用户名: 密码: 验证码:
电站高温材料棘轮—蠕变交互作用的本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的发展,在现代常规电站、核电站及大型化工等行业中,工作介质的温度和压力大为提高,以超超临界汽轮机为例,其蒸汽的温度达到了600℃,压力达到了25MPa,在如此高的参数下长期运行,材料不可避免的要发生疲劳和蠕变破坏行为,当这两种行为同时发生时,产生一种具有更大破坏性的力学行为:棘轮变形。由于其平均应力不为零,导致在循环过程中累积塑性应变逐步增加,一直到材料破坏。在常规电站和核电站等行业中,压力容器的强度设计均要求进行棘轮效应分析。能否进一步提高高温材料的力学性能是限制超超临界汽轮机进一步提高参数的原因之一。材料力学性能的研究的主要内容之一是材料本构关系的研究,一个好的本构关系对于材料的寿命评估具有重要意义。
     目前大部分统一粘塑性本构模型(如Ohno-Wang、Chaboche等)在低应力区进行应力保持时,其粘性应力σ_v迅速衰减为零,导致塑性应变速率为零,因此不能对蠕变行为进行合理的描述。针对这一现象,提出在本构方程的塑性应变的演变项中加入Norton蠕变准则,蠕变项通过影响运动硬化和随动硬化实现与疲劳项的耦合。
     由于Norton方程只能描述蠕变的第一和第二阶段,体现不了第三阶段的蠕变加速阶段,根据勒梅特提出了应变等价原理,利用等效应力的概念引入蠕变损伤变量,并把等效应力应用到整个统一粘塑性本构方程中,在引入蠕变及蠕变损伤变量后,模型能够较为合理的描述棘轮与蠕变的交互作用。
     提出粒子群算法和有限元模块相结合的本构方程参数优化方法,使用面向对象的C++语言开发了有限元计算模块,与面向过程的Fortran语言相比,程序具有很好的扩展性能。提出的优化方法可以直接以实验数据作为输入得到模型参数,与传统的参数确定方法相比可以大大的减少工作量。
     针对有限元实现过程中的两个主要技术难点:隐式应力积分过程、一致性刚度矩阵推导,实现了耦合蠕变及损伤变量后的应力积分过程和刚度矩阵的表达式,并成功的嵌入到有限元软件ANSYS中。通过对内压管道受轴向循环载荷实验的模拟,结果表明,新的本构方程在描述棘轮蠕变交互作用方面的能力有所提高。
With the development of industrial technology, higher steam temperature and higher press are required in power plants, nuclear power plants and chemical industry. For example, in ultra-supercritical steam turbine, the temperature has reached 600℃and the pressure has reached 25MPa. Running at such a high parameters, the failure of metal material would inevitable occur because of the fatigue and the creep behavior. When these two kinds of behavior take place simultaneity, ratchetting deformation is produced which is a greater destructive behavior. For its non-zero mean stress, the accumulated plastic strain is continuous increased until the structure was demaged. In conventional power plants and nuclear power plants, the ratchetting analysis is required to be considered on strength design of pressure vessels. the mechanical properties of high-temperature materials is one of the reasons which limit the parameters of ultra-supercritical steam turbine to be enhanced. The research of the material constitutive model is a improtant part of the field of mechanical properties. A good constitutive model has great significance for life assessment.
     At present, for most unified viscoplastic constitutive model (such as the Ohno-Wang, Chaboche, etc.),when the stress is keepped in low zone, the viscous stress will fall rapidly to zero which result the plastic strain rate fall to zero, so this model have no reasonable description of the creep behavior. To this phenomenon, the Norton creep criteria was introduced to plastic strain of constitutive model, and creep was coupled with fatigue by hardening equations.
     Norton creep equation can only describe the first and second stage, but not the third stage. According to strain equivalence principle proposed by Lemaitre, the creep damage variable was introduce to the constitutive model, and the equivalent stress was applied to the unified viscoplastic constitutive equation. The new model can have more reasonable description of ratchetting and creep interaction.
     The parameter optimization method using particle swarm algorithm and finite element was Proposed. The finite element analysis module was developed using object-oriented C++ language, compared with some FEA software coded with Fortran language, the program has a good scalability. The optimization method can directly obtaine parameter by using experimental data as input data, which can reduce much workload compared with the traditional method of parameter determination.
     The porcess of finite element implementation has two main technical difficulties which are the implicit stress integration and the consistent stiffness matrix's derivation,which were realized in this paper with the creep criteria and demage variable coupled, and new model was successfully embedded into the the finite element software ANSYS. Pipe samples subjected internal pressure and axial cyclic loading were simulated, results show that the new constitutive has a good agrement with experiment data in description the interaction of ratcheting creep.
引文
[1]赵永生(编译),蒋寻寒(审校).先进的超超临界汽轮机技术[J].国际电力,2005,9(4):17-21.
    [2]毛雪平,王罡,马志勇.超超临界机组汽轮机材料发展状况[J].现代电力,2005,22(1):69-75.
    [3]Koo GH, Lee JH. Investigation of ratcheting characteristics of modified 9Cr-1Mo steel by using the Chaboche constitutive model[J]. International Journal of Pressure Vessels and Piping,2007,84(5):284-292.
    [4]Engineers A O M. ASME Boiler and Pressure Vessel Code, Section III [S]. American Society of Mechanical Engineers, New York.1995.
    [5]Kerntechnischer Ausschu β (KTA),Sicherheitstechnische Regel des KTA;Teil: Auslegung,Konstruktion und Berchnung, Regeladerungsentwurf,1995.
    [6]RCC-MR. RB3000.Design Rules for Class I Equipment.1985.
    [7]Ottosen N, Matti Ristinmaa. The Mechanics of Constitutive Modeling [M]. Elsev-ier 2005.
    [8]Bruhns OT, Anding DK. On the simultaneous estimation of model parameters used in constitutive laws for inelastic material behavior[J]. International Journal of Plasticity.1999,15(12):1311-1340.
    [9]Dulikravich GS. Inverse problems in engineering mechanics[M]. Elsevier's Science& Technology.1994.
    [10]GENDY AS, SALEEB AF. Nonlinear material parameter estimation for charact-erizing hyper-elastic large strain models[J]. Computational mechanics. 2000,25(1):66-77.
    [11]Huang S, Khan AS. Modeling the mechanical behavior of 1100-0 aluminum at different strain rates by the Bodner-Partom model [J]. International Journal of Plasticity.1992,8(5):501-517.
    [12]Saleeb AF, Gendy AS, Wilt TE, Trowbridge DA. COMPARE COnstitutive Paramter Estimator. User's Guide Version 1.0,1998.
    [13]Saleeb AF, Wilt TE, Li W. An implicit integration scheme for generalized viscoplasticity with dynamic recovery[J]. Computational mechanics.1998, 21 (6):429-440.
    [14]Senseny PE, Brodsky NS, DeVries KL. Parameter evaluation for a unified constitutive model [J]. ASME Journal of Engineering Materials and Technology, 1993,115(2):157-162.
    [15]ABAQUS/Standards User's Manual, Version6.2. Hibbitt, Karlsson and Sorensen Inc,2001.
    [16]ANSYS R5.7/Theory Manual. SAS IP Inc,2001.
    [17]Bari S.Hassan T. An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation[J]. International Journal of Plasticity.2002,18:873-894.
    [18]Kang GZ, Gao Q, Cai LX, Sun Y F, Experimental study on uniaxial and non-proportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures[J]. Nuclear Engineering and Design,2002,216(3):13-26.
    [19]杨显杰,高庆,蔡力勋等.316L不锈钢的单轴棘轮效应[J].航空学报,1997,18(4):395-400.
    [20]向阳开,高庆,杨显杰等.1Cr18Ni9Ti不锈钢多轴非比例棘轮行为及其影响因素研究[J].固体力学学报,2000,21(2):183-187.
    [21]康国政,高庆,杨显杰,孙亚芳.奥氏体不锈钢高温循环棘轮行为的实验研究[J].应用力学学报,2000,17(4):34-39.
    [22]Bari S, Hassan T. Anatomy of coupled constitutive model for ratcheting simulation[J]. International Journal of lasticity,2000,16(3-4):381-409.
    [23]Bari S,Hassan T. Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation[J]. International Journal of Plasticity, 2001,17(7):885-905.
    [24]Taheri S, Lorentz E. An elastic-plastic constitutive law for the description of uniaxial and multiaxial ratchetting[J]. International Journal of Plast-icity.999,15(11):1159-1180.
    [25]Mroz, Z. On the description of anisotropic work hardening[J]. Journal of Mechanics and Physics of Solids,1967,15(3):163-175.
    [26]Dafalias YE, Popov VP. A model of nonlinear hardening materials for complex loading[J]. Acta Mechanica,1975,21 (3):173-192.
    [27]Armstrong PJ, Frederick CO. A Mathematical Representation of The Multiaxial Bauschinger Effect[R]. Central Electricity Generating Board, Report RD/B/ N731,1966.
    [28]Chaboche JL, Nouailhas D. Constitutive modeling of ratchetting Effects Part I:Experimental facts and properties of the classical models [J]. ASME Journal of Engineering Materials and Technology,1989,111 (4):384-392.
    [29]Chaboche JL, Nouailhas D. Constitutive modeling of ratchetting effects Part II:Possibilities of some additional kinematic rules[J]. ASME Journal of Engineering Materials and Techreology,1989,111(4):392-409.
    [30]Chaboche JL. On some modifications of kinematic hardening to improve the description of ratchetting effects [J]. Ineternational Journal of Plasticity, 1991,7(7):661-678.
    [31]Ohno N, Wang JD. Kinimatic hardening rules with critical state of dynamic recovery, Part I:Formulation and basic features for ratchetting behavior [J]. International Journal of Plasticity,1993,9(3):375-391.
    [32]Ohno N, Wang JD. Kinimatic hardening rules with critical state of dynamic recovery, Part II:Application to experiments of ratchetting behavior[J]. International Journal of Plasticity,1993,9(3):391-403.
    [33]Ohno N, Wang JD. Kinimatic hardening rules for simulation of ratchetting behavior[J]. European Journal of Mechanics,1994,13(4):519-531.
    [34]Ohno N. Constitutive modeling of cyclic plasticity with emphasis on ratchet-ting[J]. International Journal of Mechanical Sciences,1998,40(3):251-261.
    [35]Krieg RD. A practical two surface plasticity theory[J]. ASME Journal of Applied Mechanics.1975,28:641-646.
    [36]Besseling JF. A theory of elastic, plastic and creep deformation of an initially visotropic material showing anisotropic strain hardening, creep recovery and secondary creep[J]. ASME Journal of Applied Mechanics.1958, 25:529-536.
    [37]Prager W. A new method of analyzing stress and strain in work-hardening plastic solid[J]. Quarterly of Applied Mathematics,1959:493-496.
    [38]Ziegler. An attempt to describe the behavior of metals under cyclic loading-a more general work-hardening model[J]. Acts Mechanics.1969,7:199-212.
    [39]Hassan T, Corona E, Kyriakides S. Ratchetting in cyclic plasticity, Part I:Uniaxial behavior[J]. International Journal of Plasticity,1992,8(1):91-116.
    [40]Hassan T,Corona E, Kyriakides S. Ratchetting in cyclic plasticity[J],Part II:Multiaxial behavior. International Journal of Plasticity,1992,8(2):117-146.
    [41]Mcdowell DL An experimental study of the structure of constitutive equations of nonproportional cyclic plasticity[J]. ASME Journal of Engineering Materi-als and Technology,1985,107(4):307-315.
    [42]Mcdowell DL. A two surface model for transient nonproportional cyclic plasticity[J].Journal of Applied Mechanics,1985,52(2):298-232.
    [43]Ohno N. Kachi Y. A constitutive model of cyclic plasticity for onlinear hardening materials[J]. ASME Journal of Applied Mechanics,1986,53(2):395-403.
    [44]XIA Z, ELLYIN F. A constitutive model with capability to simulate complex multiaxial ratcheting behaviour of materials[J]. International Journal of Plasticity,1997,13(1):127-142.
    [45]Jiang, Y. and Sehitoglu, H. Cyclic Ratchetting Of 1070 Steel Under Multiaxial Stress States[J].International Journal of Plasticity,1994,10(5):579-608.
    [46]Chen X. Abel, A. A two-surface model describing ratchetting behaviors and transient hardening under nonproporlion loading[J]. Acta Mechanica sinica (English Series),1996,12(4):368-376.
    [47]Itoh T, Chen X, Toshimitsu Nakagawa. A simple model for stable Cyclic stress-strain relationship of type 304 stainless steel under nonproportional loading[J].ASME Engineering Materials and Technology,2000,122(1):1-9.
    [48]Jiang Y, Sehitoglu H. Comments on the Mroz mulitiple surface type plasticity models[J]. International Jourrnal of Solids and Structure,1996,33(7):1053-1068.
    [49]Hassan T,Kyriakides S. Ratchetting of cyclically hardening and softening materials, Part I:Uniaxial behavior[J]. International Journal of Plasticity, 1994,10(2):149-184.
    [50]Hassan T, Kyriakides S. Ratchetting of cyclically hardening and softening materials, Part II:Multiaxial behavior[J]. International Journal of Plasticity,1994,10(2):185-212.
    [51]Bower AF. Cyclic hardening properties of hard drawn copper and rail steels [J]. Journal of Mechanics and Physics of Solids,1989,37(4):455-470.
    [52]Bower AF. Johnson K L. The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact [J]. Journal of Mechanics and Physics of Solids,1989,37(4):471-493.
    [53]Abdel-Karim M, Ohno N, Uniaxial ratchetting characteristics of 316FR steel at room temperature (2nd report, simulation based on constitutive models) [J]. Transaction of the Japan Society of Mechanical Engineers, Series A,1998,64 (628):101-107.
    [54]Kang GZ, A visco plastic constitutive model for ratchetting of cyclically stable materials and its finite element implementation[J]. Mechanics of Materials,2004,36(4):299-312.
    [55]Abdel-Karim M. Modified kinematic hardening rules for simulations of ratche-tting[J]. International Journal of Plasticity,2009,25(8):1560-1587
    [56]Kang GZ, Kan QH, Zhang J.Time-dependent ratcheting experiments of SS304 stainless steel [J]. International Journal of Plasticity,2006,22(5):858-894.
    [57]Ruggles M, Krempl E. Rate DePendence of Ratcheting of AISI Type 304 Stainless Steel at Room TemPerature[R]. Report MML 87-4 Polytechnic Inst.1987.
    [58]康国政,孙亚芳,张娟,阐前华.SS304不锈钢在室温单轴循环加载下的时相关棘轮行为[J].金属学报,2005,41(3):277-281.
    [59]阐前华,康国政,张娟,刘宇杰.SS304不锈钢高温非比例多轴加载下时相关循环变形行为的实验研究[J].金属学报,2005,41(9):963-968.
    [60]蔡力勋,牛清勇,刘宇杰,邱绍宇,李聪.应力循环下T225NG合金塑性累积行为研究[J].核动力工程,2004,25(4):352-356.
    [61]Kawashima F, Ishikawa A, Asada Y. Ratcheting deformation of advanced 316 steel under creep-plasticity condition [J]. Nuclear Engineering and Design,1999, 193(3):327-336.
    [62]Ikegami K, Niitsua Y. Effect of creep prestrain on subsequent plastic deformation[J]. International Journal of Plasticity,1985,1 (4):331-345.
    [63]Sasaki K, Kobayashi T. Experimental Observation of Correlation between Creep and Uniaxial Ratchetting of Sn/37Pb and Sn/3Ag/0.5Cu Solder Alloys[J]. Journal of Electronic Packaging,2007,129(1):82-89.
    [64]吕爱钟,蒋斌松.岩石力学反问题.煤炭工业出版社.1998年08月第1版.
    [65]Waern Y, Ramberg R, Mahnken R, Stein E. Parameter identification for viscopl-astic models based on analytical derivatives of a least-squares functional and stability investigations [J]. International Journal of Plasticity,1996, 12(4):451-479.
    [66]Boyer B, Massoni E. Inverse analysis for identification of parameters during thermo-mechanical tests[J]. Proceedings of the NUMIFORM 2001, Toyohaski, Japan,2001:281-284.
    [67]Forestier R, Massoni E,Chastel Y. Estimation of constitutive parameters using an inverse method coupled to a 3D finite element software[J]. Journal of Materials Processing Technology,2002,125-126:594-601.
    [68]Szyndler D, Pietrzyk M,Kuziak R. Estimation of rheological and friction parameters in hot forming processes as an inverse problem, in:Proceedings of the Fourth ESAFORM Conference on Material Forming, Liege,2001,191-194.
    [69]Franulovic M, Basana R, Prebilb I. Genetic algorithm in material model para-meters'identification for low-cycle fatigue[J]. Computational materials science.2009,45(2):505-510.
    [70]M. Kojic. Stress integration procedures for inelastic material models within the finite element method [J]. ASME Appl Mech Rev,2002,55(4):389-414.
    [71]Wilkins ML. Calculation of elastic-plastic flow [J]. Methods in computational physics.1964(3).
    [72]Ortiz M, Pinsky PM, Taylor RL.Operator split methods for the numerical solution of the elastoplastic dynamic problem[J]. Computer methods in applied mechanics and engineering,1983,39(2):137-157.
    [73]Hartmann S, Haupt P. Stress computation and consistent tangent operator using non-linear kinematic hardening models[J]. International Journal for Numerical Methods in Engineering,1993,36(2):3801-3814.
    [74]Doghri I. Fully implicit integration and consistent tangent modulus in elasto-plasticity[J]. International Journal for Numerical Methods in Engin-eering,1993,36(22):3915-3932.
    [75]Hopperstad OS, Remseth S. A return mapping algorithm for a class of cyclic plasticity models [J]. International Journal for Numerical Methods in Engin-eering,1995,38(4):549-564.
    [76]Auricchio F, Taylor RL. Two material models for cyclic plastici ty:non-linear kinematic hardening and generalized plasticity[J]. International Journal of Plasticity,1995,11(1):65-98.
    [77]Chaboche JL, Cailletaud G. Integration methods for complex plastic constitu-tive equations[J]. Computer Methods in Applied Mechanics and Engineering, 1996,133(1-2):125-155.
    [78]Kobayashi M, Ohno N. Implementation of cyclic plasticity models based on a general form of kinematic hardening [J]. International Journal for Numerical Methods in Engineering,2002,53(9):2217-2238.
    [79]Ohno N,Wang JD. Kinematic hardening rules with critical state of dynamic recovery:I. Formulation basic features for ratchetting behaviour [J]. Intern-ational Journal of Plasticity,1993,9(3):375-389.
    [80]0hno N, Wang JD. Kinematic hardening rules with critical state of dynamic recovery:II. Application to experiments of ratchetting behaviour [J]. Intern-ational Journal of Plasticity,1993,9(3):390-403.
    [81]Abdel-Karim M, Ohno N. Kinematic hardening model suitable for ratcheting with steady-state[J]. International Journal of Plasticity,2000,16:225-240.
    [82]Hassan T, Zhu Y, Matzen VC. Improved ratcheting analysis of pipe components [J]. International journal of pressure vessels and piping,1998,75(8):643-652.
    [83]Ekh M, Johansson A, Thorberntsson H, Josefson BL. Models for cyclic ratch-etting plasticity-integration and calibration[J]. ASME Journal of Engine-ering Materials and Technology,2000,122(1):49-55.
    [84]Abdel-Karim M. Numerical integration method for kinematic hardening rules with partial activation of dynamic recovery term[J]. International Journal of Plasticity,2005,21(7):1303-1321.
    [85]Portier L, Calloch S, Marquisa D, Geyerb P. Ratchetting under tensiontorsion loadings:experiments and modeling[J]. International Journal of Plasticity, 2000,16(3-4):303-335.
    [86]Bari S, Hassan T. An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation[J]. International Journal of Plasticity,2002,18(7) 873-894.
    [87]Kang GZ,Gao Q, Zhang J. Visco-plastic constitutive model for uniaxial and multiaixal ratcheting at elevated temperatures [J]. Acta Metallurgica Sinica (English Letters),2004,17(4):431-436.
    [88]J.勒迈特.损伤力学教程(倪金刚,陶春虎译).北京:科学出版社.1996.13-15.
    [89]石多奇,杨晓光,王延荣.耦合蠕变损伤的Chaboche粘塑性本构方程的应用[J].航空动力学报.2005,20(1):63-68.
    [90]Krieg RD, Key SW, Implementation of a time dependent plasticity theory into structural computer programs. In:J. A. Stricklin and K. J. Saczalski, Editors, Constitutive Equations in Viscoplasticity:Computational and Engineering Aspects, AMD-20, ASME,New York,1976:125-137.
    [91]Simo JC, Taylor RL. A return mapping algorithm for plane stress Elasto pla-sticity [J]. International Journal for Numerical Methods in Engineering,1986, 22(3):649-670.
    [92]G. Maenchen and S. Sacks. The tensor code. In B. Alder(ed.), Methods in Computat-ional Physics, Academic Press, New York,1963:181-210.
    [93]Simo JC, Taylor RL. Consistent tangent operators for rate-independent elasto-plasticity[J]. Computer Methods in Applied Mechanics and Engineering,1985, 48(1):101-18.
    [94]Ortiz M, Popov EP. Accuracy and stability of integration algorithms for elastoplastic constitutive relations[J]. International Journal for Numer-ical Methods in Engineering,1985,21:1561-1576.
    [95]Crisfield MA, Non-linear Finite Element Analysis for Solids and Structures, John Wiley,1991.
    [96]Ortiz M,Simo JC, An analysis of a new class of integration algorithms for elastoplastic constitutive relations [J]. International Journal for Numeri-cal Methods in Engineering,1986,23:353-366.
    [97]李庆杨著.数值分析.华中理工大学出版社,2002.148-149.
    [98]张娟.循环硬化材料高温非比例循环棘轮行为的本构描述及其有限元实现[D].西南交通大学,2006.
    [99]王勖成,邵敏.有限单元法基本原理和数值方法[M].第2版.清华大学出版社.1997.486-488.
    [100]马永其,陈罕,李斯特.面向对象有限元程序的研究[J].计算机工程与应用,2001,37(9):120-122.
    [101]Sanal Z. Finite element programming and C[J]. Computer&Structure,1994, 51(6):671-686.
    [102]Forde B W R, Foschi R O, Stiemer S F. Object-oriented Finite element analysis [J]. Computer&Structure,1990,34(3):355-74.
    [103]韩峻,施法中.面向对象的非线性有限元软件框架计[J].计算机工程,2009,35(8):100-103.
    [104]曹骥,哀勇.面向对象有限元方法研究进展[J].力学季刊,2002,23(2):241-247.
    [105]Draft of "Object Oriented Finite Element Modeling", written by Borek Patzak and Zdenek Bittnar, published in Acta Polytechnica,39,2/1999,99-113, 1999.
    [106]Patzak B, Rypl D, Bittnar Z. Parallel explicit finite element dynamics with nonlocal constitutive models[J], Computers and Structures,2001,79(26-2 8):2287-2297.
    [107]Udo Meissner, Joaquin Diaz, et al. Object-oriented analysis of three dimens-ional geotechnical engineering systems[A]. Computing in Civil and Building Engineering[C]. Rootterdam:Balkema A A,1995.61 - 65.
    [108]Yagiura M. Ibaraki T. On Metaheuristic Algorithms for Combinatorial Optimi-zation Problems[J]. Systems and Computers in Japan,2001,32 (4):3-25.
    [109]Juang CF. A hybrid of genetic algorithm and particle swarm Optimization for recurrent network design[J]. IEEE Trans on Systems, Man, and Cubernetics-Part B:Cybernetics.2004,34(2):997-1006.
    [110]Angeline PJ. Using Selection to ImPorve Partiele Swarm Optimization[J]. Proc IEEE International Congress on Evolutionary Computation,1998,278-282.
    [111]谢晓峰,张文俊,杨之谦.微粒群算法综述[J].控制与决策,2003,18(2):129-134.
    [112]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700