用户名: 密码: 验证码:
中国水仙花型、花色发育基因(NTMADS1、NtMADS3、NTPDS1和NTPZDS1)的克隆与转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国水仙(Narcissus tazetta var.chinensis)是世界著名的球根花卉,也是我国传统名花中出口创汇的重要种类。由于中国水仙是同源三倍体,利用传统的杂交和实生选种方法产生新品种存在极大困难,加之野生资源高度匮乏,致使中国水仙品种单一成为我国水仙产业发展的瓶颈问题。克隆与中国水仙花型和花色发育相关的功能基因,建立优化的中国水仙遗传转化体系,不仅可以在一定程度上揭示中国水仙花型和花色的变异机理,还可为利用植物基因工程改良中国水仙的观赏性状提供理论依据和技术支持。本研究对中国水仙的两个MADS-box基因(NTMADS1和NtMADS3)、两个花色发育基因(NTPDS1和NTZDS1)和遗传转化体系进行了研究,主要结论如下:
     1、利用RT-PCR技术,从中国水仙‘玉玲珑’幼嫩花序中克隆到NTMADS1基因,序列分析表明,NTMADS1 cDNA片段总长为879 bp,含有完整的开放阅读框架,编码230个氨基酸。与拟南芥MADS-box基因家族的系统进化树分析表明,该基因属于AG亚族的C类功能基因。利用RT-PCR方法,研究了NTMADS1基因在开花期的组织特异表达模式,发现NTMADS1基因只在中国水仙花中表达,且丰度极高;在花的雄蕊中表达量最高,其次为副冠、雌蕊,在花瓣中几乎未检测到该基因表达。以pBI121为载体,构建了该基因的正义表达载体,通过农杆菌介导的叶盘法和蘸花法,将构建好的基因分别在烟草和拟南芥中异位表达。通过对转基因植株的表型观察发现,转NTMADS1基因的拟南芥植株开花期明显早于野生型,且花型出现显著变化,如雄蕊心皮状、花瓣全部或部分退化、顶部茎生叶出现花状结构等。转基因烟草则出现花冠裂片变短且边缘不规则、花筒开裂、花药退化等现象。初步表明NTMADS1参与了花型和花期的调控。
     2、利用RT-PCR和RACE技术,从中国水仙‘金盏银台’幼嫩花序中克隆到NtMADS3基因,序列分析表明, NtMADS3 cDNA总长为980 bp,含有一个726 bp的完整ORF,编码241个氨基酸。与拟南芥MADS-box基因家族的系统进化树分析表明,该基因与拟南芥(A. thaliana)的AGL6亲缘关系最近,属于E类功能基因。利用RT-PCR方法分析了该基因在开花期的组织特异表达模式,发现NtMADS3基因在中国水仙开花期的花、叶片、鳞片和根系中以及花的各个部位均有表达。将构建在pBI121载体上的NtMADS3基因在烟草和拟南芥中异位表达,通过对转基因植株表型观察发现,转NtMADS3基因拟南芥植株开花期明显早于野生型,但花型未出现显著变化;部分转基因植株出现植株矮小和莲座叶卷曲现象,但绝大部分表现正常。转基因烟草则出现花筒开裂、雄蕊退化或瓣化等现象。初步表明NtMADS3基因参与了花期和花型的调控。
     3、从中国水仙‘金盏银台’幼龄花序中克隆到中国水仙八氢番茄红素脱氢酶(NTPDS1)基因和ζ-胡萝卜素脱氢酶(NTZDS1)基因。序列分析表明,NTPDS1 cDNA片段总长为1 719 bp,含有完整的开放阅读框架,可编码含570个氨基酸;NTZDS1基因总长为1 899 bp,ORF可编码574个氨基酸。两个基因均在中国水仙的花中大量表达,且在花瓣和副冠中的表达量高于雄蕊和雌蕊;叶片和根中的表达量次之;在鳞片中表达量极少或检测不到表达。构建了两个基因的pBI121和pCAMBIA1300植物表达载体,并通过农杆菌将上述基因转入烟草和拟南芥中,得到了卡那抗性的再生植株。
     4、以中国水仙不同部位外植体进行了不定芽直接分化和愈伤组织诱导分化试验,结果表明,双鳞片外植体在MS0+6-BA 10.0 mg/L+NAA 1.0 mg/L+蔗糖40 g/L+琼脂7.5 g/L培养基上可以大量地直接再生,再生芽数量平均可达13~16个/cm双鳞片,比传统的鳞茎盘之间分化提高30~50%;鳞片、叶片、花葶及花部不同组织在适宜的配方中均可不同程度地诱导出愈伤组织,但以带花药的花丝诱导出的愈伤组织最好。筛选抗生素和抑菌抗生素浓度试验表明,花丝产生的愈伤组织的选择压为潮霉素15~20 mg/L;羧苄青霉素的抑菌浓度为250~300 mg/L。
Narcissus tazetta var.chinensis is a world-renowned bulb flower and plays an important role in Chinese flower trade. As a homologous triploid plant, it is very difficult to create new varieties by traditional hybridization and seedling breeding methods. In addition, the wild Narcissus resources are extremely deficient in China, so varieties deficiency has become the bottleneck in Chinese Narcissus industry. Cloning genes related to flower colour and flower organ identity from N. tazetta var.chinensis and establishing optimized genetic transformation system can not only explain the variation mechanism of N. tazetta var.chinensis flower colour and flower organ identity to a certain extent, but also offer theoretic and technical support to improve or create the ornamental characters through plant genetic engineering.Two MADS-box genes(NTMADS1 and NtMADS3), two colour development related genes(NTPDS1 and NTZDS1) and genetic transformation system of N. tazetta var.chinensis were studied in this paper, the major findings are described as followings:
     1. A gene named as NTMADS1 was isolated from the flower alabastrums of N. tazetta var.chinensis by RT-PCR method. The cDNA is 879 bp in length with an open reading frame which is capable of encoding 230 amino acid. Compared with A. thaliana MADS-box genes family, phylogenetic tree analysis indicated that NTMADS1 belongs to AG subfamily of C class genes.The tissue-specific expression pattern was studied by RT-PCR method. The results revealed that the transcript of NTMADS1 was not detectable in vegetative tissues, but only in flowers. Within open flower organs, transcript levels were much higher in stamen and corona than in pistil and barely detectable in petals.
     To explore the role of NTMADS1 in flower organ identity, the expression vector of pBI121-NTMADS1 with sense orientation was constructed. Transgenic A. thaliana and N. tabacum with pBI121-CaMV35S-sense NTMADS1 were generated via Agrobacterium tumefaciens-mediated flower-dipping and leaf disk transformation method. Ectopic expression of NTMADS1 in transgenic A. thaliana resulted early flowering, curly leaves, carpel-like stamen, obsolete or absent petals and flower-like stem leaf. Similarly, N. tabacum over-expressed NTMADS1 appeared shorted, dehiscent and deformed tubular corolla and absent or petal-like stamen. All of this indicated that NTMADS1 plays an essential role in the regulation and control of flower organ identity and flowering time.
     2. By means of RT-PCR and RACE method, a new gene named as NtMADS3 was isolated from the flower buds of N. tazetta var.chinensis. The sequence analysis showed that this cDNA is 980 bp in length with a 726 bp ORF encoding 241 amino acid. Phylogenetic tree analysis indicated that NtMADS3 is most similar to AGL6 of A. thaliana and was classified into E class function genes. The results of tissue-specific expression pattern revealed that the transcript of NtMADS3 was detectable not only in any whorl of flower but also in vegetative organs.
     pBI121-CaMV35S-sense NtMADS3 was transferred into A. thaliana and N. tabacum via Agrobacterium tumefaciens-mediated method. Ectopic expression of NtMADS3 in transgenic A. thaliana caused early flowering and curly leaves in several transgenic plants, but many transgenic plants had no change in phenotypes. Whereas, N. tabacum over-expressed NtMADS3 appeared shorted, dehiscent and deformed tubular corolla and absent or petal-like stamen, which is similar to the phenotypes of transgenic N. tabacum with NTMADS1gene. Above phenomenons indicated preliminarily that NtMADS3 perhanps involved the regulation of flowering time and flower organ identity.
     3. Two dehydrogenase genes, named as NTPDS1 and NTZDS1, were obtained from the alabastrums of N. tazetta var.chinensis by RT-PCR method. Sequence analysis showed that NTPDS1 is 1 719 bp in length with an ORF encoding 570 amino acid, and NTZDS1 is 1 899 bp in length with an ORF encoding 574 amino acid. Tissue-specific expression model revealed that the expression level of NTPDS1 and NTZDS1 was extremely high in flowers, especially in petals and corona. The transcript was detectable in leaves and roots as well, but barely exist in scale leaves. The plant expression vectors were constructed and two genes were transferred into A. thaliana and N. tabacum, antikanamycin plants were obtained.
     4. The trials of adventive bud regeneration directly and callus induction was conducted to select out the optimal explants and formula. The results revealed that double scale can produce 13~16 adventive buds per centimeter in MS medium added 10.0 mg/L 6-BA, 1.0 mg/ L NAA, 40 g/L sugar and 7.5 g/L agar. Scale, leaves, scape and different tissue of flower can be induced to produce callus in appropriate medium, but the filament with anther was the optimized explant. The experiment of antibiotic showed the optimized hygromycin concentration was 15~20 mg/L and the recommendated carbenicillin was 250~300 mg/L for callus from filament with anther.
引文
[1]陈心启,吴应祥.中国水仙考.植物分类学报, 1982,20(3): 371-377
    [2]陈心启,吴应祥.中国水仙续考—与卢履范同志商榷.武汉植物学研究,1991, 9(1):70-74
    [3]陈晓静,吕柳新.福建多花水仙资源.福建农学院学报. 2006, 26(1):14-17
    [4]陈林娇,缪颖,陈德海.中国水仙种质资源的遗传多样性分析,厦门大学学报(自然科学版), 2002, 41(6): 810-814
    [5]陈燕贤.拯救水仙品种‘百叶’.中国花卉园艺, 2005,(1) :33-33
    [6]陈燕贤,苏亚北.漳州水仙花新品种‘金三角’选育.花木盆景:花卉园艺, 2002,(11): 10-11
    [7]彭镇华,汪政科,孙振元.辐射转基因水仙花育种取得突破.中国花卉园艺. 2001, (7):30-31
    [8]施德勇.奇特的水仙花.花木盆景:花卉园艺. 2003, (12):28-28
    [9]吕柳新,陈晓静.水仙品种资源的育种基础研究: I.多花水仙若干品种类型.福建农学院学报, 1989,18(1): 31-36
    [10]吕柳新,欧静,陈晓静.水仙品种资源的育种基础研究:Ⅱ.多花水仙若干品种类型的染色体组型分析.福建农学院学报, 1989, 18(2)1-9
    [11]马文其.水仙雕刻造型技术.中国花卉盆景, 1997,(2): 16-16
    [12]马文其.别有情趣的微型水仙盆景.花木盆景:花卉园艺. 2000,(1): 37-37
    [13]马文其.水仙雕刻、养护与造型(二):水仙雕刻后的养护.园林. 2004, (12):34-34
    [14]牛耀辉,陈朝银,赵声兰等.凝集素及其抗HIV研究进展.云南化工, 2006, 33(6):59-63
    [15]舒晓燕,阮期平,侯大斌.植物凝集素的研究进展.现代中药研究与实践, 2006, 20(6):53-56
    [16]熊明山.水仙花球茎制成的药有助于治疗阿兹海默氏症.首都医药, 2001, (9):57-57
    [17] Hanks G R. Narcissus and daffodil: the genus Narcissus. London:CRC Press, 2002
    [18]朱祯,常团结.植物凝集素及其在抗虫植物基因工程中的应用.遗传, 2002, 24 (4):493-500
    [19] Ehret C, Maupetit P, Petrzilka M. New organoleptically important components from Narcissus absolute (Narcissus poeticus L.). Proceedings of the 11th international congress of essential oils, fragrances and flavours New Delhi, 1990
    [20]潘一山.白兰花、栀子花和水仙花香料成分的加工利用.福建热作科技, 1991, (4):34-35
    [21]峥烽.新的营销思路给漳州水仙花产业带来新的发展前景.花卉园艺. 2006, (4):54-55.
    [22]陈燕贤,柳银卿.漳州水仙花球:供应有缺口价格呈涨势.中国花卉园艺, 2007(15):24-24
    [23]庄伟建,林治良.中国水仙两个地方品种的核型和GiemsaC带的研究. 1999, 14(1): 51-57
    [24]王瑞,陈林姣,赵玉辉等.中国水仙的核型分析和小孢子发生中的细胞学研究.细胞生物学杂志, 2007(1):140-146
    [25]陈振光,林庆,刘群等.中国水仙花粉原生质体的分离与培养.福建农学院学报,中国水仙花粉原生质体的分离与培养, 1993, 22(2): 159-163
    [26]林锦辉.浅析漳州水仙花质量下降原因及若干应对的措施. 2002,(1): 29-31
    [27]洪尔彬,杨林杰.浅析漳州水仙花经济发展问题及其对策.中国西部科技. 2005, (7):8-9
    [28]罗达,许智宏.植物发育的分子机理,北京:科学出版社, 1997
    [29]赵惠恩,陈俊愉.花发育分子遗传学在花卉育种中应用的前景.北京林业大学学报, 2001.23(1): 81-83
    [30] Coen E S, Romero J M, Doyle S E.et.al. Floricaula: a homeotic gene required for flower development in Antirrhinum majus, Cell, 1990,63:1311-1322
    [31] Bradley D, R.O., Vincent C,Carpenter R,Coen E :. Inflorence commitment and architecture in Arabidopsis. Science, 1997(275):80-83.
    [32] Bradley D, Ratcliffe O, Vincent C. et.al. Inflorescence Commitment and Architecture in Arabidopsis, Science, 1997, 275 ( 5296): 80 - 83
    [33] Chen L, Cheng J C, Castle L. et al. EMF genes regulate Arabidopsis inflorescence development. 1997, JSTOR(9): 2011-2024
    [34] Sung Z R, Belachew A, Shunong B. et al. EMF, an Arabidopsis Gene Required for Vegetative Shoot Development. the American Association for the Advancement of Science. 1992,(258) :1645-1647.
    [35] Weigel D, Alvarez D, Smyth D R . et al. LFY controls floral meristem identity in Arabidopsis. Cell, 1992(69):843-859
    [36] Coen E S. Flower development.Cell Biology,1992,(4):929-933
    [37] Simon R, Igeno M I, Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature,1996, 384:59-62
    [38] Schultz E A and Haughn G W. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. 1991, JSTOR.3 (8): 771-781
    [39] Huala E and Sussex I M. LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. 1992, JSTOR.4 (8): 901-913
    [40] Irish V F and. Sussex I M. Function of the apetala1 gene during Arabidopsis floral development. 1990, JSTOR.2(8): 741-753
    [41] Mandel M A and Yanofsky M F. A gene triggering flower formation in Arabidopsis. 1995, (377): 522-524
    [42] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development, 1991,(353): 31-37
    [43] Colombo L, Franken J, Koetje E et al.. The petunia MADS box Gene FBP11 determines ovule identity. Plant Cell, 1995, 7:l 859-l868
    [44] Pelaz S, Ditta G S, Baumann E, et a1. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000(405):200-203
    [45] Honma T, Goto K. Complexes of MADS-box proteins are suficient to convert leaves into floral organs. Nature, 2001(409):525-529
    [46] Theissen G. Development of floral organ identity: Stories from the MADS house. Curr Opin. Plant Biol., 200l(4):75-85
    [47] Theissen G, Saedler H. Floral quartets, Nature, 200l, (409):469-47l
    [48]华志明.花发育的基因调控与花性状的改造.生物技术通报, 1998, (1):16-20
    [49]葛磊,谭克辉,种康等.水稻花发育基因调控的研究进展. 2001,科学通报, 46(9): 705-712
    [50] Petri César and Burgos Lorenzo. Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Research ,2005, 14(1):15-26
    [51] Zaccai, Modifying lisianthus traits by genetic engineering. In International Eucarpia Symposium, Section Ornamentals, ISHS, 2001,137-142
    [52]安利忻,刘荣维,陈章良等.花分生组织决定基因API转化矮牵牛的研究.植物学报, 2001, 34(1):63-66
    [53]邵寒霜,李继红,郑学勤等.拟南芥LFY cDNA的克隆及转化菊花的研究.植物学报, 1999, 41(3): 268-271
    [54]吕晋慧,张启翔.花发育调控基因的应用研究进展. 2004,北方园艺,(6):17-18.
    [55]王玉萍,刘庆昌,翟红.植物类胡萝卜素生物合成相关基因的表达调控及其在植物基因工程中的应用.分子植物育种, 2006, 4(1):103-l10
    [56]刘志祥,洪亚辉,莫爱华,等.观赏植物花色分子遗传学及基因工程进展.湖南农业大学学报, 2002, 28( 6):531-534
    [57]刘石泉,余庆波,李小军等.观赏植物花色基因工程的研究进展.贵州林业科技, 2004, 32(2):13-18
    [58]余迪求,李宝健.花色素苷生物合成的遗传和发育调控,植物生理学通讯, 1997, 33 (1):71-77
    [59]包满珠.植物花青素基因的克隆及应用,园艺学报, 1997, 24(3):279-284
    [60]傅荣昭,马江生,光诚,等.观赏植物色香形基因工程研究进展.园艺学报,1995, 22(4):381-385.
    [61]郑志亮.花卉作物的花色基因工程.福建农业科技,1996 (1):23-27
    [62] Vander Krol A R, Mol J N M, Stritje A R. An antisense chalone synthase gene in transgenetic plants inhibits flower pigmentation. Nature,1988, (333): 860-869
    [63] Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flower color, Plant Cell Physiol. 1998,(39):1119- 1126
    [64] Holton T A, Tanaka Y. Blue roses- A pigment of our imagination? 1994. p. 40-42
    [65]王关林,方宏筠.植物基因工程原理与技术.(第二版),北京:科学出版社, 2002
    [66] Meye r P, Heidmann I, Forkmann G. et al. A new petunia flower color generated by transformation of mutant with maize gene. Nature, 1990,( 330):677-678
    [67]王霜,侯学文,郭勇.谈谈转基因植物中生物合成途径的调控策略.植物生理学通讯, 1998, 34(6):458~461
    [68]朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用.植物生理与分子生物学学报, 2004, 30(6):609-618
    [69]黄彬城,季静,王罡等.植物类胡萝卜素的研究进展.天津农业科学, 2006, 12 ( 2 ): 13-17
    [70] Isaacson T, Ronen G,Zamir D. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production ofβ-carotene and xanthophylls in plants. Plant Cell, 2002,14(2):333-342
    [71] Park H, Kreunen S S, Cuttriss A J. et al. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis,prolamellar body formation and photomorphogenesis.Plant Cell, 200214(2):32l-332
    [72] Cunningham F X Jr, Gantt E. Genes and enzymes of carotenoid biosynthetic pathway in plants. Annu. Rev. Plant Physio.Plant Mol. Biol. 1998, (49):557-583
    [73] PeckerI, Gabbay R, Cunningham FX Jr. et al. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol. Biol. 1996, 30(4):807-8l9
    [74] Zhu C,Yamamura S,Nishihara M. et al. cDNAs for the synthesis of cyclic arotenoids in petals of Gentiana lutea and their regulation during flower development. Biochim Biophys Acta. 2003,1625(3):305-308
    [75]季静,三村山郎,西原昌宏等.通过转基因提高β-胡萝卜素生物合成量.中国生物化学与分子生物学报, 2004(20):440-444
    [76] Kumagai M H, Donson J, Della C G. et al. Cytoplasmic inhibition of carotenoid biosynthesis with viral-derived RNA. Proc Natl. Acad. Sci. USA,1995,(92):1679-1683
    [77]邹清成,庄晓英,卢钢,等.反义PSY基因植物表达载体的构建及其对中国水仙的转化,浙江林业科技, 2006,26(3):25-30
    [78] Rivera N D, Obon de C C, Rios R S, et al. The origin of cultivation and wild ancestors of daffodils (Narcissus subgenus Ajax) (Amaryllidaceae) from an analysis of early illustrations. . Scientia Horticulturae, 2003, 98(4): 307-330
    [79] Blanchard J W. Narcissus conspectus. Plantsman, 2004, 3(1):44-51
    [80] Ohki S, Tanaka A, Suzukawa U, et al. Narcissus tazetta var. chinensis: can DNA analysis reveal its origin? Acta-Horticulturae,, 2003, (620): 353-358
    [81]陈俊愉.中国花卉品种分类学.北京:中国农业出版社, 2001
    [82] Vasileva M Y. Origin of daffodil varieties and their classification. Nauchno Tekhnicheskii Byulleten,Vsesoyuznogo Ordena Lenina I Ordena Druzhby Nar. odov Nauchno Issledovatel'skogo Instituta Rastenievodstva,, 1991,(212): 87-92
    [83]赵莺莺.水仙属植物形态学、解剖学、孢粉学初步研究.南京农业大学硕士学位论文,2003, 1-3
    [84] Angela M, Baker, John D. et al. Evolution and maintenance of stigma-height dimorphism in Narcissus. II. Fitness comparisons between style morphs. Physiologia Plantarum, 2004, 121(2):313
    [85] Cesaro A C, Barrett S C, Maurice S.et al. An experimental evaluation of self-interference in Narcissus assoanus: functional and evolutionary implications, Evol Biol. 200417(6): 1367-1376
    [86] Barrett S C H, Harder L D. The evolution of polymorphic sexual systems in daffodils (Narcissus) New Phytologist. 2005,165(1): 45-53
    [87] Medrano M, Herrera C M, Barrett S C H.et al. Herkogamy and mating patterns in the self-compatible daffodil Narcissus longispathus. Annals of Botany, 2005,95(7):1105-1111
    [88] Darlington. Chromosome atlas of flowering plants. George Allen & Unwin, Ltd., London. 1955
    [89] Brandham P E. Chromosome numbers in Narcissus cultivars and their significance to the plant breeder. Plantsman, 1992,14(3):133-168
    [90] Medrano M, Herrera C M, Barrett S C H et al. On the hybrid origin of Narcissus biflorus(Amaryllidaceae): analysis of C-banding and rDNA structure. Caryologia , 2002, 55(2): 129-134
    [91] Tucci G F, Winfield M O, D’Amato G F et al. Genetic diversity in Narcissus poeticus L. and N. radiifloras Salisb. (Amaryllidaceae) in two different populations: AFLP and karyological studies. Caryologia, 2005, 57(4): 405-411
    [92]吴菁华,吕柳新,张志忠.用RAPD标记研究多花水仙若干品种类型的亲缘关系.中国农学通报, 2005,21(8):299-301
    [93]陈林姣,田惠桥,武剑.中国水仙与欧洲水仙品种RAPD指纹的研究.热带亚热带植物学报, 2003, 11(2):177-180
    [94]陈晓静.福建3个产地水仙的核型分析.植物资源与环境学报, 2004,13(4):28-31
    [95]王月霞,王苏玲,刘大钧.微型水仙染色体C-带带型研究.园艺学报, 1996, 23(3):274-276
    [96] Carder J H , Grant C L. Breeding for resistance to basal rot in Narcissus. Acta-Horticulturae, 2002, (570): 255-262
    [97] Fry B M. Breeding narcissus for cut flower production// Rees A R, vanderborg H H. Acta Horticulturae 47: II International Symposium on Flower Bulbs. Littlehampton -Skegness, U K:ISHS, 1975:173-178
    [98]高健. 60Co-射线辐照中国水仙的诱变效应和机理研究.中国林业科学研究院博士学位论文, 2000, 1-4
    [99]高健,彭镇华. 60Coγ射线辐射中国水仙的细胞学诱变效应.激光生物学报, 2006 (2):179-183
    [100]汪政科.水仙转化系统的建立与Agamous基因的克隆及油菜素内酯应答基因鉴定与分析.中国林业科学研究院博士学位论文, 2000, 29-40
    [101]黄胤怡,沈明山,陈亮,等.中国水仙查尔酮合酶cDNA的克隆及序列分析(简报).实验生物学报, 2002, 35(3):195-197
    [102]曾荣华.中国水仙转IPT基因的研究.厦门大学硕士学位论文, 2001, 32-34
    [103]庄晓英,卢钢.,汪志平等.中国水仙遗传转化及离体诱变体系的研究.核农学报, 2006, 2(1):32-35
    [104]叶祖云.根癌农杆菌介导F-3',5'H酶基因转化中国水仙的初步研究.云南大学硕士学位论文, 2001, 26-29
    [105] Hanks. Variation in the growth and development of narcissus in relation to meteorological and related factors. Journal of Horticultural Science, 1996,71(4): 517-532
    [106] Wurr D C E, Hanks G R and Fellows J R. Fellows J R The effects of bulb storage temperature,planting date and soil temperature on the growth and development of Narcissus bulb units. Journal of Horticultural Science and Biotechnology, 2001, 76(4): 465-473
    [107] Cohen V, Borochov A and Philosoph H S. Inducing freezing tolerance in Narcissus bulbs by growth retardants. Acta Horticulturae., 1997, (430): 459-464
    [108]冯立强,游克仁.平潭水仙种球处理与商品球贮藏技术.福建农业科技, 1998, (5):42-43
    [109]胥晓,邓淑芳,陈瑶.几种生长延缓剂对中国水仙矮化效应研究.西华师范大学学报, 2003,(4): 406-410
    [110]季云美,任旭琴.植物生长调节剂在水仙上的应用.淮阴工学院学报, 2004, 13(5):86-88
    [111]李越云,黄朝阳.关于提高漳州水仙花催花技术的几点意见.福建热作科技, 1996, 21(1):31-32
    [112]谢幼华,翁金科.中国水仙加温增花效果初探.福建果树, 1990, (1):14-17
    [113]宋建军,龙岳林,李莹.薰烟和持续高温处理对中国水仙生长发育的影响.河南科技大学学报(农学版). 2003, 23(3):21-23
    [114]艾金才.水仙“哑花”及其预防措施.花卉园艺. 2002,(11)11-11
    [115] Ichimura K, Goto R. Extension of vase life of cut Narcissus tazetta var. chinensis flowers by combined treatment with STS and gibberellin A3. Journal of the Japanese Society for Horticultural Science, 2002, 71(2): 226-230
    [116] Parmil S, Mandeep K, Jagmeet K.et al . Aspects of physiological regulation of flower senescence of Gladiolus and Narcissus , Crop Res. 2004, 28(1/3): 142-145
    [117] Jowkar M M, Mohsen K. Effects of harvesting stages, 8-hydroxyquinoline citrate, silver thiosulphate, silver nitrate on the postharvest life of cut Narcissus tazetta. Acta Horticulturae, 2005 (669): 405-409
    [118] Hunter D A, Steele B C, Reid M S. Identification of genes associated with perianth senescence in Daffodil (Narcissus pseudonarcissus L. 'Dutch Master').Plant Science, 2002,163(1): 13-21
    [119] David S, Letham, Noel G. et al. Cytokinin metabolism in Narcissus bulbs: chilling promotes acetylation of zeatin riboside Functional Plant Biology 2003,30(5): 525-532
    [120]李招文,唐道一.水仙组织培养的研究.园艺学报, 1982, 9(4):65-68
    [121] Sochacki D, Orlikowska T. Factors influencing micropropagation of Narcissus. Acta Horticulturae, 2005, 673(2): 669-673
    [122] Staikidou I, Selby C, Harvey B M R. Stimulation by auxin and sucrose of bulbil formation in vitro by single leaf cultures of Narcissus. New Phytologist, 1994, 127(2): 315-320
    [123] Santos J, Santos I, Salema R. In vitro production of bulbs of Narcissus bulbocodium flowering in the first season of growth. Scientia-Horticulturae, 1998, 76(3/4): 205-217
    [124] Staikidou I, Watson S, Harvey B M R. et al. .Narcissus bulblet formation in vitro: effects of carbohydrate type and osmolarity of the culture medium. Plant Cell, Tissue and Organ Culture, 2005, 80(3): 313-320
    [125] Riera R, Bastida J, Viladomat F.et al. Regeneration of Narcissus plants influenced by Dap. Acta-Horticulturae, 1997, (447): 179-183
    [126]陈振光.中国水仙组织培养快速繁殖研究初报.福建农学院学报, 1982 , (1):9-13
    [127] Sage D, Hammatt N. Somatic embryogenesis and transformation in Narcissus pseudonarcissus cultivars. Acta Horticulturae, 2002, (570): 247-249
    [128]顾亨森,高翠华.植物激素对水仙鳞茎切块愈伤组织的诱导,保持和器官分化的影响,园艺学报. 1987, 14(1): 53-56
    [129]余望.植物激素对水仙(Narcissus tazetta var.chinensis)愈伤组织形成及分化的影响.福州师专学报﹕自然科学版, 2001, 21(5):55-57
    [130]蔡文燕.根癌农杆菌介导人乳铁蛋白基因转化中国水仙的初步研究.福建师范大学硕士论文, 2005, 30-31
    [131] Squires W M, Langton F A, Fenlon J S. Factors influencing the transplantation success of micropropagated Narcissus bulbils. Journal of Horticultural-Science, 1991, 66(6): 661-671
    [132] Miglino R, Jodlowska A, Schadewijk A R. First report of Narcissus mosaic virus infecting Crocus spp. cultivars in the Netherlands. Plant Disease, 2005,89(3): 342
    [133] Asjes C J. Control situation of virus diseases in Narcissus in the Netherlands. Acta Horticulturae, 1996, (432):166-174
    [134] Clark V R, Guy P L. . Five viruses in Narcissus spp. from New Zealand. Australasian Plant Pathology, 2000, 29(4): 227-229
    [135] Davies J M L, Dickens J S W, Inman A J.et al . Fungi associated with, and possible causes of, neck rot of narcissus. Journal of Horticultural Science and Biotechnology, 1998, 73(2): 245-250
    [136] Hanks G R, Carder,J. Management of basal rot -the narcissus disease. Pesticide-Outlook, 2003,14(6): 260-264
    [137] Hanks G R, Linfield C A. Pest and disease control in UK Narcissus growing: Some aspects of recent research, ISHS. 1996,611-618
    [138] Hanks. Prevention of hot-water treatment damage in narcissus bulbs by pre-warming. Journal of Horticultural Science, 1995, 70(2): 343-355
    [139] Tompsett, A., Narcissus tazetta: Borondeficiency as a cause of flower distortion., ISHS. 2000,141-144
    [140] Linfield. Fungal and nematode pathogens of Narcissus: current progress and future prospects for disease control// Martin T. Seed treatment: progress and prospects.Farnham, UK: BCPC ,247-256. 1994.
    [141] Burkhardt P K, Beyer P, Wünn J,et al. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J., 1997, 11(5): 1071-1078
    [142] Alvarez-Buylla E R, Pelaz S, Liljegren S J,et al. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. 2000, (97): 5328-5333
    [143]崔永兰,张露,黄敏仁.植物MADS盒基因研究进展.中国生物工程杂志, 2003, 23(9):51-55
    [144]李贵生,孟征,孔宏智等. ABC模型与花进化研究, 2003, 48 (23):2415-2420
    [145] Rounsley S D, Ditta G S, Yanofsky M F. Diverse roles for MADS- box genes in Arabidopsis development., American Society of Plant Biologists. 1995,7(8): 1259
    [146]段远霖,刘华清.植物MADS-box基因的研究进展.福建农林大学学报:自然科学版. 2003, 2(1):104-109
    [147] Thomas J, Leslie S, Elliot M. Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers. The Plant Journal, 1997,11(4):825-839
    [148] Li Q Z., L.X.G., Sun J Q and Zhang X S. Isolation and expression of an AGMOUSE homolog in the flower of cucumber(Cucumis astivas L.).Developmental and reproductive biology, 9(2):69-76 2000.
    [149]彭书明,唐琳,叶杨等.苦瓜BAG基因组织特异性表达研究.园艺学报, 2006, 33 (5): 1007-1010
    [150]樊金会,李文卿,董秀春等.风信子AGL6同源基因在拟南芥中异位表达引起提早开花和器官同源转化.中国科学C辑:生命科学, 2007,37 (4) : 466-478
    [151] Tetty C S, Herti S, Djoko S. et al. Isolatioan and characterization of an AGMOUS homologue from cocoa.Plant Sience, 2006(170):968-975
    [152] Irish V F, Litt A. Flower development and evolution:gene duplication,diversification andredeployment.Curr. Opin. Genet. Dev. 2005,(15):454-460
    [153] Kotilainen M, Elomaa P, Uimari A. et al. An AGL2-like MADS Box Gene, Participates in the C Function during Stamen Development in Gerbera hybrida. Am Soc Plant Biol. 2000, (10):1893
    [154] Uimari A, Kotilainen M, Elomaa P. et al .Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. National Acad Sciences. 2004, 101(44):15817
    [155] Ma H, Yanofsky M F, Meyerowitz E M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and tran-scription factor genes. Genes Dev, 1991, (5): 484-495
    [156] Mena M, Mandel M A, Lerner D R, et al. A characterization of the MADS-box gene family in maize. Plant J. 1995, (8): 845-854
    [157] Angenent. Molecular control of ovule development.Trends Plant Sci. 1996. (1){228-232
    [158] Flanagan. Spatially and temporally regulated expression of the MADS--box gene AGL2 in wild--type and mutant Arabidopsis flowers , Plant Mol Biol,1994,(26):581-595
    [159] Savidge B,Rounsley S D, Yanofsky M F. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell.1995,(7):721-733
    [160] Mandel M A,Yanofsky M F. The Arabdopsis AGL9 MADS-box gene is expressed in young flower primordial. Sex Plant Reprod.1998,(11):22-28
    [161] Gregis V, S.A., Colombo L,et al. AGL24,Short vegetative phase and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 2006,(18):1373-1382
    [162] Michaels S D,Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering.Plant Cell,, 1999,(11):949-956
    [163] Sheldon C C, Rouse D T, Finnegan E J.et al. The molecular basis of vernalization:The central role of FLOWERING LOCUS C (FLC).Proc. Natl. Acad. Sci. USA ,2000, (97):3753-3758
    [164] Onouchi H,Igeno M I,Périlleux C.et al. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes.Plant Cell, 2000,(12):885-900
    [165] Ferrario S,Immink R G,Shchennikova A.et al. The MADS box gene FBP2 is required for SEPALLATA function in petunia.Plant Cell, 2003,(15):914-925
    [166] Bowman J L,Alvarez J,Weigel D.et al. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes.Development, 1993,(119):721-743
    [167] Liljegren S J,Gustafson-Brown C. et al.Interactions among APETALA1,LEAFY,and TERMINAL FLOWER1 specify meristem fate.Plant Cell, 1999,(11):1007-1018
    [168] Schledz M, al-Babili S, von-Lintig J. et a1. Phytoene synthase from Narcissus pseudonarcissus: Functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering, Plant J., 1996 ,(10): 781-792
    [169]徐昌杰,张上隆.植物类胡萝卜素的生物合成及其调控.植物生理学通讯, 2000, 36(1):64-70
    [170] Zhu C, Yamamura S, Koiwa H. et.al. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea [J]. Plant Mol. Biol. 2002,8(3):277-285
    [171] Kato M, Lkoma Y, Matsumoto H. et.al.Accumulation of carotenoids and expression of carotenoid biosynthetic genes duing maturation in citrus fruit,Plant Physiol. 2004, (134):824-837
    [172] Sandmann, G, Mitchell G. In vitro inhibition studies of phytoene desaturase by bleaching ketomorpholine derivatives. 2001,49(1):138-141
    [173] Simkin A J, Laboure A M. Kuntz M. et.al. Comparison of carotenoid content, gene expression and enzyme levels in tomato leaves,Z.Naturforsch, 2003,58(5.6):371-38.
    [174] Kunst, L.,Klenz, J. E.,Martinez-Zapater, J. et.al. AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana., JSTOR. 1989 ,11(1) 95-101
    [175] Mizukami Y.,Ma, H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. 1992,71(1):119-131
    [176] Rutledge R, Regan S, Nicolas O. et.al.Characterization of an AGMOUS homologue from the conifer black apruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant, 1998,(15):626-634
    [177] Benedito V A, Visser P B, Van tuyl J M . et.al. Ectopic expression of LLAG1,an AGMOUS homologue from lily(Lilium longiflorum Thunb.) cause floral homeotic modifications in Arabidopsis. Experimental Botany, 2004,(55):1391-1399
    [178] Kitahara K H, Aida R, Matsunmoto S. Ectopic expression of the rose AGMOUS-like MADS-box genes‘MASAKO C1 and D1’causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia. Plant Science, 2004,(166):1245-1252
    [179] Lemmetyinen J, Hassinen M, Elo A. et.al. Functional characterization of SEPALLATA3 and AGMOUS orthologues in silver birch. Physiology Plant, 2004,(121):149-162
    [180] Theissen G.,Di Rosa A.,Kanno A.et a1. A short history of MADS box genes in plants, Plant Mol.Biol. 2000,(42):115-l49
    [181]田波,陈永燕.,严远鑫等.一个竹类植物MADS盒基因的克隆及其在拟南芥中的表达. 2005,50(2):145-151
    [182] Hsu H F, Huang C H, Chou L T.et al. Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol, 2003,(44): 783-794
    [183] Tzeng T Y., H.C.C., Chi P J.,et al. Two lily SEPALLATA-like genes cause difierent efects on floral formation and floral transition in Arabidopsis.Plant Physiot. 2003,(133):1091-l101
    [184] Becker A.,Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants.Mol. Phylogenet Evol. 2003,29(3):464-489
    [185] Angenent G C, Busscher M, Franker J. et al. Differential expression of two MADS box genes in wild type and mutant petunia flowers. Plant Cell,, 1992,(4):983-993
    [186] Angenent G C, Franken J, Busscher M. et al. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. 1994,5(1):33-44
    [187] Silvia Ferrarioa, Richard G H, Imminka. et al.The MADS Box Gene FBP2 Is Required for SEPALLATA Function in Petunia. The Plant Cell, 2003, (15): 914-925
    [188]于静娟,国凤利,赵德刚等.矮牵牛花同源异型基因fbp2的克隆及其对烟草花形态的影响. 1999, 41(1):45-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700