用户名: 密码: 验证码:
循环硬化材料高温非比例循环棘轮行为的本构描述及其有限元实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棘轮效应是在非对称应力控制循环加载下塑性变形的循环累积。棘轮效应可能导致疲劳寿命的减少或使结构的变形超过限制而不能正常工作,是实际工程结构设计中需要考虑的一个重要问题。近20年来,国内外学者已对金属材料的棘轮行为进行了大量的实验和理论研究,在材料的循环本构模型、棘轮效应的预测等方面取得了较大的进展。但是,对金属材料的棘轮效应,尤其是材料的高温非比例多轴棘轮效应进行准确的预测仍是一个很大的挑战。因此,对金属材料的非比例多轴棘轮行为及与其相关的应变循环变形行为进行系统深入的实验研究,继而发展能较为精确的对其进行描述的本构模型,对固体力学及其相关学科具有非常重要的理论意义,对工程构件更可靠的设计和使用也具有重要的应用价值。此外,随着计算机技术的迅速发展,现在已经可以采用有限元软件对各种工程构件的变形行为进行模拟和预测。然而,现有的一些大型有限元程序中使用的循环本构模型对棘轮效应等循环变形行为的预测不够精确,因此有必要将新发展的本构模型进行数值实现,并将其移植到现有的有限元软件中,进而对一些工程结构的循环变形行为进行准确的数值模拟。这可以促进先进模型在结构分析和寿命评估中的应用,具有较高的工程应用价值。
     为了对循环硬化材料在高温下的非比例多轴棘轮行为和应变循环特性进行深入系统的研究并对其进行较为精确的本构描述,本论文开展了如下工作:
     1.在350℃和700℃下,对材料在单轴和多种加载路径下的非比例多轴棘轮行为和应变循环特性进行了系统的实验研究。通过对实验数据的研究分析,得到了材料在高温下的非比例棘轮行为和应变控制循环变形行为的基本特性,为相关本构模型的建立奠定了基础。
     2.在统一粘塑性循环本构的框架下,改进和发展了一个新的本构模型,对材料的高温非比例多轴棘轮行为和应变循环变形行为进行了统一描述。该模型给出了一个新的背应力演化方程,引入了非比例度参量,并且还考虑了最大塑性应变幅值记忆效应和温度效应的影响。与模型相配套,采用了一套合理的方法确定材料参数。模型的模拟结果与实验结果的比较表明,新发展的本构模型对SS304不锈钢高温非比例多轴循环变形行为的描述比较合理。
     3.利用隐式积分方法,推导出简化本构模型的应力积分公式和整体迭代所需的一致性切线刚度矩阵,借助大型有限元软件ABAQUS的用户子程序,将模型移植到有限元分析软件中。采用移植后的ABAQUS软件对材料在不同加载路
When the structure components are subjected to a cyclic stressing with non-zero mean stress, a cyclic accumulation of inelastic deformation will occur, which is called ratcheting. Ratcheting can shorten the fatigue life of components or induce the components not to work normally because of the exceed-limit deformation. It is important to consider ratcheting in designing engineering structures. In the last two decades, lots of experimental and theoretic research on ratcheting for metallic materials has been done. The cyclic constitutive models of ratcheting and prediction of ratcheting have advanced significantly. However, the accurate prediction of ratcheting for metallic materials is still a challenge, especially for the multiaxial ratcheting at high temperature. We should do more deep and comprehensive research on the non-proportionally multiaxial ratcheting and the relatively strain-controlled cyclic behavior, and then develop a constitutive model which can simulate them more accurately. This research is then a topic with theoretical significance for solid mechanics and other interrelated subject and application value for designing and using engineering components credibly. In the other hand, with the development of computer technology, we can simulate and predict the deformation of engineering structure by using finite element programs now. But the constitutive models used in existing programs can not simulate ratcheting accurately. So it is necessary to implement the new constitutive models to finite element programs and simulate the cyclic deformation of engineering structure well and truly. This work can accelerate the application of advanced constitutive models, and it is also of great engineering application value.In order to carry out an in-depth research on the non-proportionally multiaxialratcheting and strain-controlled cyclic behavior for cyclic hardening material at hightemperature and develop a constitutive model which can simulate them moreaccurately, this thesis is mainly concerned with the following studies:1. An experimental study was carried out on the uniaxial and non-proportionallymultiaxial cyclic deformation at high temperatures. The ratcheting behavior andcyclic hardening/softening behavior of SS304 stainless steel were experimentallystudied under several non-proportionally multiaxial loading paths at 350℃ and
    700'C. Some significant results are obtained by analyzing the experimental data, which are very useful to construct a corresponding constitutive.2. Based on the experimental study, a new constitutive model was developed in the unified visco-plastic frame, which can describe the non-proportionally multiaxial ratcheting and strain-controlled cyclic behavior uniformly. In this model, a new kinematic hardening equation was used;the non-proportionality, the effect of temperature and memorization for the maximum plastic strain amplitude were also considered. Correspondingly, a reliable and fairly method to determine the parameters of the model is proposed. The cyclic deformation behavior of SS304 stainless steel at 350'C and 700"C were simulated by the developed model. It is shown from the simulated result that the developed model can describe the non-proportional multiaxial deformation behavior of SS304 stainless steel at high temperature reasonably.3. The simplified constitutive model was implement into the finite element program ABAQUS by user-subroutine UMAT. Based on radial method and back Eular integration, a new implicit stress integration algorithm was proposed. Simultaneously, a new expression of consistent tangent modulus was also derived. Numerical examples and ratcheting simulation for simple structure at high temperatures were given. The computational results showed that the finite element implementation was successful, and the constitutive model has great engineering application value.
引文
[1] ASME Boiler and Pressure Vessel Code, Section Ⅲ. American Society of Mechanical Engineers, New York, 1995.
    [2] Kerntechnischer Ausschu β (KTA), Sicherheitstechnische Regel des KTA;Teil: Auslegung, Konstruktion und Berchnung, Regeladerungsentwurf, 1995.
    [3] Design Rules for Class Ⅰ Equipment. RCC-MR, June, 1985,RB3000.
    [4] Chaboche, J. L., Nouailhas, D., Constitutive modeling of ratcheting effect: Part Ⅰ, Experimental facts and properties of classical models. ASME J. Eng. Mater.Tech., 1989, 111(4): 384~392.
    [5] Chaboche, J. L., Nouailhas, D., Constitutive modeling of ratcheting effect: Part Ⅱ, Possibilities of some additional kinematic rules. ASME J. Eng. Mater.Tech., 1989, 111(4): 409~416.
    [6] J. L. Chaboche. On some modification of kinematic hardening to improve the description of ratchetting effect. Inter. J. Plasticity, 1991, 7: 661~678.
    [7] E. Krempl, D. Yao. The viscoplasticity theory based on overstress applied to ratchetting and cyclic hardening: in low cyclic fatigue and elastic-plastic behavior of materials. 1987, K T Rie. Ed. Elsevier. Lodon, 137~148.
    [8] E. Krempl, S. H. Choi. Viscoplasticity theory based on overstress: the modeling of ratcheting and cyclic hardening of AISI type 304 stainless steel. Unclear Engineering and design, 1992, 133: 401~410.
    [9] N. Ohno, J. D. Wang. Kinematic hardening rules with critical state of dynamic recovery: Part Ⅰ: Formulation and basic features for ratcheting behavior. Inter. J. Plasticity, 1993, 9: 375~390.
    [10] N. Ohno, J. D. Wang. Kinematic hardening rules with critical state of dynamic recovery: Part Ⅱ: Application to experiments of ratcheting behavior. Inter. J. Plasticity, 1993, 9: 391~403.
    [11] Y. Jiang, H. Sehitogu. Cyclic ratcheting of 1070 steel under multiple stress state. Inter. J. Plasticity, 1994, 10(5): 579~608
    [12] Y. Jiang, H. Sehitogu. Multiaxial cyclic ratcheting under multiple steps loading. Inter. J. Plasticity, 1994, 10: 849~870.
    [13] Y. Jiang, P. Kurath. Characteristics of the Armstrong-Frederick type plasticity models. Inter. J. Plasticity, 1996, 12(3): 387~415.
    [14] D. L. McDowell. A two surface model for transient nonproportional cyclic plasticity. ASME J. Appl. Mech., 1985, 52: 298~308.
    [15] D. L. McDowell. Stress state dependence of cyclic ratcheting behavior of two rail steels. Int. J. Plast. 1995, 11: 397~421.
    [16] T. Hassan, E. Corona. Ratcheting in cyclic plasticity, PartⅠ: Uniaxial behavior. Int. J. Plast. 1992, 8: 91~116.
    [17] T. Hassan, E. Corona. Ratcheting in cyclic plasticity, PartⅡ: Multiaxial behavior. Int. J. Plast. 1992, 8: 117~146.
    [18] T. Hassan, S. Kyriakides. Ratcheting of cyclically hardening and softening materials, PartⅠ: Uniaxial behavior. Int. J. Plast. 1994, 10(2): 149~184.
    [19] T. Hassan, S. Kyriakides. Ratcheting of cyclically hardening and softening materials, PartⅡ: Multiaxial behavior. Int. J. Plast. 1994, 10(2): 185~212.
    [20] Z. H. Xia, F. Ellyin. A constitutive model with capability to simulate complex multiaxial ratcheting behavior of material. Int. J. Plast. 1997, 13(1/2): 127~142.
    [21] S. Taheri, E. Lorentz. An elastic-plastic constitutive law for the description of uniaxial and multiaxial ratcheting. Int. J. Plast. 1999, 15: 303~335.
    [22] L. Portier, S. Calloch, D. Marquis, et al. Rateheting under tension-torsion loadings: experiments and modeling. Int. J. Plast. 2000, 16: 1159~1180.
    [23] X. Chen, R. Jiao, K. S. Kim. Simulation of ratcheting strain to a high number of cycles under biaxial loading. Int. J. Solids and Structures. 2003, 40: 7449~7461.
    [24] G Z. Kang, Q. Gao, X. J. Yang. Uniaxial cyclic ratcheting and plastic flow properties of SS304 stainless steel at room and elevated temperatures. Mech Mater, 2002, 34: 145~159.
    [25] G. Z. Kang, Q. Gao, J. Zhang. Visco-plastie constitutive model for uniaxial and multiaixal ratcheting at elevated temperatures. Acta Metal Sin (English Letters), 2004, 17(4): 431~436.
    [26] X. J. Yang. A viscoplastic model for 316L stainless steel under uniaxial cyclic straining and stressing at room temperature. Mech Mater, 2004, 36: 1073~1086.
    [27] 杨显杰,康国政,高庆等.304不锈钢的高温单轴应变循环与棘轮行为.金属学报,1999;35(7):698~702.
    [28] 高庆,康国政,杨显杰等.304不锈钢高温多轴非比例循环棘轮行为的粘塑性本构描述.核动力工程,2002,23(3):22~25.
    [29] ABAQUS/Standards User's Manual, Version6.2. Hibbitt, Karlsson and Sorensen, Inc., 2001.
    [30] ANSYS RS.7/Theory Manual. SAS IP Inc., 2001.
    [31] G. Z. Kang, Q. Gao. Uniaxial and non-proportionally multiaxial ratcheting of U71Mn rail steel: experiments and simulations. Mech. of Mater., 2002, 34: 809~820
    [32] G. Z. Kang, Q. H. Kan, J. Zhang. Experimental study on the uniaxial cyclic deformation of 25CDV4.11 steel. J. Mater. Sci. Technol., 2005, 21 (1): 5~9.
    [33] M. Mizuno, et al. Uniaxial ratcheting of 316FR steel at room temperature: Ⅰ. Experiments. ASME J Eng Mate Tech, 2000, 122: 29.
    [34] 杨显杰,高庆,蔡力勋等.纯铝在单轴应力循环作用下棘轮行为的实验研究.固体力学学报,1998,19(2):133~138.
    [35] 杨显杰,高庆,蔡力勋.紫铜的循环棘轮行为研究.西南交通大学学报,1997,32(6):604~610.
    [36] 康国政,高庆,蔡力勋.304不锈钢非比例循环棘轮行为的实验研究.金属学报,2000,36(5):497~501.
    [37] 田涛,陈旭,安柯.1Cr18Ni9Ti不锈钢多轴棘轮效应实验研究.机械工程材料,2002,26(1):19~21.
    [38] M. B. Ruggles, E. Krempl. The influence of test temperature on the ratcheting behavior of type 304 stainless steel. ASME J. Eng. Mat. Technol. 1989, 111: 378~383.
    [39] N. Ohno, M. Abdel-Karim, et al. Ratchetting characteristics of 316FR steel at high temperature: part Ⅰ strain-controlled ratcheting experiments and similations. 1998, Int. J. Plast. 14(4~5): 355~372.
    [40] M. Kobayashi, N. Ohno, T. Igari. Ratchetting characteristics of 316FR steel at high temperature: part Ⅱ. analysis of thermal ratcheting induced by spatial variation of temperature. 1998, Int. J. Plast. 14(4~5): 373~390.
    [41] Kang G Z, Gao Q, Cai L X, et al. Experimental study on the uniaxial and nonproportionally multiaxial of SS304 stainless steel at room and high temperatures. Unclear Engineering and design, 2002, 216: 13~26.
    [42] 杨显杰,蔡力勋.向阳开.316L不锈钢的高温单轴应变循环与棘轮行为实验研究.西南交通大学学报,1998,33(1):25~29.
    [43] 康国政,高庆,杨显杰等.奥氏体不锈钢高温循环棘轮行为的实验研究.应用力学学报,2000,17(4):34~39.
    [44] S. karadeniz, A. R. S. Ponter, K. F. Carter. The plastic ratcheting of thin cylindrical shells subjected to axisymmetric thermal and mechanical loading. ASME J Pre Ves Tech. 1987, 109: 387~393.
    [45] M. B. Ruggles, E. Krempl. The influence of test temperature on the ratcheting behavior of type 304 stainless steel. ASME J Eng Mat Tech. 1989, 111: 378~383.
    [46] T. Igari, et al. Advanced evaluation thermal ratcheting of FBR component. Nuc Eng Des. 1993, 140: 341~348.
    [47] T. Igari, et al. Inelastic analysis of new thermal ratcheting due to a moving temperature front. Int. J. Plast. 2002, 18: 1191~1217.
    [48] H. Y. Lee, J. B. Kim, J. H. Lee. Thermal ratcheting deformation of a 316L stainless steel cylindrical structure under an axial moving temperature distribution. Int. J. Pressure Vessels and Piping. 2003, 80: 41~48.
    [49] N. Ohno. Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity. Appl. Mech. Rev., 1990, 43(11): 283~295.
    [50] 陈旭,焦荣,田涛.棘轮效应预测及其循环本构模型研究进展.力学进展,2003,33(4):461~470.
    [51] J. F. Besselling. A theory of elastic, plastic and creep deformation of an initially isotropic material showing anisotropic strain hardening creep recovery and secondary creep. ASME J. Appl. Mech., 1958, 25: 529~536.
    [52] Z. Mroz. On the description of anisotropic work hardening. J. Mech. Phys. Solid., 1967, 15: 165~175.
    [53] Y. F. Dafalias, E. P. Popov. Plasticity internal variables formalism of cyclic plasticity. ASME J. Appl. Mech., 1976, 43: 645~651.
    [54] P. J. Armstrong, C. O. Frederick. A mathematical representation of the multiaxial Bauschinger effect. Report RD/B/N 731, Central Electricity Generating Board, Report RD/B/N731, 1968.
    [55] K. C. Valanis, C. F. Lee. Endochronic theory of cyclic plasticity with applications. J. Appl. Mech., 1984, 51: 367~374.
    [56] H. C. Wu, M. C. Yip. Endochronic description of cyclic hardening behavior for metallic materials. J. Eng. Mat. Tech., 1981, 103: 212~217.
    [57] H. C. Wu, R. J. Yang. Application of improved endochronic theory of plasticity to loading with multiaxial strain path. J. Nonlinear Mech., 1983, 18: 395~408.
    [58] H. C. Wu, J. C. Yao. Analysis of stress response to various strain-path in axial-torsional deformational of metals. J. Eng. Mat. Tech., 1984,106: 361-366.
    [59] O. Watanabe, S. N. Atluri. A new endochronic approach to computational elasto-plasticity: Example of a cyclically loaded cracked plate. J. Appl. Mech.,1985, 52: 857-864.
    [60] W. Prager. A new method of analyzing stress and strain in work-hardening plastic solid. Quarterly of Applied Mechanics, 1959,7: 493-496.
    [61] Ziegler. An attempt to describe the behavior of material under cyclic loading- a more general work-hardening model. Acta Mechanics, 1959,7: 199-212.
    [62] S. Bari, T. Hassan. Anatomy of coupled constitutive model for ratcheting simulation. Int. J. Plast. 2000,16: 381-409.
    [63] Z. Mroz. On the description of anisotropic work hardening. J. Mech. Phys. Solid.,1967,15: 165-175.
    [64] N. T. Tseng, G C. Lee. Simple plasticity model of two-surface type. ASCE J. Eng. Mech., 1983, 109: 795-810.
    [65] X. Chen, A. Abel. A two-surface model describing ratcheting behaviors and transient hardening under nonproportion loading. Acta Mechanics Sinica (English Series), 1996,12(4): 368-376.
    [66] T. Itoh, X. Chen, T. Nakagawa, et al. A sample model for stable cyclic stress-strain relationship of type 304 stainless steel under nonproportional loading. ASME J. Eng. Mater. Technol., 2000,122: 1-9.
    [67] Y. Jiang, H. Sehitoglu. Comments on the Mroz Multiple surface type plasticity models. Int. J. Solids and Structure, 1996,33(7): 1053-1068.
    [68] A. F. Bower. Cyclic hardening properties of hard-drawn copper and rail steel. J. Mech. Phys. Solid., 1989,37: 445.
    [69] G Z. Kang, Q. Gao, X. J. Yang. A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature. Mech. Mater., 2002,34: 521-531.
    [70] G Z. Kang, Q. Gao, X. J. Yang. Uniaxial and multiaxial ratcheting of SS304 stainless steel at room temperature: experiments and visco-plastic constitutive model. Int. J. Non-linear Mech., 2004,39: 843-857.
    [71] McDowell, D. L., Stress state dependence of cyclic ratcheting behavior of two rail steels. Int. J. Plast. 1995, 11: 397.
    [72] H. Burlet, G. Cailletaud. Numerical techniquea for cyclic plasticity at variable temperature. Engineering. Computation, 1986, 3: 143~153.
    [73] M.Abdel-Karim, N. Ohno. Kinematic hardening model suitable for ratcheting with steady-state. Int. J. Plast. 2000, 16: 225~240.
    [74] G. Z. Kang. A Visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation. Mechanics of Material. 2004, 36: 299~312.
    [75] S. Bari, T. Hassan. An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation. Int. J. Plast. 2002, 18: 873~894.
    [76] X. Chen, R. Jiao. Modified kinematic hardening rule for multiaxial ratcheting prediction. Int. J. Plast. 2004, 20: 871~898.
    [77] 高庆,杨显杰,孙训方.非比例循环塑性和循环粘塑性本构描述的某些新进展.力学进展,1995,25(1):41~59.
    [78] A. Benallal, D. Marquis. Constitutive equation for nonproportional cyclic elastic-viscoplasticity. ASME J. Eng. Mat. Tech., 1987, 109: 326~336.
    [79] D. L. McDowell. An evaluation of recent developments in hardening and flow rules for rat-independent nonproportional cyclic plasticity. ASME J. Appl. Mech., 1987, 54: 323~334.
    [80] F. Ellyin, Z. Xia. A rate-dependent constitutive model for transient nonproportional loading. J. Mech. Phys. Solid., 1989, 37: 71~79.
    [81] 杨显杰.金属材料循环塑性和循环粘塑性本构关系研究.西南交通大学博士学位论文,1992.
    [82] E. Tanaka. A nonproportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening. Eur. J. Mech., A/Solids, 1994, 13: 155~173.
    [83] Y. Jiang, P. Kurath. Nonproportional cyclic deformation: critical experiments and analytical modeling. Inter. J. Plasticity, 1997, 13: 743~763.
    [84] M. L. Wilkins. Calculation of elastic-plastic flow. In: AdlerB et al., editors. Methods of computational physics 3. New York: Academic Press;1964.
    [85] R.D. Krieg, S.W. Key. Implementation of a time dependent plasticity theory into structural computer programs. In: Stricklin JA, Saczalski KJ, editors. Constitutive equations in viscoplasticity: computational and engineering aspects, AMD-20. New York: ASME;1976.
    [86] J.C. Simo, R.L. Taylor. Consistent tangent operators for rate-independent elastoplasticity. Comput Meth Appl Mech Eng, 1985,48: 101-118.
    [87] M. Ortiz, P.M. Pinski, R.L. Taylor. Operator split methods for the numerical solution of the elastoplastic dynamic problem. Comput Meth Appl Mech Eng. 1983,39:137-157.
    [88] Simo JC, Taylor RL. A return mapping algorithm for plane stress elastoplasticity. Int.J Numer Meth Eng. 1986,22: 649-670.
    [89] T. J. R. Hughes, K. S. Pister. Consistent linearization in mechanics of solids and structures. Comput. Struct. 1978,9: 391-397.
    [90] J.C. Simo, T.J.R. Hughes. General return mapping algorithms for rate-independent plasticity. In: Desai CS et al., editors. 2nd Int Conf on Constitutive Laws for Eng Materials: Theory and Applications, vol. I. Tucson, Arizona, USA, 5-8 January, 1987, 221-231.
    [91] M. Ortiz, J.B. Martin. Symmetry-preserving return mapping algorithms and incrementally extremal paths: a unification of concepts. Int J Numer Meth Eng. 1989,28:1839-1853.
    [92] J.C. Simo, S. Govindjee. Non-linear b-stability and symmetry preserving return mapping algorithms for plasticity and viscoplasticity. Int J Numer Meth Eng. 1991,31:151-176.
    [93] S. Hartmann, P. Haupt. Stress computation and consistent tangent operator using non-linear kinematic hardening models. Int. J. Numer. Meth. Engng., 1993, 36:3801-3804.
    [94] J. L. Chaboche, G Cailletaud. Integration method for complex plastic constitutive equations. Comput. Meth. Appl. Mech. Engng., 1996,133: 125-155.
    [95] A. F. Saleeb, et al. An implicit integration scheme for generalized viscoplasticity with dynamic recovery. Comput. Mech., 1998,21:429-440.
    [96] M. T. Manzart, M. A. Nour. On implicit of bounding surface plasticity models. Computer and Structure, 1997,63(5): 385-395.
    [97] M. Kobayashi, N. Ohno. Implementation of cyclic plasticity models based on a general form of kinematic hardening. Int. J. Numer. Meth. Engng., 2002, 53: 2217~2238.
    [98] T. Hassan, Y. Zhu, V.C. Matzen. Improved ratcheting analysis of piping components. Int. J. Pre. Pip. 1998, 75: 643~652.
    [99] M. Ekh, et al. Models for cyclic ratcheting plasticity—integration and calibration. ASME. J. Eng. Mat. Tech. 2000, 122: 49~55.
    [100] F. Yoshida. Ratcheting behavior of 304 stainless steel at 650℃ under multiaixal strain-controlled and uniaxailly multiaxially stress-controlled conditions. Eur. J. Mech. A/Solids, 1995, 14(1): 97.
    [101] M. D. Ruggles, E. Krempl. The interaction of cyclic hardening and ratcheting for AISI type 304 stainless steel at room temperature: Ⅰ. Experiments. J. Mech. Phys. Solids, 1990, 38(4): 575.
    [102] P. Delobelle. Synthesis of the elastoviscoplastic behavior and modelization of an austenitic stainless steel over a large temperature range under uniaxial and biaxial loading: Part Ⅰ. Behavior. Int. J. Plast. 1993, 9(1): 65.
    [103] B. Postberg, E. Weiβ. Simulation of ratcheting of AISI 316L(N) steel under nonproportional uniaxial loading and high number of load cycles using the Ohno and Wang nonlinear kinematic material model. Int. J. Pressure Vessels and Piping, 2000, 77: 207~213.
    [104] 康国政,高庆,蔡力勋等.SS304不锈钢循环变形行为温度效应的实验研究.材料工程,2003,10:34~36.
    [105] G. Z. Kang, Y. G. Li, Q. Gao. Non-proportionally multiaxial ratcheting of cyclic hardening materials at elevated temperatures: experiments and simulations. Mechanics of Material, 2005, 37: 1101~1118.
    [106] 康国政,孙亚芳,张娟等.SS304不锈钢在室温单轴循环加载下的时相关棘轮行为.金属学报,2005,41(3):277~281.
    [107] J. L. Chaboche, Van K. Dang, G. Cordier. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. In trans of the 5th int conf on structural mechanics in reactor technology. Vol. L. Berlin Elsevier, Amsterdam. Paper No. L11/3.
    [108] J. L. Chaboche. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plasticity, 1989, 5: 247~302.
    [109] A. Benallal, P. LeGallo, D. Marquis. Cyclic hardening of metals under complex loadings. In Proc of MECAMAT. Int seminar on the inelastic behavior of solids: Models and utilization, Besancon, France. 361~371.
    [110] A. Benallal, P. LeGallo, D. Marquis. An experimental investigation of cyclic hardening of 316stainless steel and of 2024 aluminium alloy under multiaxial loadings. Nucl. Eng. Des., 1989,114: 345-353.
    [111] G Z. Kang, Q. Gao. Temperature-dependent cyclic deformation of SS304 stainless steel under non-proportionally multiaxial load and its constitutive Modeling. Key Engineering Materials, 2004.
    [112] R. D. Krieg, D. B. Krieg. Accuracies of numerical solution methods for the elastc-perfectly plastic model. ASME J. Pressure Vessel Technology, 1977, 40:991-1013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700