用户名: 密码: 验证码:
湖南主要森林生态系统碳汇功能经济价值及其生态对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生态系统是全球碳循环的一个重要组成部分,其对全球碳循环的影响是人们一直关注的焦点之一,近年来森林碳汇的生态效益和经济效益也越来越受到世界各国的重视。湖南省地处亚热带,是中国南方重点林区省之一,植被类型丰富,本文以湖南几种主要森林类型为研究对象,通过实测的估算方法以及基于湖南森林资源资料(1999-2003),对不同森林的器官碳含量、区域森林生态系统碳贮量的估算方法及固碳能力,森林碳汇能力的经济价值估算等方面进行了研究,旨在探索准确估算区域森林生态系统的碳汇能力及其经济价值评估的合适方法,并对提高湖南省森林生态系统碳汇量及其经济价值等探讨了相应的生态对策。经过大量的数据采集和实验研究工作,主要研究结果如下:
     湖南省主要森林树种各器官碳含量均在40.05%-58.12%之间,主要森林树种的平均碳含量以马尾松最高,达到55.00%,杉木50.22%,湿地松51.54%;阔叶树中以枫香的碳含量最高(52.68%),其次是栎林(50.08%),最小是樟树(46.38%)。碳密度从大到小的排列顺序为:栎林>樟树>枫香>杉木>马尾松>湿地松。植被的总碳贮量为222.0258×106t C,其中针叶林占46.14%,阔叶树占53.86%。土壤的平均碳含量表现为:枫香>栎林>马尾松>杉木>湿地松>樟树,表层土(0-15cm)的碳含量最高,并随着土壤深度的增加而下降,且有机碳含量差异逐渐减小。土壤单位面积的有机碳贮量按大小排序表现为:栎林>杉木>枫香>马尾松>湿地松>樟树,土壤总碳贮量为1053.1124×106t C,不同森林树种的土壤碳贮量大小排序是:杉木>马尾松>栎林>樟树>湿地松>枫香。
     湖南的主要森林类型生态系统的总碳贮量为1275.1382×106t C,其中土壤碳贮量占82.59%;而植被仅占17.41%。不同森林类型生态系统的碳贮量分别为:杉木林(417.7117×106t C)、马尾松林(349.9851×106tC)、樟树林(315.6598×106t C)、栎林(145.2242×106t C)、湿地松林(33.8316×106t C)、枫香林(12.7258×106t C)。
     选择了综合几个造林成本价位来取算术平均值的方法,把单价的不统一性结合起来以便对森林的碳汇价值做出准确和合理的评估。按照不同的造林成本估算方法,得到平均经济价值为34.77亿元;以瑞典碳税来估算,则为158.75亿元,由造林成本价值和瑞典碳税的算术平均所估算出来的主要森林植被的碳汇平均总经济价值为16.85亿元,土壤的碳经济价值平均为79.91亿元;湖南主要森林生态系统碳汇功能的总经济价值为96.76亿元,固定CO2的经济价值达355.18亿元,各种森林类型的碳汇能力与其经济价值成正比。
     利用湖南省森林资源清查资料数据,对湖南省’森林植被的碳贮量进行估算。结果表明:湖南省主要森林植被总的碳贮量为94.935×106t C,与实测得到的碳贮量相差127.091×106t C。以阔叶林的碳贮量最大,占34.24%,其次是杉木林和马尾松林,其碳贮量之和达到了58.482×106t C,占61.6%。不同龄级组中,按碳贮量的大小依次排列为:阔叶林>马尾松林>杉木林>国外松林>柏木林;幼龄林中以阔叶林居多,占59.36%;近熟林中的碳贮量以马尾松的比较突出,在成熟林和过熟林中则以杉木的碳贮量为最多,基本规律为:杉木>阔叶林>马尾松>国外松>柏木。基于森林资源资料得到的湖南森林的平均碳密度较小。中、幼龄林较多,近、成、过熟林较少。
     根据造林成本和瑞典碳税的计算方法,基于森林资源清查资料的湖南省的森林碳汇总价值为70723.26万元,固定CO2的经济效益可达到259554.36万元。其中以阔叶林的经济价值最高,占34.88%,其次是杉木林和马尾松林,这三种森林类型的碳汇经济价值几乎占了全省总量的97.63%。人工林的碳汇价值为35811.24万元,天然林为35708.03万元,固定CO2的经济价值是分别为131427.25万元和131048.47万元。
     本研究对湖南省森林生态系统碳贮量进行估算的同时,对碳汇经济价值的估算方法进行了综合研究,建立了森林生态系统碳汇效益的计量方法,以固碳为经营目的探讨森林的生态效益,提出了增加湖南主要森林类型碳汇能力的生态对策和管理策略。
Forest ecosystem plays an important rule on the global carbon cycle, its influence on the global carbon cycle is one of the focal points to which the people alway pay attention. In recent years, the ecology and economic benefits of the forest carbon-sink also more and more are received the value of the various countries. Hunan Province is situated at the subtropics, which is one of key forest zone in southern of our country. And its forest plants are plentiful. This research take several kinds of the main forest types of Hunan as the targets, through the estimate method of actual survey and based on the data of the Hunan forest resource inventory(1999-2003), research on the carbon content of different forest organs, the estimate method of carbon storage in region forest ecosystem, measure the ability of carbon storage, and estimate on the economic value of the forest carbon storage ability and so on. For the purpose of exploring the appropriate method to accurate estimate the ability of carbon-sink and appraisal its economic value in region forest ecosystem, and discussed the corresponding ecology counter measure to enhance the carbon-sink of forest ecosystem the quantity and its economic value of Hunan province. Through the massive data acquisition and experimental study work, the main results of the research are as follows:
     The carbon content of main forest types in various organs of Hunan Province were between 40.05%~58.12%. The Masson Pine had the highest average carbon content in the main forest types, which achieved 55.00%;Chinese fir was 50.22%, and Slash pine was 51.54%; In broadleaf forest Chinese sweet gum had the highest carbon content (52.68%), the secondly was Oak tree (50.08%), and the smallest was Camphor tree (46.38%). The carbon density decreasing from the top to the bottom in following order:Oak tree> Camphor tree> Chinese sweet gum> Chinese fir> Masson pine> Slash pine. The total carbon storage of forest plant was 222.0258×106t C, conifer accounts for 46.14%, and the broadleaf forest accounted for 53.86%. The average carbon content of soil displayed as: Chinese sweet gum> Oak tree forest> Masson pine> Chinese fir> Slash pine> Camphor tree, the carbon content in soil layer (0-15cm) was the highest, which droped along with the depth of soil increase, and the differentiation of the soil organic carbon content gradually reduced. The soil organic carbon storage in per area from the top to the bottom in following order:Oak tree> Chinese fir> Chinese sweet gum> Masson pine > Slash pine> Camphor tree.The total carbon storage of soil was 1053.1124×106t C. The soil carbon storage of different forest types from the top to the bottom was:Chinese fir> Masson pine> Oak tree> Camphor tree> Slash pine> Chinese sweet gum.
     The total carbon storage of main forest ecosystems which in Hunan was 1275.1382 X 106t C, the soil carbon storage accounted for 82.59%, while the plants only accounted for 17.41%. The carbon storage of different forest ecosystems respectively as follow:Chinese fir (417.7117×106t C), Masson pine (349.9851×106t C), Camphor tree (315.6598 X 106t C), Oak tree forest (145.2242×106t C), Slash pine (33.8316×106t C), Chinese sweet gum (12.7258×106t C).
     This research chose the method of synthesizing several afforest costs to average the value for the first time, combine the various unit prices in order to value appraisal the forest carbon and made them accurately and reasonable. If according to the estimate method of different afforest cost, get the average economic value was 3.477 billion Yuan; If estimating by the Swedish carbon tax, then was 15.875 billion Yuan. which By weighting the afforest cost value and the Sweden carbon tax to average collects, estimated the average of total economic value of the main forest plants carbon was 1.685 billion Yuan, the soil carbon economic value was 7.991 billion Yuan; The total economic value on carbon storage the function of the main forest ecosystems in Hunan was 9.678 billion Yuan, and the economic valuation of fixing CO2 was amounts to 35.518 billion Yuan. The carbon storage function of each forest type had the positive ratio to their economic valuation.
     Using the Hunan Province forest resources inventory data, this research also carried on the estimate to the carbon storage of forest plants in Hunan Province. The results indicated that, the total carbon storage of main forest which in Hunan was 94.935 X 106t C, compare with the actual survey carbon storage was much more different. The biggest carbon storage was broadleaf forest, accounted for 34.24%, next was Chinese fir and Masson pine, sum of their carbon storage had achieved 58.482×106t C, and accounted for 61.6%. In different age level group, according to the carbon storage from the top to the bottom in turn arrangement as follow:Broadleaf forest> Masson pine> Chinese fir> Exotic pine> Cypress wood. In young forest center to the broadleaf forest were in majority, accounted for about 59.36%; In near-mature forest,the carbon storage of Masson pine was quite prominent; In the mature forest and the over ripeness forest were Chinese fir take carbon storage as the most, the basic regularity was:Chinese fir> Broadleaf tree> Masson pine> Exotic pine> Cypress wood. Based on the forest resources inventory date, the average carbon density of Hunan forest obtains was very small. The half-mature forest, mature forest and over-ripeness forest were few.
     According to the computational method of afforest cost and the Swedish carbon tax, compiled the forest carbon of Hunan Province's value which based on the forest resources inventory data was 707.2326 million Yuan, the economic valuation of fixed CO2 might amount to 2.60 billion Yuan. Broadleaf forest's economic value was the highest, accounted for 34.88%, the next was Chinese fir and Masson pine, these carbon storage in economic value of three kind of forests type were nearly accounted for the entire province about 97.63%. The planted forest carbon storage value was 358.1 million Yuan, and the natural forest was 357.1 million Yuan, so the economic value of fixed CO2 were respectively as 1.314 billion Yuan and 1.310 billion Yuan.
     This research carried on reasonable and accurate estimate to forest ecosystem carbon storage of Hunan Province's at the same time, synthetic study the estimate method on the economic value of carbon to conduct. And established the forest ecosystems carbon to estimate the benefit for gauging it, take the solid carbon as the management goal to discuss forest ecology benefit. At the end, propose the ecology countermeasure and the management strategy to improve the carbon ability increased of main forest types in Hunan.
引文
[1]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733—740.
    [2]贺庆棠.中国森林气象学[M].北京:中国林业出版社,2000:28—35.
    [3]IPCC. Intergovernmental Panel on Climate Change Scientific Assessment of Climate Change[M]. UNEP, UN, New York.1992.78-82.
    [4]Verweij J A. Carbon sequestration in forest ecosystems higher than expected. Change,1995:15-17.
    [5]林德荣,李智勇,支玲.森林碳汇市场的演进及展望[J].世界林业研究,2005,18(1):1—5.
    [6]Pedro Moura-Costa. Forestry and the Convention:10-years of Evolution. EcoSecurities Ltd,2002.55-59.
    [7]EcoSecurities Ltd. Prototype Carbon Fund Market Intelligence Report, 2001.99-101.
    [8]Kagi W.Economics of climate change:The contribution of forestry project. Dordrecht/Boston/London:Kluwer Academic Publishers, 2000.
    [9]马慧英,沈延辉.森林资源碳汇效益及价值体现的探讨[J].吉林林业科技,2005,34(4):45—47.
    [10]Ramirez O.A and Gomez M.. Economic value of the carbon sink services of Costa Rica's forestry plantations. In Sedjo R A.et al.(eds). Economics of carbon sequestration in forestry. Boca Raton: Lewis Publishers,1997:129-138.
    [11]Mahli Y, Nobre A, Grace J, et al. Carbon dioxide transfer over a central Amazonian rain forest[J]. Journal of Geophysical Research,1998, 103:31593-31612.
    [12]Fan S-M, Wofsy S C,Bakwin P S,et al. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon forest[J]. Journal of Geophysical Research,1990,95(D10):16851-16864.
    [13]Grace J, Lloyd J,. Mcintyre J, et al. Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992-1993[J]. Science,1995,270:778-780.
    [14]Tian H, Mellilo J M, Kichilghter D W,et al. Effects of interannual climate variability on carbon storage in Amazonian ecosyste as[J]. Nature,1998,396:664-667.
    [15]FAO. Forest Resources Assessment 1990, Tropical Countries[R]. Rome: FAO Forestry Paper,1993.334-338.
    [16]Skole D, Tucker C. Tropical deforestation and habitat fragmentation in the Amazon:satellite data from 1978 to 1988[J]. Science,1993,260: 1905-1910.
    [17]Korner C. CO2 fertilization:the great uncertainty in future vegetation development[A]. Vegetation Dynamics and Global Change[C]. Solomon AM, Shugart H H, eds. London:Chapman&Hall,1993.798-802.
    [18]Bolin B. Changes of land biota and their importance to the carbon cycle[J]. Science,1977,196:613-615.
    [19]Woodwell G M, Whittaker R H, Reiners W A, et al:The biota and.the world carbon budget[J]. Science,1978,199:141-146.
    [20]Woodwell G M, Hobbie J E,Hought R A, et al. Global deforestation: contribution to atmosphere carbon dioxide[J]. Science,1983,222:1081-1086.
    [21]Dixon, R.K. Brown, R.A. Houghton, A.M. Solomon, M.C. T rexle r&J. W isniewski. Carbon pools and flux of global forest ecosystems [J] Science,1994,263:185-190.
    [22]Houghton R.A, Skole K.L, Lefkowitz D S. Changes in the landscape of Latin America between 1850 and 1980:A net release of CO2 to the atmosphere[M]. Forest Ecology and Management,1991,38:173-199.
    [23]Houghton R A. Land-use change and terrestrial carbon:the temporal record. In:Apps M J, Price D.T. (eds.)Forest Ecosystems, Forest Management and the Global Carbon Cycle. Berlin Heidelberg: Springer-verlag,1996.117-134.
    [24]Delcourt, H. R.&W. F. Harris. Carbon budget of the south eastern U. S. biota:analysis of historical change in trend from source to sink [J]. Science,1980,210:321-323.
    [25]Sedio R A. Temperate Forest Ecosystems in the Global Carbon Cycle. AMBIO,1992,21:274-277.
    [26]Levine J.S, Cofer Ⅲ W.R, Carbon Jr D.R, et al. Biomass buring, a driver fox global change[J]. Environ Sci Technol,1995,120:120-125.
    [27]Houghton R.A. Skole D L, Nobre C A.et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon [J]. Nature,2000,403:301-304.
    [28]Schimel D.S, et al. Recent pattens and mechanisms of carbon exchange by terrestrial ecosystems[J]. Nature,2001,414:169-172.
    [29]Wofsy S.C, M. L. Goulden, J. M. Munger, S. M. Fan&P. S. Bakw in. Next exchange of CO2 in a mid-latitude forest [J]. Science,1993, 260:1314-1317.
    [30]Goulden M L, Munger J W., Fan S, Daube B C, Wofsy S C. Exchange of carbon dioxide by a deciduous forest:response to interannual climate variability[J]. Science,1996,271:1576-1578.
    [31]Valentini R.G., Matteucci.A. J., Dolman E. D., Schulze C, Rebmann E. J., Moors A., G ranier, P.GrossN.O., Jensen & K.Pilegaard. Respiration as the main determinant of carbon balance in European forests [J]. Nature, 2000,404:861-86.
    [32]Keeling R F, Piper S C, Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric CO2 concentration[J]. Nature, 1996,381:218-221.
    [33]Jingyun Fang, Anping Chen, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science,2001,291:2320 2322.
    [34]方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594-602.
    [35]方改霞,吴少杰.论目前中国温室气体CO2的排放及对策[J].周口师范学院学报,2001,20(5).28-32.
    [36]Skole D S. Interannual Variation in the Terrestrial Carbon Cycle: Significance of Asian Tropical Forest Conversion to Imbalances in the Global Carbon Budget,1997.98-102.
    [37]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967—973.
    [38]贺庆棠.中国植被的可能生产力[J].北京林业大学学报,1986,(2):84—97.
    [39]康惠林,马钦彦,袁嘉祖.中国森林碳汇功能基本估计[J].应用生态学报,1996,7(3):230-234.
    [40]杨永辉,毕绪岱.河北省森林固CO2的效益[J].生态学杂志,1996, 15 (4): 51-54.
    [41]施溯筠,李光,张三焕.长白山区森林固定C02价值的评估[J].延边大学学报(自然科学版),2002,28(2):134—137.
    [42]冯丰隆.林业与气候变迁[J].气候变化纲要公约资讯速报,2000,(24):8—11.
    [43]IPCC.气候变化:综合报告—减缓[OL]. http//www.grida.no/climate/ ipcc-tar/vol4/Chinese/191.htm#tab TS4,2001.
    [44]陈遐林.华北主要森林类型的碳汇功能研究[D].北京:北京林业大学研究生部,2002:88—97.
    [45]何‘英.森林固碳估算方法综述[J].世界林业研究,2005,18(1):22—26.
    [46]于贵瑞,温发全,王秋凤,等.全球气候变化与陆地生态系统碳循环[A].见:于贵瑞主编.全球变化与陆地生态系统碳循环[C].北京:气象出版社,2003.43-96.
    [47]Coombs J, Hall D O, Hong S P, et al. Techniques in bioproductivity and photosynthesis[M]. New York:Pergamon Press,1985.
    [48]方晰.杉木人工林生态系统碳贮量与碳平衡[D].湖南长沙:中南林业科技大学研究生处,2004.112—125.
    [49]周广胜,王玉辉.全球变化与气候—植被分类研究和展望[J].科学通报,1999,24:2587.
    [50]冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369.
    [51]方晰,田大伦,项文化,等.第二代杉木中幼林生态系统碳动态与平衡[J].中南林学院学报,2002,,2(1):1-6.
    [52]方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学,2002,38(3):14-19.
    [53]方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究[J].广西植物,2002,22(4):305-310.
    [54]马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5/6):96—100.
    [55]雷丕锋,项文化,田大伦,等.樟树人工林生态系统碳素贮量与分布研究[J].生态学杂志,2004,23(4):25—30.
    [56]赵敏,周广盛.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态学报,2004,15(8):1468-1472.
    [57]李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371—378.
    [58]方精云,刘国华,徐篙龄.中国森林植被生物量和净生产力[J].生 态学报,1996,16(4):497-508.
    [59]王效科,玛宗炜.森林生态系统中生物量和碳贮量的研究历史[A].见:王如松主编.现代生态学热点[C].北京:中国科学与技术出版社1995.335—347.
    [60]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13—16.
    [61]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72—74.
    [62]Brown S, Lugo A E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle[J]. Biotropia, 1982, (4):161-187.
    [63]Shang C, Tiessen H. Organic matter labiality in a tropical oxisol: Evidence from shifting cultivation, chemical oxidation, particle size, density, and magnetic fractions[J]. Soil Science,1997,162 (11):795-807.
    [64]吴仲民,曾庆波,李意德,等.尖峰岭热带森林土壤C储量和CO2排放量的初步研究[J]植物生态学报,1997,21(5):416-423.
    [65]李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002.1-3.
    [66]王金叶,车克钧,张学龙,等.祁连山森林土壤碳的初步研究[J].甘肃农业大学学报,1996,(4):356—360.
    [67]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518—522.
    [68]李金昌.资源核算论[M].北京:海洋出版社,1991.77-89.
    [69]侯元兆.中国森林资源核算研究[M].北京:中国林业出版社,1995.
    [70]杨书运,蒋跃林,张庆国,等.未来中国森林碳蓄积预估初步研究[J].福建林业科技,2006,33(1):118-120.
    [71]刘璨.森林固碳与释氧的经济核算[J].南京林业大学学报(自然科学版),2003,27(5):27-29.
    [72]何丽莎,Rachel Stern绝非无价:从经济角度看香港大自然保育的效益[OL].2002,2.
    [73]欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值评价的初步研究[J].生态学报,1999,19(5):607—613.
    [74]成克武,崔国发,王建中,等.北京喇叭沟门林区森林生物多样性经济价值评估[J].北京林业大学学报,2000,22(4):66-71.
    [75]肖寒,欧阳志云,赵景柱.森林生态系统服务功能及其生态经济价值评估初探—以海南尖峰岭热带森林为例[J].应用生态学报,2000,11(4): 481-484.
    [76]欧阳志云,赵同谦,赵景柱,等.海南岛生态系统生态调节功能及其生态经济价值研究[J].应用生态学报.,2004,25(8):1395—1402.
    [77]余新晓,秦永胜,陈丽华.北京山地森林生态系统服务功能及其价值初步研究[J].生态学报,2004,22(5):783—786.
    [78]徐慧,钱谊,彭补拙,等.鹞落坪自然保护区森林生态系统间接使用价值评估[J].南京林业大学学报(自然科学版),2003,27(2):16—20.
    [79]毕绪岱,杨永辉,许振华.河北省森林生态经济效益研究[J].河北林业科技,1998,(1):1—5.
    [80]薛达元,包浩生,李文华.长白山自然保护区森林生态系统间接经济价值评估[J]..中国环境科学,1999,19(3):247—52.
    [81]李顺龙.森林碳汇经济问题探究[D].黑龙江哈尔滨:东北林业大学研究生处,2005,59—61.
    [82]袁嘉祖,范晓明.中国森林碳汇功能的成本效益分析[J].河北林果研究,1997,12(1):20—24.
    [83]Titus D B. Using tropical forestry to fix atmospheric carbon dioxide [J]. Ambio,1992,19(5):230-236.
    [84]Myers Norman. The greenhouse effect:a tropical forestry response[J]. Biomass,1990,18:73-78.
    [85]Anderson D. Carbon fixing from an economic perspective[R]. Forestry Commission's First Economics Research Conference, York University, 1990.260-271.
    [86]Pearce D W. Assessing the returns of economy and to society from investments in forestry [A]. Whiteman A (cd.). Forestry Expansion[C]. Edinburgh:Forestry Commission,1990.333-340.
    [87]姬惜珠,王红,张爱军.三北防护林中杨树的碳汇和放氧功能及其价值估算[J].河北林果研究,2005,20(3):217—219.
    [88]康文星,田大伦.湖南省森林公益效能经济评价—森林的净化空气效益[J].中南林学院学报,2002,22(1):7—10.
    [89]赵海珍,王德艺,张景兰,等.雾灵山自然保护区森林的碳汇功能评价[J].河北农业大学学报,2001,24(4):43—47.
    [90]刘强,刘嘉麒,贺怀宇.温室气体浓度变化及其源与汇研究进展[J].地球科学进展,2000,15(4):25-28.
    [91]Kramer P J. Carbon dioxide concentration, photosynthesis, and dry matter production [J]. Bioscience 1981,31:29-33.
    [92]Keeling C D, Whorf T P.et al. Atmospheric CO2, concentrations(ppmv) derived from in situ air samples collected at Mauna Loa Observatory[J]. Hawaii.2004.119-122.
    [93]IPCC. Climate Change In:The Science of Climate Change. Houghton JT, et al. (eds.)Cambridge:Cambridge University Press.1996.89-93.
    [94]Keeling C D, Bacastow R B. Impact of industrial gases on climate In: Energy and climate[M]. National Academy of Sciences. Washington D. C.USA,1977,72-95.
    [95]聂道平,徐德应,王兵.全球碳循环与森林关系的研究—问题与进展[J].世.界林业研究,1997,5:34-40.
    [96]徐德应.人类经营活动对森林土壤碳的影响[J].世界林业研究,1994,5:26-31.
    [97]J Houghton著.全球变暖[M].戴晓苏,等译.北京:气象出版社,1998.
    [98]周玮生,柳泽幸雄.中国未来能源需求及CO2减排技术对策的数值模拟.世界环境,1996,4:38—41.
    [99]中国土壤学会农业化学专业委员会编.土壤农业化学常规分析方法[M].北京:科学出版社,1984.56—60.
    .[100]湖南省森林资源主要数据汇编(1999-2003).湖南省林业厅资源林政处编,2005.12.
    [101]孙龙,李俊涛,耿叙武,等.崂山风景区森林生态系统服务功能及价值评估[J].防护林科技,2006,72(5):93-95.
    [102]焦秀梅.湖南省森林植被的碳贮量及其地理分布规律[D].湖南长沙:中南林业科技大学研究生处,2005.23-24.
    [103]王义祥.福建省主要森林碳库与杉木林碳吸存[D].福建福州:福建农林大学研究生处,2004.15-17.
    [104]李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究.生态学报,1998,18(4):371-378.
    [105]Jobbagy E G, Jackson R B. The vertical istribution of Soil Organic Carbon and its Relation to Climate and Vegetation[J]. Ecological Applications,2002,10(2):423-436.
    [106]Baties N.H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science,1996,47:151-163.
    [107]Detwiler R.P. Land use change and the global carbon cycle:the role of tropical soil Biogeochemistry[J].1986,2:67-93.
    [108]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律[J].生态学杂志,1997,16(6):17—21.
    [109]潘勇军,康文星,田大伦,等.武陵源森林生态系统服务功能及其效益评估[J].湖南林业科技,2005,32(1):29—32.
    [110]李文华,李飞.中国森林资源研究[M].北京:中国林业出版社1996.9.
    [111]李惠敏,陆帆等.城市化过程中余杭市森林碳汇动态[J].复旦学报(自然科学版),2004,43(6):1043—1050.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700