用户名: 密码: 验证码:
燕麦对小鼠抗疲劳作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】为了探索燕麦的抗疲劳作用,以及燕麦重要功能成分β-葡聚糖、蛋白质和油脂对抗疲劳作用的贡献。【方法】以坝莜一号燕麦为原料,经炒制灭酶,制备燕麦全粉,分离提取燕麦β-葡聚糖、蛋白质和油脂。按卫生部《保健食品功能学评价程序与检验方法》对燕麦全粉进行抗疲劳作用的功能学评价,同时确定其抗疲劳最优化剂量。在此基础上,以燕麦全粉抗疲劳的最佳优化剂量计算得到燕麦β-葡聚糖、蛋白质和油脂的给药剂量,建立小鼠运动疲劳模型,测定小鼠力竭游泳时间;小鼠运动后体内肝糖原含量、代谢产物血清尿素氮含量、血清乳酸脱氢酶含量;小鼠运动后血液、肝脏和肌肉中超氧化物歧化酶(SOD)活力和丙二醛(MDA)含量;制作肝脏石蜡切片,PAS染色,观察燕麦各组分对运动小鼠肝糖原形态分布的影响,从而探索燕麦抗疲劳作用效果和燕麦中起抗疲劳作用的关键组分。【结果】燕麦全粉具有显著的抗疲劳作用,燕麦各组分单独的抗疲劳作用不显著,对运动小鼠抗疲劳指标的影响度各不相同。【结论】通过研究得到以下结论:
     ⑴燕麦全粉具有显著的抗疲劳作用。高、低剂量组之间呈现明显剂效关系,燕麦全粉高剂量组21.44 g/(kg·d)在控制小鼠体重,提高运动耐力和运动后肝糖原储备方面与对照组比,达到极显著差异(p<0.01)。本试验确定燕麦全粉高剂量组作为燕麦抗疲劳的优化剂量。
     ⑵燕麦各组分抗疲劳效果评价表明:燕麦β-葡聚糖、蛋白质和油脂单独均没有显著的抗疲劳效果,且各组间对抗疲劳指标的影响度各不相同。燕麦β-葡聚糖在提高小鼠游泳耐力和运动后肝糖原含量方面优于燕麦蛋白质和燕麦油脂。燕麦蛋白质在提高小鼠运动后LDH活力和降低小鼠运动后BUN含量方面优于燕麦β-葡聚糖和燕麦油脂。
     ⑶燕麦β-葡聚糖、蛋白质和油脂均可增加小鼠运动后肝糖原含量,保证了充足的能量供应;可提高小鼠运动后血清乳酸脱氢酶活力,加速了乳酸在体内的代谢速率;可降低小鼠运动后血清尿素氮含量,减少了尿素氮堆积对机体的损伤,从而延缓疲劳的发生。肝糖原PAS染色表明,燕麦β-葡聚糖、蛋白质和油脂均可以增加运动后小鼠肝脏糖原数量,燕麦β-葡聚糖效果最为明显。
     ⑷燕麦β-葡聚糖、蛋白质和油脂均能有效缓解小鼠运动后机体氧化应激程度,具有升高运动后小鼠血清、肝脏和肌肉组织匀浆中SOD酶活力的作用;具有降低运动后小鼠血清、肝脏和肌肉组织匀浆中MDA的作用。
Objectives: This study aims to separateβ-glucan, protein and oil from oats respectively and to investigate the antifatigue effect of oats. The research has significant theoretical and practical meaning for the application and development of oats, relieving the increasing fatigue of modern people, as well as improving human health. Methods:“Bayou-1”the fine variety of oat in China was used as material to separate the oat whole powder, oatβ-glucan, oat protein and oat oil after inactivate enzyme by fry. According to the evaluation procedure and test method of functions of healthcare food of the Ministry of Health in China, we evaluated the antifatigue function of oat whole powder, and also determined the optimal feeding dose of oat whole powder for mice. On the basis of this feeding dose, proper feeding dose of oatβ-glucan, oat protein and oat oil were estimated to construct experimental model of mice. In this study, we investigated the exhaustion swimming time of mice, the glycogen content, serum urea nitrogen and lactate dehydrogenase of mice after swim, as well as the activity of SOD and content of MDA in blood, liver and muscle of mice after exercise. Besides, through paraffin section and PAS stain methods, we observed the influence of different oat ingredients on the glycogen configuration distribution of mice after swim, in order to study the antifatigue effect of oat and find out which ingredient played the key role in antifatigue effect of oat. Results: Oat whole powder had significant antifatigue effect. Each ingredient didn’t show significant antifatigue effect and their effects on the antifatigue indexs varied. Conclusion: We have drawn the following conclusions in the present study.
     (1) Oat whole meal had significant antifatigue effect and the effect was dose-dependent. The high dose of 21.44 g/(kg·d)oat whole meal’s effect on controlling the mice weight, improving the sport durability and glycogen reservation of mice had the most significant difference (p<0.01) compared with the control group. So the high feeding dose was determined as the optimal dose for antifatigue effect of oat.
     (2) Oatβ-glucan, oat protein and oat oil did not show significant antifatigue effect and their effects on the antifatigue indexes varied. Oatβ-glucan showed better effect on improving swimming durability and glycogen reservation after exercise than oat protein and oat oil. Oat protein had better effect on improving the LDH activity of mice and reducing the content of BUN of mice after sport than oatβ-glucan and oat oil.
     (3) Oatβ-glucan, oat protein and oat oil could increase the content of glycogen to ensure the enough energy supply and improve the LDH activity of mice after exercise to accelerate the rate of metabolism of LA. They could reduce the content of serum urea nitrogen to lessen the injury to mice caused by urea nitrogen accumulation. They could also increase the content of glycogen of mice after exercise and decrease the content of BUN after exercise to delay the fatigue. The result of PAS stain of glycogen showed that oatβ-glucan, oat protein and oat oil could increase the distribution number of mice glycogen, and oatβ-glucan had the most significant effect.
     (4) Oatβ-glucan, oat protein and oat oil could effectively relieve the oxidative stress in mice during sport, increase the SOD enzyme’s activity of serum, liver and muscle of mice after swimming as well as decrease the MDA content in serum, liver and muscle of mice after sport.
引文
[1]胡新中,魏益民,任长忠著.燕麦品质与加工[M].北京:科学出版社.2009.
    [2]李扬汉.禾本科作物的形态与解剖[M].上海:科学技术出版社.1979,46l-476.
    [3]黄艾祥,肖蓉.燕麦及其营养食品的研究开发[J] .粮食与饲料工业,2000,9.
    [4]李芳等.燕麦的综合开发与利用[J].武汉工业学院学报,2007,26(1):23-25.
    [5]赵桂琴,师尚礼.青藏高原饲用燕麦研究与生产现状、存在问题与对策[J].2004,21(11):17-20
    [6]孙革,潮芳.中药消除运动性疲劳方法的研究综述[J].北京体育大学学报,2004,27(8):1078-1080.
    [7]胡新中.燕麦食品加工及功能特性研究进展[J].麦类作物学报,2005,25(5):122-124.
    [8]刘亚伟.淀粉生产及其深加工技术[M].北京:中国轻工业出版设.2001.
    [9]MacArthur, L.A., and D’Appolonia, B. L. Comparison of oat and wheat carbohydrates. II. Starch [J]. Cereal Chem., 1979b, 56:458-461.
    [10]Wang, L. Z., and White, P. J. Structure and properties of amylose, amylopectin, and intermediate materials of oat starches [J]. Cereal Chem., 1994a, 71:263-268.
    [11]Wang, L. Z., and White, P. J. Structure and physicochemical properties of starches from oats with different lipid contents [J]. Cereal Chem., 1994b, 71:443-450.
    [12]Wang, L. Z., and White, P. J. Functional properties of oat starches and relationships among functional and structural characteristics [J]. Cereal Chem., 1994c, 71:451-458.
    [13]萧安民.美国燕麦及其产品[J].粮食与油脂,1995,(1):1-4.
    [14]李长河.大米淀粉及其衍生物的现状与发展前景[J].现代农业,2004,(6).
    [15]葛志强.青海燕麦资源的开发和利用[J].青海科技情报,1991,(4).
    [16]张丽萍,翟爱华.燕麦的营养功能特性及综合加工利用[J ].食品与机械,2004,20(2):55-56.
    [17]周建新.大有开发前途的燕麦保健食品[J].食品科技,1999,(6).
    [18]胡新中.燕麦面团流变学及加工特性研究[J].中国粮油学报,2006,21(2):49-51.
    [19]Morrison, W R. Cereal lipids [M]. Pages 221-348 in Advances in Cereal Science and Technology. Y. Pomeranz ed. American Association of Cereal Chemists: St Paul, MN.1978.
    [20]Youngs, V. L., Püskülcu, M., and Smith, R. R. Oat lipids. I. Composition and distribution of lipid components in two oat cultivars [J]. Cereal Chem., 1977, 54:803-812.
    [21]De la Roche, I.A., Burrows, V.D. and Mckenzie, R.I.H. Variation in lipid composition among strains of oats[J]. Crop Sci., 1977, 17: 145-148.
    [22]Youngs, V. L. Oat lipase [J]. Cereal Chem., 1978, 55(5):591.
    [23]黄相国,葛菊梅.燕麦的营养成分与保健价值探讨[J].麦类作物学报,2004,24(4):147-149.
    [24]Robert, W. W. The oat crop: production and utilization [M]. Chapman & Hall. London. 1995.
    [25]况伟.燕麦可溶性膳食纤维的生理功能及应用[J].广东化工,2005,(3).
    [26]Anderson, J. W., Chen, W. J. Oats: chemistry and technology [M]. American Association Cereal Chemistry. St Paul, MN. 1986.
    [27]Woodlard, G. R., Rathbone, E. B., and Novellie, L. A hemicellulosicβ-D-glucan from endosperm of sorghum grain [J]. Carbohydrate Research, 1976,51:249-252.
    [28]Takeda, T., Funatsu, M., Shibatu, S., et al. Polysaccharides of lichens and fungi. V. Antitumour active polysaccharides of lichens of Everina [J]. Acroscyphys and Alectoria Spp. Chem. Pharm. Bulletin., 1972,20: 2445-2449.
    [29]申瑞玲,姚惠源.裸燕麦麸β-葡聚糖的提取分离及结构研究[J].郑州工程学院学报,2004, (12)
    [30]汪海波,刘大川等.燕麦β-葡聚糖对小肠蠕动及淀粉酶活性的影响研究[J].营养学报,2006,28 (2):148-151.
    [31]陆琪红.燕麦燕麦β-葡聚糖对糖尿病大鼠降血糖作用的研究[J].
    [32]Davis, J. M., E. A. Murphy, A. S. Brown, M. D. Carmichael, A. Ghaffar, and E. P. Mayer. Effects ofmoderate exercise and oatβ-glucan on innate immune function and susceptibility to respiratory infection[J]. Am J Physiol Regul Integr Comp Physiol 2004,286:R366–R372.
    [33]Stacery Bell,ValerieM Goldman. Effect ofβ- D-Glucan from Oats and Yeast on Serum Lipids [J]. Critical Reviews in Food Science and nutrition. 1999, 39 (2) : 189 - 202.
    [34]沈伟.燕麦可溶性膳食纤维的生理功能及应用[J].广东化工,2005,(3).
    [35]Michcael, U. Beer, Wva Arrigoni. Extraction of Oat Gum from Oat A in: Effect of Process of Yield MolecularW eight D istribution, V iscocity (1→3) (1→4) -β- D - Glucan content of Gum [J]. Cereal Chem istry, 73, 1996, (1) : 58- 62.
    [36]李八方.功能食品与保健食品[J ].青岛:青岛海洋大学出版社,1997.
    [37]冯炜权.运动性疲劳和疲劳恢复过程研究的新进展[J].中国运动医学杂,1993,12(3):161.
    [38]张濒,高顺生.运动性疲劳的研究进展[J].北京体育师范学院学报,2000,12(1):72-76.
    [39]郑建仙.功能性食品(第三卷) [M].北京:中国轻工业出版社,1999.
    [40]李志军,李八方.抗疲劳功能食品研究与开发.食品科技,2000(2):25-27.
    [41]张灏,高顺生.运动性疲劳的研究进展[J].北京体育师范学院学报.2000,12(1):72-77.
    [42]王瑞元.运动生理学[M].北京:人民体育出版社.2002.
    [43]Mc Dermett JC,Bonen A. Lactate transport by skeletal muscle Sarcolemmal Vesicles [J]. Mol Cell Bioc.1993,22:113~121.
    [44]Mc Dermett JC,Bonen A . Lactate transport in rat Sarcolemmal Vesicles and intact skeletal muscle and after muscle on traction [J]. Acte Physiol Scand .1994,151:17~28.
    [45]衣雪洁,常波,胡红军.力竭游泳对大鼠肠组织M DA、Free-SH含量和Na+-K+-ATPase活性的影响[J].中国体育科技.2000,36(8):9-41.
    [46]Metzger JM, Fitts RI. Role of intracellular pH in muscle fatigue[J]. Appl Physiol.1987, 62:1392~1397.
    [47]张宜龙,陈吉棣.牛磺酸对大鼠急性运动后自由基代谢、膜流动性及钙转运变化的影响[J].中国运动医学杂志.1999,1 8(1):17-21.
    [48]Baileysp, Davis JMB.Nero endocrine and substrate responses to altered brain 5-HTactivity [J]. Apple Physiol.1993, 74: 3006~3012.
    [49]曹海信,赵启权,李世明.生物自由基与运动性疲劳的研究进展[J].四川体育科学,2006, 12(4):33-35.
    [50]李亮,曹建民,赵宁宁.补充番茄红素对运动大鼠血清自由基代谢的影响[J].北京体育大学学报.2006,29(3):353-354.
    [51]郑哲君,李晓莉,王朔.抗疲劳功能食品的研究进展[J].食品科技.2006,4(2):4-7.
    [52]常波.运动源性自由基对大鼠肾脏线粒体游离钙和ATP合成能力的影响[J].上海体育学院学报.2006,30(2):72-73.
    [53]魏守刚.糖与耐力运动.山东体育科技[J].1996.(1):56-58.
    [54]王耀明.血睾酮与运动.武汉体育学院学报[J].2001,35(4):38-41.
    [55]张祥沛.卵磷酯对小鼠耐力影响的实验研究.中国生化药物杂志[J].2001,22(2):89-90.
    [56]Shoubidge EAA. 31 p-nuclear magnetic resonance study of skeketal muscle Metabolism in rats depleted of creatine with the analosue guanidino-proprionic acid[J]. Biochem Biophys Acts, 1984(805): 79-88.
    [57]Greenhaff PL. The effect of oral creatine supplementation on skeletal muscle phosphocreatine resythesis[J]. Am J Physiol, 1994(266): E725-E730.
    [58]李瑞军.维生素对消除中长跑运动员疲劳的作用.昌淮师专学报[J].2000,19(2):93-94.
    [59]葛毅强,孙爱东,蔡同一.维生素E的研究新进展.中国食品添加剂[J].1999(2):81.
    [60]陈巍.左旋肉碱的抗疲劳作用.军需研究[J].2002(4):36-38.
    [61]孙红梅,孙军,陈文鹤.营养补充与抗运动性疲劳.山东体育科技[J].2002,24(1):24-26.
    [62]Bagby GJ. Glycogen depletion in exercising rats infused with glucose, lactate, of pyruvate. J App1 Physiol[J]. 1978(45):425-429.
    [63]万劲.中医补肾药、补脾药对运动员机能状态及运动能力影响的综合观察[J].中国运动医学杂志.1994,13(4):202-206.
    [64]钱风雷.补肾中药对大鼠运动性低血肇酮的调整作用[J].中国运动医学杂志,1998(4):230.
    [65]潘珊珊,张炎,陆爱云.中医药抗运动性疲劳的研究综述[J].上海体育学院学报,1999, 23(2): 52-55.
    [66]来英,严卫星,楼密密.保健食品抗疲劳作用试验方法研究[J].中国食品卫生,1997,9(4):1-6.
    [67]郑建仙编著.功能性食品(第一卷).北京:中国轻土业出版社,1999:1-5.
    [68]钟耀光主编.功能性食品.北京:化学土业出版社,2004:1-9, 273-277.
    [69]唐传核编著.植物功能性食品.北京:化学土业出版社,2004:4-30.
    [70]毛跟年,许牡丹主编.功能食品生理特性与检测技术.北京:化学土业出版社,2005:3-9,351-383,665-666.
    [71]凌关庭主编.保健食品原料手册.北京:化学土业出版社,2003:429-472,665-666.
    [72]陈仁惊编著.营养保健食品.北京:中国轻土业出版社,2001:115-130,205-209,256-258, 513-519, 568-577.
    [73]韩雨梅,邸慧君.动物实验在抗疲劳中药研究中的应用现状[J].首都体育学院学报,2003,15(1):93-96.
    [74]孙敬方主编.动物实验方法[M].北京:人民卫生出版社,2002:356-358,459-509.
    [75]Yan Shiyun, Zhou Jiyan, Ochi Hirotomo. Anti-Fatigue Effects of Yiegin. ACS Symposium Series, v 701,1998, p 122-126.
    [76]李斗力.中国古本草增力类营养保健品立法特色及其应用[J].中国运动医学杂志,1990,9(1):5.
    [77]谢伟.银杏叶提取物对小鼠抗疲劳能力影响的实验研究[D].[硕士学位论文]:广西师范大学, 2002.
    [78]马莉.红景天苷抗疲劳作用及其机制的实验研究[D].[博士学位论文]:上海:第二军医大学军事预防科学系,2006.
    [79]柴渭莉.连翘叶中苷类成分的分离鉴定及其抗疲劳作用的研究[D].[硕士学位论文]:陕西:陕西师范大学运动人体科学专业,2006.
    [80]郑哲君,李晓莉,王朔.抗疲劳功能食品的研究进展[J].食品科技.2006,4(2):4-7.
    [81]熊正英,张全江,解勇国等.运动状态下的线粒体与细胞凋亡[J].中国运动医学杂志, 2002,21(6):589-592.
    [82]彭汶铎,陈启亮.海马酶法提取物的抗疲劳作用[J].中国食品卫生杂志.2005,17(5):404-406.
    [83]Carry J Handelman et al.J Agric Food Chem,1999,47: 4888-4893..
    [84]Cheryld L Emmons et al.J Agric Food Chem,1999,47: 4894-4898.
    [85]Gordon M H.Plant sterols as natural antipolymeristion agents.1990.23-24.In:Proceedings of International symposium on New Aspects of Dietary Lipids-Benefits, hazards and Technology, Goteborg,Sweden. White P J, Armstrong L S.J Am Oil Chem Soc,1986,63: 525-529..
    [86]Kirwan, John P. Donal O’Gorman and William J. Evans. A moderate glycemic meal before endurance exercise can enhance performance. J. Appl. Physiol. 1998,84(1): 53–59.
    [87]Joshua C. Anthony, Tracy Gautsch Anthony. Biochemical and Molecular Action of NutrientsJ. Nutr. 1999,129:1102–1106.
    [88]Davis, J. M., E. A. Murphy, A. S. Brown, M. D. Carmichael, A. Ghaffar, and E. P. Mayer. Effects of moderate exercise and oatβ-glucan on innate immune function and susceptibility to respiratory infection. Am J Physiol Regul Integr Comp Physiol 2004,286:R366–R372.
    [89]回晶,尚德静.西藏人参果对小鼠抗疲劳及抗缺氧能力的影响[J].营养学报,2003,25(2):218-219.
    [90]张东杰,冯坤等.刺五加茶饮料抗疲劳作用的实验研究[J].营养学报,2003,25(3):309-311.
    [91]龚晨睿,李宇红等.红景天复合制剂抗疲劳作用的研究[J].卫生研究,2002,31(3):397.
    [92]史亚丽,刘运祥等.灵芝多糖对小鼠运动能力的影响[J].沈阳体育学院学报,2005,24(5):59-60.
    [93]申瑞玲,王章存等.燕麦β-葡聚糖对小鼠结肠菌群及其功能的影响[J].营养学报,2006,28(5):430-433.
    [94]汪海波,刘大川等.燕麦β-葡聚糖对小肠蠕动及淀粉酶活性的影响研究[J].营养学报,2006,28(2):148-151.
    [95]陆琪红.燕麦β-葡聚糖对糖尿病大鼠降血糖作用的研究[J].
    [96]孙敬方主编.动物实验方法[M].北京:人民卫生出版社,2002,92-107, 356-358.
    [97]冯炜权.运动性疲劳和疲劳恢复过程研究的新进展[J].中国运动医学杂志,1993,12(3):16.
    [98]胡新中.裸燕麦喂养动物研究结果[EB/OL].http://www.thirdstaplefood.com/article.php?no=471,2007-9-29.
    [99]李清云,王长青.燕麦纤维对糖耐量和减肥作用研究[J].山西大学学报(自然科学版)2005(4):421-424.
    [100]林松毅,殷涌光,刘静波.抗疲劳功能啤酒的研制[J].酿酒,2004,(6):53-56.
    [101]沈先荣,蒋定文,贾福星等.海洋星虫提取物的抗疲劳作用研究[J].中华航海医学与高气压医学杂志,2003,10(2):112-114.
    [102]张东杰,冯昆,张爱武等.刺五加茶饮料抗疲劳作用的实验研究[J].营养学报,2003,25(3): 309-311.
    [103]李茂辉,金山,孟玉玲.东北油松花粉酶法提取液抗疲劳作用的实验[J].中国公共卫生,2002, 18(5):610.
    [104]Dawson CA and Horvath SM. Swimming in small laboratory animals[J]. Med and Science Sports. 1970,2(2):51-78.
    [105]Ingegerd Ostman-Smith. Adaptive changes in the sympathetic nervous system and some effectororgans of the rat following long term exercise or cold acclimation and the role of cardiac sympathetic nerves in the genesis of compensatory cardiac hypertrophy[J]. Acta Physiol Scan. 1979, suppl 477:1-34.
    [106] Kramer K, et al. Control of physical exercise of rats in a swimming basin[J]. Physiol Behav.1993,53(2):271-276.
    [107]陈一飞,徐维.运动性疲劳的发生机制与高压氧的作用[J].中华屋里医学与康复杂志。2004,26(3):187-189.
    [108]欧阳静萍.黄芪多糖对遗传性糖尿病小鼠肝糖原含量的影响[J].微循环学杂志,2007,17(1):12-14.
    [109]王小雪,邱隽,宋宇.茶氨酸的抗疲劳作用研究[J].中国公共卫生,2002, 18(3):315-317.
    [110]季朋娜,陈葆春,刘洪德,等.虫草制品免疫功能、调节血脂和抗疲劳功能与营养的实验研究[J].实用预防医学,2002, 9(2): 178-179.
    [111]Ma li,Cai Donglian. Anti-fatigue effects of salidroside in mice[J]. Journal of Medical Colleges of PLA 2008, (23) 88-93.
    [112]宁鸿珍,关维俊,阎红等.茶多酚复合饮料的抗疲劳作用研究[J].营养学报,2002,24(3):313-314.
    [113] Carcia-Rocha M,Roca A, Delalglesia N, Baba O,elta. Intracellμlar distribution of glycogen synthase and glycogen in primary cμltured rat hepatocytes.Biochemical Journal, v 357, n 1,Jμl 1,2001,p17-24.
    [114] Berqans N, Dresselaers T, Vanhamme L, elta.Quantification of the glycogen 13C-1 NMR signal during glycogen synthesis in perfused rat liver. NMR in Biomedicine, v 16, n 1,February, 2003, p 36-46.
    [115]黄耀凌,邹思湘.谷氨酰胺的抗疲劳生化机制研究[J].南京农业大学学报,2001,24(2):87-89.
    [116]刘石,仓义鹏.抗疲劳太作用机理及其功效评价指标探讨[J].食品与健康,2008,12:71-72.
    [117]史雅丽,辛晓林等.黑木耳多糖对生物机体运动能力的影响[J].中国临床康复,2006,10(35):106-108.
    [118]杨娟,吴谋成等.香菇蛋白多糖抗疲劳作用研究[J].营养学报,2001,12(4):350-352.
    [119]张丽萍,曲红光等.蚕蛹蛋白抗疲劳作用人群试食试验[J].食品科学,2005,26(9):462-465.
    [120]郑红英,宋刚.皮质醇、睾酮与运动[J].沈阳体育学院学报,2004,23(3):304-305.
    [121] Bhatty, R. S. Total and extractable b-glucan contents of oats and their relationship to viscosity [J]. J. Cereal Sci., 1992, 15:185-192.
    [122] Wood, P J., and Fulcher, R G. Interaction of some dyes with cerealβ-glucans [J]. Cereal Chem., 1978, 55:952-966.
    [123] Cui, S. W. Polysaccharide gums from agricultural products: Processing, structure & functionality [M]. Technomic Publishing Company. Pennsylvania USA. 2001.
    [124]韩雨梅,邸慧君.动物实验在抗疲劳中药研究中的应用现状[J].首都体育学院学报,2003,15(1):93-96.
    [125] Wolever T M S. Dietary carbohydrates and insulin action in humans[J]. Bri J Nutr, 2000, 83: 97-102.
    [126] Fitts R.H, Metzger J.M. Mechanisms of Muscular Fatigue. In Poort-mans J. Principles of Exercise Biochemistry. 1988, 212-229.
    [127]魏源,罗桂珍等.牛磺酸对力竭运动大鼠抗疲劳的作用[J].体育学刊,2001,11(6):60-62.
    [128]翟凤国,周福波,付惠.蜂花粉抗疲劳作用的实验研究[J].牡丹江医学院学报,2004,25(5):8-10.
    [129]潘翔,徐峰.刺五加抗疲劳功能实验研究的进展[J].实验动物科学与管理,2005,22(2):39-41.
    [130]刘志伟,吴谋成,刘秀梅.菱叶红景天多糖的抗疲劳作用的研究[J].营养学报,2004,26(4):327-328.
    [131]窦兰君.氨基酸代谢对运动和疲劳的影响.解放军预防医学杂志,1995,13(3): 244.
    [132]许玲.支链氨基酸对大鼠运动理解后血液中抗氧化系统的影响[J].解放军体育学院学报,2002,21(4):76-78.
    [133]刘建红,周志宏,鸥明毫等。支链氨基酸对划船运动员耐力运动后肌肉损伤的保护作用[J].中国临床康复,2003,7(24):3402-3403.
    [134]许志勤,孙咏梅,金宏等.支链氨基酸对运动大鼠和小鼠蛋白质代谢的影响[J].2001,23(2):102-105.
    [135]刘丽萍,李雷,王广平.游泳训练后大鼠肝细胞SOD、MDA、线粒体膜电位变化与细胞凋亡的关系[J].中国运动医学杂志,2002,21(2):161-165.
    [136] Liu Gs, Zheng RL, Sun JF. Chen D.Liu LS、Sun KF. Anti oxidation and anti -fatigue effect 0f Schisondra chinensva[J]. Trad West Med 1988,8(Special issue 1):101-103.
    [137]Lean M.E., Noroozi M., et a1.Dietary flavonols protect diabetichumans lymphocytes against oxidative damage to DNA[J]. Diabetes, 1999, 48:176-181.
    [138]Kar NC. Pearson CM. Catalase, superoxide dismutase,glutathione reductase and throbarbunre acid-reactive products in normal and dystrophic human muscle[J]. Chemical Acta. 1979,94:277-80.
    [139]Jackson MJ, Jones DA, Edwards RHT. Techniques for studying free radical damage in muscular dystrophy[J]. Med Biol 1984:62:135-8.
    [140]Davies KJA. Quintantha AT. Brooks GA, Packer L. Free radicals and tissue damage produed by exercise. Technomic Publishing Company. Pennsylvania USA. 2001.
    [141]Vins J, Gomer-Cabrera MC. Free radicals in exhaustive physical exercise: mechanism of production and protection by antioxidants [J]. IUBMB life.2000, 50(45):271~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700