture,1995,70(4):357-373.
    [40]Singh MNK,Glinka G,Dubey RN.Elastic-plastic stress-strain calculation in notched bodies subjected to non-proportional loading[J].International Journal of Fracture,1996,76(1):39-60.
    [41]Ellyin F.Fatigue damage,crack growth and life prediction[M].London:Chapman & Hall,1997.
    [42]Socie DF,Marquis GB.Multiaxial fatigue[M].Warrendale,PA:SAE International,2000.
    [43]Neuber H.Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain laws[J].ASME Journal of Applied Mechanics,1961,28(4):544-550.
    [44]Molski K,Glinka C.A method of elastic-plastic stress and strain calculation at a notch root[J].Materials Science and Engineering,1981,60(1):93-100.
    [45]Chu CC.Incremental multiaxial Neuber correction for fatigue analysis[J].SAE Journal of Materials &Manufacturing,1995,104:595-602.
    [46]Barkey ME,Socie DF,Hsia KJ.A yield surface approach to the estimation of notch strains for proportional and nonproportional cyclic loading[J].ASME Journal of Engineering Materials and Technology,1994,116(2):173-180.
    [47]Kottgen VB,Barkey ME,Socie DF.Pseudo stress and pseudo strain based approaches to multiaxial notch analysis[J].Fatigue & Fracture of Engineering Materials & Structures,1995,18(9):981-1006.
    [48]Hertel O,Doring R,Hoffmeyer J.Notch stress and strain approximation procedures for application with multiaxial nonproportional loading[J].Materialprufung,2005,47(5):268-277.
    [49]Buczynski A,Glinka G.An analysis of elasto-plastic strains and stresses in notched bodies subjected to cyclic non-proportional loading paths[A].Biaxial/multiaxial fatigue and fracture[C].Amsterdam:Elsevier,2003,265-284.
    [50]Jiang Y,Xu B.Deformation analysis of notched components and assessment of approximate methods[J].Fatigue & Fracture of Engineering Materials & Structures,2001,24(11):729-740.
    [51]You BR,Lee SB.A critical review on multiaxial fatigue assessments of metals[J].International Journal of Fatigue,1996,18(4):235-244.
    [52]Fatemi A,Yang L.Cumulative fatigue damage and life prediction theories:a survey of the state of the art for homogeneous materials[J].International Journal of Fatigue,1998,20(1):9-34.
    [53]Jiang Y.A fatigue criterion for general multiaxial loading[J].Fatigue & Fracture of Engineering Materials & Structures,2000,23(1):19-32.
    [54]Wang YY,Yao WX.Evaluation and comparison of several multiaxial fatigue criteria[J].International Journal of Fatigue,2004,26(1):17-25.
    [55]Karolczuk A,Macha E.A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials[J].International Journal of Fracture,2005,134(3):267-304.
    [56]Jiang Y,Hertel O,Vormwald M.An experimental evaluation of three critical plane multiaxial fatigue criteria[J].International Journal of Fatigue,2007,29(8):1490-1502.
    [57]时新红,张建宇,鲍蕊,费斌军.材料多轴高低周疲劳失效准则的研究进展[J].机械强度,2008,30(3):515-521.
    [58]Itoh T,Sakane M,Ohnami M,Socie D.Nonproportional low cycle fatigue criterion for type 304 stainless steel[J].ASME Journal of Engineering Materials and Technology,1995,117:285.
    [59]陈旭,高庆,孙训方,何国球.非比例载荷下多轴低周疲劳研究最新进展[J].力学进展,1997,27(3):313-325.
    [60]陈旭,安柯,齐荣.非比例载荷下304不锈钢低周疲劳寿命预测[J].机械强度,2001,23(3):316-318.
    [61]金丹,陈旭.多轴随机载荷下的疲劳寿命估算方法[J].力学进展,2006,36(1):65-74.
    [62]王英玉,姚卫星.材料多轴疲劳破坏准则回顾[J].机械强度,2003,(03)。
    [63]Socie DF,Kurath P,Koch J.A multiaxial fatigue damage parameter[A].Biaxial and Multiaxial Fatigue[C].London:Mechanical Engineering Publications,1989,535-550.
    [64]Fatemi A,Kurath P.Multiaxial fatigue life predictions under the influence of mean stresses[J].ASME Journal of Engineering Materials and Technology,1988,110(4):380-388.
    [65]Fatemi A,Socie D.A critical plane approach to multiaxial fatigue damage including out of phase loading [J].Fatigue & Fracture of Engineering Materials & Structures,1988,11(3):149-165.
    [66]Brown MW,Miller KJ.A theory for fatigue failure under multiaxial stress-strain conditions[J].Institution of Mechanical Engineers,1973,187(65):745-755.
    [67]Kandil FA,Brown MW,Miller KJ.Biaxial low-cycle fatigue of 316 stainless steel at elevated temperature [A].Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures[C].London:The Metals Society,1982,203-210.
    [68]Smith KN,Watson P,Topper TH.A stress strain function for the fatigue of metals[J].ASME Journal of Engineering Materials and Technology,1970,5(4):767-778.
    [69]尚德广,姚卫星,王德俊,周志革.基于剪切形式的多轴疲劳寿命预测模型[J].机械强度,1999,21(2):141-144.
    [70]Chen X,Xu S,Huang D.A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading[J].Fatigue & Fracture of Engineering Materials & Structures 1999,22(8):679-686.
    [71]Paris PC,Erdogan F.A critical analysis of crack propagation laws[J].ASME Journal of Basic Engineering,1963,85:526-534.
    [72]Beden SM,Abdullah S,Ariffin AK.Review of fatigue crack propagation models for metallic components [J].European Journal of Scientific Research,2009,28(3):364-397.
    [73]Wheeler OE.Spectrum loading and crack growth[J].ASME Journal of Basic Engineering,1972,94:181-186.
    [74]Gilbert CJ,Dauskardt RH,Ritchie RO.Microstructural mechanisms of cyclic fatigue-crack propagation in grain-bridging ceramics[J].Ceramics International,1997,23(5):413-418.
    [75]Drucker DC,Palgen L.On stress-strain relations suitable for cyclic and other loading[J].ASME Journal of Applied Mechanics,1981,48(3):479-485.
    [76]Needleman A.A continuum model for void nucleation by inclusion debonding[J].ASME Journal of Applied Mechanics,1987,54(3):525-531.
    [77]Kujawski D.A fatigue crack driving force parameter with load ratio effects[J].International Journal of Fatigue,2001,23(Supplement 1):239-246.
    [78]Elber W.Fatigue crack closure under cyclic tension[J].Engineering Fracture Mechanics,1970,2:37-45.
    [79]McClung RC,Sehitoglu H.Characterization of fatigue crack growth in intermediate and large scale yielding[J].ASME Journal of Engineering Materials and Technology,1991,113(1):15-22.
    [80]McClung RC,Sehitoglu H.Closure and growth of fatigue cracks at notches[J].ASME Journal of Engineering Materials and Technology 1992,114(1):1-7.
    [81]Verreman Y,Espinosa G.Mechanically short crack growth from notches in a mild steel[J].Fatigue &Fracture of Engineering Materials and Structures,1997,20(2):129-142.
    [82]Sansoz F,Brethes B,Pineau A.Propagation of short fatigue cracks from notches in a Ni base superalloy: experiments and modelling [J]. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(1):41-53.
    [83] Vasudevan AK, Sadananda K, Louat N. A review of crack closure, fatigue crack threshold and related phenomena [J]. Materials Science and Engineering A, 1994, 188(1-2): 1-22.
    [84] Jiang Y, Feng M, Ding F. A reexamination of plasticity-induced crack closure in fatigue crack propagation [J]. International Journal of Plasticity, 2005, 21(9): 1720-1740.
    [85] Shin CS, Smith RA. Fatigue crack growth from sharp notches [J]. International Journal of Fatigue, 1985, 7(2): 87-93.
    [86] Ling MR, Schijve J. The effect of intermediate heat treatments on overload induced retardations during fatigue crack growth in an AL-alloy [J]. Fatigue & Fracture of Engineering Materials & Structures, 1992,15(5): 421-430.
    [87] Wei LW, James MN. A study of fatigue crack closure in polycarbonate CT specimens [J]. Engineering Fracture Mechanics, 2000, 66(3): 223-242.
    [88] Josefson BL, Svensson T, Ringsberg JW, Gustafsson T, de Mare J. Fatigue life and crack closure in specimens subjected to variable amplitude loads under plane strain conditions [J]. Engineering Fracture Mechanics, 2000, 66(6): 587-600.
    [89] Kalnaus S, Fan F, Jiang Y, Vasudevan A. An experimental investigation of fatigue crack growth of stainless steel 304L [J]. International Journal of Fatigue, 2009, 31(5): 840-849.
    [90] Noroozi AH, Glinka G, Lambert S. A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force [J]. International Journal of Fatigue, 2007,29(9-11): 1616-1633.
    [91] Noroozi AH, Glinka G, Lambert S. Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains [J]. Engineering Fracture Mechanics, 2008, 75(2): 188-206.
    [92] Ding F, Feng M, Jiang Y. Modeling of fatigue crack growth from a notch [J]. International Journal of Plasticity, 2007, 23(7): 1167-1188.
    [93] Miller KJ. The short crack problem [J]. Fatigue & Fracture of Engineering Materials & Structures, 1982, 5(3): 223-232.
    [94] Kujawski D. Estimations of stress intensity factors for small cracks at notches [J]. Fatigue & Fracture of Engineering Materials & Structures, 1991, 14(10): 953-965.
    [95] Teh LS, Brennan FP. Stress intensity factors for cracks emanating from two-dimensional semicircular notches using the composition of SIF weight functions [J]. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(5): 423-435.
    [96] Ahmad HY, Yates JR. An elastic-plastic model for fatigue crack growth at notches [J]. Fatigue & Fracture of Engineering Materials & Structures, 1994, 17(6): 653-660.
    [97] Sadananda K, Vasudevan A. Short crack growth and internal stresses [J]. International Journal of Fatigue, 1997, 19(93): 99-108.
    [98] Dong P, Hong JK, Cao Z. Stresses and stress intensities at notches:'anomalous crack growth'revisited [J]. International Journal of Fatigue, 2003, 25(9-11): 811-825.
    [99] Zheng M, Liu H. Fatigue crack growth under general-yielding cyclic-loading [J]. ASME Journal of Engineering Materials and Technology, 1986, 108(3): 201-205.
    [100] Merah N, Bui-Quoc T, Bernard M. Notch and temperature effects on crack propagation in SS 304 under LCF conditions [J]. ASME Journal of Pressure Vessel Technology, 1999, 121: 42.
    [101] Tanaka K, Nakai Y. Propagation and non-propagation of short fatigue cracks at a sharp notch [J]. Fatigue & Fracture of Engineering Materials & Structures, 1983, 6(4): 315-327.
    [102] Hammouda MM, Smith RA, Miller KJ. Elastic-plastic fracture mechanics for initiation and propagation of notch fatigue cracks [J]. Fatigue & Fracture of Engineering Materials & Structures, 1979, 2(2): 139-154.
    [103] Li W. Short fatigue crack propagation and effect of notch plastic field [J]. Nuclear Engineering and Design, 2003,220(2): 193-200.
    [104] Fleck NA. Influence of stress state on crack growth retardation [A]. Basic Questions in Fatigue, ASTM STP924 [C]. Philadelphia: American Society for Testing and Materials, 1988, 157-183.
    [105] Skorupa M. Load interaction effects during fatigue crack growth under variable amplitude loading-a literature review. Part i: empirical trends [J]. Fatigue & Fracture of Engineering Materials & Structures,1998, 21(8): 987-1006.
    [106] Skorupa M. Load interaction effects during fatigue crack growth under variable amplitude loading-a literature review. Part II: qualitative interpretation [J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(10): 905-926.
    [107] Murthy ARC, Palani GS, Iyer NR. State-of-the-art review on fatigue crack growth analysis under variable amplitude loading [J]. Journal of the Institution of Engineers (India), Part CV, Civil Engineering Division,2004,85: 118-129.
    [108] Silva FS. Fatigue crack propagation after overloading and underloading at negative stress ratios [J]. International Journal of Fatigue, 2007, 29(9-11): 1757-1771.
    [109] Ramos MS, Pereira MV, Darwish FA, Motta SH, Carneiro MA. Effect of single and multiple overloading on the residual fatigue life of a structural steel [J]. Fatigue & Fracture of Engineering Materials &Structures, 2003, 26(2): 115-121.
    [110] Jiang Y, Feng M. Modeling of fatigue crack propagation [J]. ASME Journal of Engineering Materials and Technology 2004, 126(1): 77-86.
    [111] Kalnaus S, Fan F, Vasudevan AK, Jiang Y. An experimental investigation on fatigue crack growth of AL6XN stainless steel [J]. Engineering Fracture Mechanics, 2008, 75(8): 2002-2019.
    [112] Zhao T, Zhang J, Jiang Y. A study of fatigue crack growth of 7075-T651 aluminum alloy [J]. International Journal of Fatigue, 2008, 30(7): 1169-1180.
    [113] Wang X, Gao Z, Zhao T, Jiang Y. An experimental study of the crack growth behavior of 16MnR pressure vessel steel [J]. ASME Journal of Pressure Vessel Technology, 2009,131(2): 021402-021401-021409.
    [114] Borrego LP, Ferreira JM, Pinho da Cruz JM, Costa JM. Evaluation of overload effects on fatigue crack growth and closure [J]. Engineering Fracture Mechanics, 2003, 70(11): 1379-1397.
    [115] Tvergaard V. Overload effects in fatigue crack growth by crack-tip blunting [J]. International Journal of Fatigue, 2005, 27(10-12): 1389-1397.
    [116] Suresh S. Micromechanisms of fatigue crack growth retardation following overloads [J]. Engineering Fracture Mechanics, 1983, 18(3): 577-593.
    [117] Jones RE. Fatigue crack growth retardation after single-cycle peak overload in Ti-6A1-4V titanium alloy [J]. Engineering Fracture Mechanics, 1973, 5(3): 585-588.
    [118] Schijve J, Broek D. The result of a test program based on a gust spectrum with variable amplitude loading [J].Aircraft Engineering and Aerospace Technology,1962,34(11):314-316.
    [119]Elber W.The significance of fatigue crack Closure[A].Damage tolerance in aircraft structures,ASTM STP 486[C].Philadelphia:American Society for Testing and Materials,1971,230-242.
    [120]Cameron AD,Smith RA.Upper and lower bounds for the lengths of non-propagating cracks[J].International Journal of Fatigue,1981,3(1):9-15.
    [121]Fleck NA.Fatigue crack growth due to periodic underloads and periodic overloads[J].Acta Metallurgica,1985,33(7):1339-1354.
    [122]Lang M,Marci G.The influence of single and multiple overloads on fatigue crack propagation[J].Fatigue & Fracture of Engineering Materials & Structures,1999,22(4):257-271.
    [123]McEvily AJ,Ishihara S.On the development of crack closure at high R levels after an overload[J].Fatigue & Fracture of Engineering Materials & Structures,2002,25(11):993-998.
    [124]Sadananda K,Vasudevan AK,Holtz RL,Lee EU.Analysis of overload effects and related phenomena[J].International Journal of Fatigue,1999,21(Supplement 1):233-246.
    [125]Feng M,Ding F,Jiang Y.A study of crack growth retardation due to artificially induced crack surface contact[J].International Journal of Fatigue,2005,27(10-12):1319-1327.
    [126]Sadananda K,Vasudevan AK.Crack tip driving forces and crack growth representation under fatigue[J].International Journal of Fatigue,2004,26(1):39-47.
    [127]James M,Paterson A.Fatigue performance of 6261-T6 aluminium alloy-constant and variable amplitude loading of parent plate and welded specimens[J].International Journal of Fatigue,1997,19(93):109-118.
    [128]Paris PC,Tada H,Donald JK.Service load fatigue damage—a historical perspective[J].International Journal of Fatigue,1999,21:35-46.
    [129].Taheri F,Trask D,Pegg N.Experimental and analytical investigation of fatigue characteristics of 350WT steel under constant and variable amplitude loadings[J].Marine Structures,2003,16(1):69-91.
    [130]Willenborg J,Engle RM,Wood HA.A Crack Growth Retardation Model Using an Effective Stress Concept[A].Technical Report AFFDL-TM-71-1-FBR[C].Arlington,VA:Air Force Flight Dynamics Laboratory,1971.
    [131]Yuen BKC,Taheri F.Proposed modifications to the Wheeler retardation model for multiple overloading fatigue life prediction[J].International Journal of Fatigue,2006,28(12):1803-1819.
    [132]Newman JR.Prediction of fatigue crack growth under variable-amplitude and spectrum loading using a closure model[A].Design of fatigue and fracture resistant structure,ASTM STP 761[C].West Conshohocken:American Society for Testing and Materials,1982,255-277.
    [133]Newman JC.Valuation of the plasticity-induced crack-closure concept and measurement methods[A].Advances in Fatigue Crack Closure Measurement and Analysis[C].West Conshohocken,PA:American Society for Testing and Materials,1999,128-144.
    [134]de Castro JTP,Meggiolaro MA,Miranda ACO.Singular and non-singular approaches for predicting fatigue crack growth behavior[J].International Journal of Fatigue,2005,27(10-12):.1366-1388.
    [135]马君峰,吕国志.一种基于裂纹损伤区的裂纹扩展模型[J].机械科学与技术,1999,18(5):701-703.
    [136]Hurley PJ,Evans WJ.A methodology for predicting fatigue crack propagation rates in titanium based on damage accumulation[J].Scripta Materialia,2007,56(8):681-684.
    [137]周素霞,杨广雪,谢云叶,肖楠.基于损伤力学的车轴材料疲劳裂纹扩展的数值分析[J].北京交通大学学报,2008,32(1):127-130.
    [138] Wang H, Buchholz FG, Richard HA, Jagg S, Scholtes B. Numerical and experimental analysis of residual stresses for fatigue crack growth [J]. Computational Materials Science, 1999,16(1-4): 104-112.
    [139] McClung RC, Sehitoglu H. On the finite element analysis of fatigue crack closure-Ⅰ. Basic modeling issues [J]. Engineering Fracture Mechanics, 1989, 33(2): 237-252.
    [140] McClung RC, Sehitoglu H. On the finite element analysis of fatigue crack closure-Ⅱ. Numerical results [J]. Engineering Fracture Mechanics, 1989, 33(2): 253-272.
    [141] Dougherty JD, Padovan J, Srivatsan TS. Fatigue crack propagation and closure behavior of modified 1070 steel: finite element study [J]. Engineering Fracture Mechanics, 1997, 56(2): 189-212.
    [142] Li B, Reis L, de Freitas M. Simulation of cyclic stress/strain evolutions for multiaxial fatigue life prediction [J]. International Journal of Fatigue, 2006, 28(5-6): 451-458.
    [143] Gao Z, Zhao T, Wang X, Jiang Y. Multiaxial fatigue of 16MnR steel [J]. ASME Journal of Engineering Materials and Technology, 2009, 131(2): 021403-021401-021409.
    [144] ABAQUS, User's mannual and theory manual [M]. Hibbit, Karlsson and Sorensen, Inc., 2003. [145] Roychowdhury S, Dodds RH. Three-dimensional effects on fatigue crack closure in the small-scale yielding regime - a finite element study [J]. Fatigue & Fracture of Engineering Materials & Structures,2003, 26(8): 663-673.
    [146] Xiong Y, Hu XX, Katsuta J, Sakiyama T, Kawano K. Influence of compressive plastic zone at the crack tip upon fatigue crack propagation [J]. International Journal of Fatigue, 2008, 30(1): 67-73.
    [147] Antunes FV, Rodrigues DM. Numerical simulation of plasticity induced crack closure: Identification and discussion of parameters [J]. Engineering Fracture Mechanics, 2008, 75(10): 3101-3120.
    [148] Murthy A, Palani G, Iyer N. State-of-the-art review on fatigue crack growth analysis under variable amplitude loading [J]. Journal of the Institution of Engineers India Civil Engineering Division, 2004, 85(5):118-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700