用户名: 密码: 验证码:
西南桦、思茅松和北美红杉幼苗对N、P养分的适应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N和P是树木的必需营养元素,树木体内缺乏势必导致生长和发育受阻。在自然条件下,树木体内N、P主要通过根系获得,自然环境中这两种养分的供应状态极大地影响树木的生长。然而,在N和P供应不适宜时,树木能够采取相应策略进行自我调整,以适应环境胁迫,从而保证其生长和发育的正常进行。因此,研究树木在不同N和P供应条件下的适应机制对于提高树木的生产能力具有重要的理论意义。
     树木的生长、林分的生产力与土壤养分具有密切的关系。如何在土壤养分贫瘠的地区进行森林培育一直是森林培育学研究的重点。西南桦和思茅松是我国西南林区重要的工业用材树种,主要分布区的土壤为红壤、棕红壤或山地黄壤,其N和P营养缺乏。它们长期生长在该土壤上,对N和P缺乏具有一定的适应能力,而北美红杉是外来树种,对西南林区N和P缺乏的土壤条件的适应情况尚不清楚。如何更好地培育这三个树种、提高其木材生产能力、缓解目前我国木材供应紧张的局面具有重要的现实意义。
     在本论文研究中,采取了温室栽培试验和野外栽培试验相结合的方法。在温室栽培试验中,以一年生苗为研究对象,以砂为栽培基质,分别设置8个不同的N、P供应水平(0%、25%、50%、75%、100%、150%、200%和300%,以Hoagland溶液为100%,并作为对照)和5个不同的N素形态比例(NO_3~-/NH_4~+的比例分别为:100:0、75:25、50:50、25:75和0:100)。野外栽培试验中,在采伐迹地上种植一年生苗木,西南桦和思茅松的株行距为1.5×1.5m,北美红杉的为2×2m。取样测定各项指标。根据试验结果,得出以下结论:
     (1)树木幼苗所需营养元素N、P的供应受限制时,不能满足幼苗潜在生长对养分的需求,幼苗生长会延缓;N和P供应超过幼苗代谢和生理系统的应付能力时,也会对幼苗产生伤害。在适宜的N、P养分供应水平(100%供应水平)下,幼苗生长表现最好;N、P养分供应不足或过量时,幼苗生长较差。
     (2)N供应不足时,幼苗将更多的生物量分配到地下以扩大根系的生长;在N供应过量时,西南桦和北美红杉两树种减小地下部分碳水化合物的分配比例,而思茅松几乎不受影响。在低P供应时,幼苗增加生物量向地下部分的分配比例,供P过量可能引起N或其它元素的相对不足,从而导致生物量分配到根系的比例增加。在野外试验中,除西南桦的根系生物量与其P含量的关系之外,根、茎、叶生物量均与各自的N和P含量有明显的正相关关系。
     (3)在低N供应条件下,幼苗细根的特定根长增加尤为明显。N供应过量时,细根的特定根长减小。低P供应引起细根的特定根长增加,从而有利于幼苗吸收更多的养分和水分,保证生长和发育的正常进行。低P供应使西南桦和北美红杉幼苗的叶面积减少,而供P过量也会使西南桦叶面积变小。
     (4)低N供应时,N分配到根系的比例增加。随着供N水平的提高,根系P的浓度降低,K浓度有减少的趋势,Ca浓度增加;叶中P浓度则增加,叶中K浓度减少。过量供N使叶中Mg、Zn和Mn的浓度降低,但这些元素在茎中变化不明显。低P供应
    
    条件下,随供P水平的提高,根系P浓度增加,P在根系中的分配比例降低;叶中P的
    浓度增加,分配比例也增加。随供P水平的提高,根系N浓度下降,叶中N浓度则增
    加,但P过量后,反而降低。P供应不足时,根系K浓度有下降的趋势。
     〔5)西南烨、思茅松和北美红杉根际pH与非根际pH相比二有所下降,根际水解N
    和有效P的含量均得到了提高,尤其是根际有效P提高的更明显。根际N和P养分的有
    效性可以促进根系和叶片内部养分的增加。
     (6)低N供应引起幼苗叶中叶绿素含量降低,同时光合速率下降。随N水平的增加,
    叶绿素含量增高,增加了潜在的光合能力。当超过正常供N水平后,光合速率并不随供
    N水平提高而呈现相应的增加趋势。3个树种叶绿素含量与光合速率在低P供应时均降
    低,在高P供应时,也出现叶绿素含量和光合速率下降趋势。
     (7)不同 NO。-/NH。”比例处理试验表明,西南烨和北美红杉幼苗表现出了喜 NH。”的
    特性,而思茅松幼苗则表现出喜NO。-的特性。但是西南烨和北美红杉在完全供NO。”处理
    下仍能较好的生长。西南样和思茅松幼苗对NH4”的吸收会减少K、Ca、Zn和Mn的吸
    收,而增加 Mg和 Fe的吸收,而北美红杉幼苗对i”的吸收会减少 K、Ca、Mn和 Mg
    的吸收,而增加 Zn和 Fe的吸收。西南棋和北美红杉叶中叶绿素含量均在NO。WH。”比
    例为so:SO(%)时最低,以NH。”为主要N源时明显增加。思茅松幼苗叶绿素含量和光
    合速率在NO;-/NH。”比例为50:50(o)时最高,在完全供NO。“处理的要高于完全供NH。”
    的处理。幼苗吸收NO/与Nfu“引起了其根际pH的变化存在差异。完全供NO。“处理的3
    个树种根际pH均得到上升,而完全供M山”处理的根际pH均下降。但完全供NO。’处理
    下根际pH上升的幅度小于完全供N山”处理的下降幅度。
     总之,在低N、P供应时,树木以减少地上部的生长,扩大地下部的生长来获取受
    限制的N、P资源。因此,在云南山地红壤或山地黄壤严重缺N、缺P条件下进行森林
    培育的实践中,为使人工林能够得到迅速健康的成长,苗圃育苗?
Nitrogen and phosphorus are the very important elements that are vital to plants. In plants, 'many chemicals that contain nitrogen and/or phosphorus, such as proteins, phospholipids and nucleotides, play very important roles in physiology and biochemical functions. The deficiency of nitrogen and phosphorus in plants must induce the impedance of growth and development, and reduce plant products. Plants get nitrogen and phosphorus from soils by the activities of roots under natural conditions. Therefore, the environmental supplies of nitrogen and phosphorus to plants affect plant products to a great extent. However, plants adapt to environmental stresses by many mechanisms, ensuring their normal growth and development. Studies on the adaptive mechanisms to nutrition environment are of significance to plant physiology and practice.
    Tree growth and stand productivity are greatly related to nutrient availability in soils. This has been very important for silviculture to cultivate trees under the deficiency of nitrogen and phosphorus. Betula alnoides and Pinus kesiya are two kinds of important woody species for industry in southwestern China. At present, the soils in the distribution regions of B. alnoides and P. kesiya are red soil, brown soil and yellow mountain soil. Nitrogen and phosphorus is deficient in these soils. The two species have been adaptive to the deficiency of nitrogen and phosphorus because of their long habit. Sequoia sempervirens, coming from USA, is not native to southwestern China. Its adaptation to deficiency of nitrogen and phosphorus in soils of southwestern China is still unclear. It is very important to cultivate the three species in order to improve their productivity and to resolve the current crisis of short supply of wood in China.
    In this present dissertation, experiments were carried out in greenhouse and in field. In greenhouse, one-year-old seedlings were potted in sand. The nutrient solution was prepared as Hoagland receipt. The concentration gradients were designed as follow: 0%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 100% as control. Five different ratios of NO3-/NH4+ were 100:0, 75:25, 50:50, 25:75, and 0:100. In field experiments, experimental materials were one-year-old seedlings planted in harvest areas: 1.5X1.5 m for Betula alnoides and Pinus kesiya, and 2 X 2 m for S. sempervirens. Then all indexes were determined from sample. The results suggested:
    (1) When seedlings were supplied with deficient nitrogen and phosphorus, growth of seedlings was slow; When supply of nitrogen and phosphorus to seedlings was over the metabolic and physiological capacity, oversupply of nitrogen and phosphorus did harm to seedlings. According to the results of the experiments under different levels of nitrogen and phosphorus, when the seedlings of B .alnoides, P. kesiya, and S sempervirens were supplied with normal levels of nitrogen and phosphorus, they grew well; when they were oversupplied with nitrogen and phosphorus or supplied with less nitrogen and phosphorus, they grew
    
    
    slowly.
    (2) When the seedlings of the three species grew under the conditions of deficient nitrogen, partitioning of biomass to roots was more in order to increase root growth. Biomass partitioning to roots was less when the seedlings of B.alnoides and S sempervirens were oversupplied with nitrogen, but biomass partitioning of seedlings of P. kesiya hardly changed. Biomass partitioning to roots increased when the seedlings of the three species were supplied with less phosphorus. Oversupply of phosphorus caused relative deficiency of nitrogen, leading to increase of biomass partitioning to roots. In field experiments, there were positive relationships between biomass of roots, stems and leaves with their own contents of nitrogen and phosphorus, but there was an exception of biomass of B. alnoides roots.
    (3) When the seedlings of the three species were supplied with less nutrients, these seedlings changed below-ground and above-ground structures by regulating partitioning of photosynthates between them, and utilize
引文
1. Abbes C, Parent LE and Karam A. Effect of NH_4~+ : NO_3~-ratios on growth and nitrogen uptake by onions. Plant and Soil. 1995, 171: 289-296
    2. Abbort, L.K et al. The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Australian Journal Agriculture Research. 1982, 33: 389-408.
    3. Aber JD, Nadelhoffer KJ and Steudler P et al. Nitrogen saturation in northern forest ecosystems. Bioscience. 1989,39:378-386
    4. Abrahamson WG, Hal C. On the comparative allocation of biomass, energy and nutrient in plants. Ecology. 1982, 63(4) : 982-991
    5. Adama MB, Campbell RG, Allen HL and Davey CB. Root and foliar nutrient concentrations in loblolly pine: effects of season, site and fertilization. Forest Science. 1987, 33: 984-996
    6. Andrews, K., Sppent, JL, Raven, JA., and Eady PE. Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies. Plant, Cell and Environment. 1999, 22: 949-958
    7. Anghinoni I and Barber SA. Phosphorus influx and growth characteristics of corn roots as influenced by P supply. Agronomy Journal. 1980, 72: 685-688
    8. Atkinsin BK. Effect of phosphorus supply to soil on root growth of difference plants. Soil Science. 1989, 148(4) : 293-302
    9. Barker L, Kuhn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward JM, Frommer WB, 2000. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 12:1153-1164
    10. Bassirirad H, Griffin KL and Reynolds JF et al. Changes in root NH_4~+-N and NO_3~+-N absorption rates of loblolly and ponderosa pine in response to CO2 enrichment. Plant and Soil. 1997, 190: 1-9
    11. Bauer GA and Berntson GM. Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture. Tree Physiology. 2001, 21: 137-144
    12. Bhagwat AS. Ribulose 1,5-bisphosphate carboxylase/oxygenase: activation and regulation. In: Yunus M, Pathre U, Mohanty P. eds, Probing Photosynthesis: Mechanisms, Regulation and Adaptation. New York: Taylor and Francis. 2002, p196-225
    13. Bijsma RJ, Lambers H and Kooijman ALM. A dynamic whole-plant model of integrated metabolism of nitrogen and carbon 1. Comparative ecological implications of ammonium-nitrate interactions. Plant and Soil. 2000a, 220: 49-69
    14. Bijsma RJ, Lambers H. A dynamic whole-plant model of integrated metabolism of nitrogen and carbon 2. Balanced growth driven by C fluxes and regulated by signals from C and N substrate. Plant and Soil. 2000b, 220: 71-87
    15. Boukcim H, Pages L, Plassard C et al. Root system architecture and receptivity to mycorrhizal infection in seedlings of Cedrus atlantica as affected by nitrogen source and concentration. Tree Physiology. 2001, 21: 109-115
    16. Bowen GD. Tree roots and the use of soil nutrients. In nutrition of plantation forests, ed by Bowen D.
    
    Academic Press London, 1984, 147-177
    17. Boxman AW and Roelofs JGM. Some effects of nitrate versus ammonium nutrition on the nutrient fluxes in Pinus sylvestris seedling. Effects of mycorrhizal infection. Canada Journal Botany. 1988, 66: 1091-1097
    18. Brouwer R. Functional equilibrium: sense or nonsense? Neth. Journal Agriculture Science. 1983, 31: 335-348
    19. Brouwer R. Some aspects of the equilibrium between overground and underground plant parts. Biosciences. 1963,213:31-39
    20. Burkle L, Hibberd JM and Quick WP et al. The H+ sucrose cotransporter NtSUTl is essential for sugar export from tobacco leaves. Plant Physiology. 1998,118:59-68
    21. Cairns MA, Brown S and Helmer EH et al. Root biomass allocation in the world's upland forests. Oecologia. 1997, 111: 1-11
    22. Caldwell MM and RA Virginia Root systems. In: Pearcy RW, J Ehleringer, HA Mooney and PW. Rundel. Edited. Plant physiological ecology: field methods and instrumentation. New York: Chapman & Hall Ltd. 1989, 367-398
    23. Calviere I, Duru M. The effect of N and P fertilizer application and botanical composition on the leaf/stem ratio patterns in spring in Pyrenean meadows. Grass and Forage Science. 1999, 54(3) : 255-266
    24. Cannell MGR. Physiological basis of wood production: a review. Scan. J. For. Res. 1989, 4:459-490
    25. Carey EV, Callaway RM and Delucia EH. Increased photosynthesis offsets costs of allocation to sapwood in an arid environment. Ecology. 1998, 79(7) : 2281-2291
    26. Carlyle JC and Malcolm DC. Nitrogen availability beneath pure spruce and mixed larch+ spruce stands growing on a deep peat. Plant and soil. 1986, 93: 95-113
    27. Carswell FE, Grace J, Lucas ME, and Jarvis PG. Interaction of nutrient limitation and elevated CO2 concentration on carbon assimilation of a tropical tree seedling (Cedrela odorata). Tree Physiology. 2000, 20:977-986
    28. ChapinⅢ FS, AJ Bloom and CB Field et al. Plant responses to multiple environmental factors. Bioscience. 1987, 37(1) : 49-57
    29. Chapin Ⅲ FS. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics. 1980, 11: 223-260
    30. Cheng L, Fuchigami LH. Rubisco activation state decreases with increasing nitrogen content in apple leaves. Journal of Experimental Botany. 2000, 51: 1687-1694
    31. Clemensson LA and Persson H. Fine-root vitality in a Norway spruce stand subjected to various nutrient supplies. Plant and soil. 1995, 168-169: 167-172
    32. Cockburn W, Baldry CW, Walker DA. Some effects of inorganic phosphate on O2 evolution by isolated chloroplasts. Biochimica et Biophysica Acta. 1967, 143:614-624
    33. Coleman MD, Dickson RE, Isebrands JG. Growth and physiology of aspen supplied with different fertilizer addition rates. Physiologia Plantarum. 1998, 103(4) : 513-526
    34. Constable JVH, Bassirirad H and Lussenhop J et al. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Tree Physiology. 2001, 21:
    
    83-91
    35. Coomes DA, Grubb PJ. Responses of juvenile trees to above and belowground competition in nutrient-starved Amazonian rain forest. Ecology, 1998, 79(3) : 768-782
    36. Curl EA and Truelove B. The rhizosphere. Springer-Verlag. Berlin. 1986
    37. Dai N, Schaffer A and Petreikov M et al. Plant Cell. 1999, 11:1253-1266
    38. David ER, Donald R, ZAK and Kurt S. Pregitzer et al. Kinetics of nitrogen uptake by Populus tremuloides in relation to atmospheric CO2 and soil nitrogen availability. Tree Physiology. 2000, 20: 265-270
    39. Deane Drummond CE. Regulation of nitrate uptake into Chara corallina cell via NH_4~+-stimulation of NO_3~-efflux. Plant Cell and Environment. 1985, 8: 105-110
    40. Dinkelaker B, Rombled V and Marshner H. Citic acid excretion and precipition calcium citrate in the rhizophere of while lupin (wpinunus albus). Plant Cell and Environment. 1989, 12: 285-292.
    41. Eissenstat DM and Yanai RD. The ecology of root lifespan. Advanced Ecology Research. 1997, 27: 1-60
    42. Ericsson T and Ingestad T. Nutrition and growth of birch seedlings at varied relative phosphorus addition rates. Physiology Plant. 1988, 72: 227-235
    43. Ericsson T. Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant and soil. 1995, 168-169:205-214
    44. Evans J.R. Photosynthetic acclimation and nitrogen partitioning within a lucrne canopy. I . Canopy characteristics. Australian Journal of Plant Physiology. 1993a, 20: 55-67
    45. Evans J.R. Photosynthetic acclimation and nitrogen partitioning within a lucrne canopy.Ⅱ .Stability through time and comparison with a theoretical optimum. Australian Journal of Plant Physiology. 1993b, 20: 69-82
    46. Evans JR. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiology, 1983, 72:297-302
    47. Evans JR. Partitioning of nitrogen between and within leaves grown under different irradiations. Australian Journal of Plant Physiology. 1989, 16: 533-548
    48. Evans JR. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia. 1989, 78: 9-19
    49. Evans JR. The relationship between carbon dioxide limited photosynthetic rate and ribulose 1,5-bisphosphate carboxylase content in two nuclear cytoplasm substitution lines of wheat, and the co-ordination of ribulose bisphosphate carboxylation and electron transport capacities. Planta. 1986, 167: 351-358
    50. Fabiao A, Madeira E and Steen E et al. Development of root biomass in an Eucalyptus globules plantation under different water and nutrient regimes. Plant and Soil. 1995, 168-169: 215-223
    51. Finlay RD, Ek H and Odham G et al. Uptake, translocation, and assimilation of nitrogen from 15N-labelled ammonium and nitrate sources by intact ectomycorrhizal system of Fagus sylvatica infected with Paxillus involutes. New Phytolist. 1989, 113: 47-55
    52. Fitter AH. Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson DJ, Read and MB Usher edited. Ecological interactions in soil: Plants, microbes and animals. Oxford: Blakwell Scientific Press. 1985, 87-106
    53. Flaig H and Mohr H. Assimilation of nitrate and ammonium by the Scots pine (Pinus sylvestris) seedling
    
    under conditions of high nitrogen supply. Physiologia Plantarum. 1992, 84: 568-576
    54. Fliege R, flugge U-I, Werdan K et al. Specific transport of inorganic phosphate, 3-PGA and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta, 1978,502:232-247
    55. Fox TR. Rhizosphere phosphatese activity and phosphatase hydrdyzable organic phosphorus in two forested spodosols. Soil Biol. Biochemistry. 1992, 24(6) : 579-583.
    56. Fredeen AL, Rao IM, Terry N. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiology. 1989, 89: 225-230
    57. Gahoonia TS. Influence of root-induced pH on the solubility of soil aluminum in the rhizosphere. Plant and Soil. 1993, 149:289-291
    58. Gardener WK, Barber DA and Parely DG. Plant and Soil. 1983, 70: 107-124.
    59. Gillespie AR, Pope PE. Rhizosphere acidification increases phosphorus recovery of blank locust: Ⅱ. Model predictions and measured recovery. Soil Science. Society American Journal. 1990,54: 538-541.
    60. Gloser V, and Gloser J. Nitrogen and base cation uptake in seedlings of Acer pseudoplatanus and Calamagrostis villosa exposed to an acidified environment. Plant and Soil. 2000, 226: 71-77
    61. Grime JP, BD Campbell, JML Mackey et al. Root plasticity, nitrogen capture and competitive ability. In: Atkinson, A. ed. Plant root growth: an ecological perspective. Oxford: Blackvvell Scientific Press. 1991, 381-397
    62. Grime JP. The role of plasticity in exploiting environmental heterogeneity. In: Caldwell MM & RW Pearcy edited. Exploitation of environmental heterogeneity by plant: ecophysiological process above and below ground. San Diego: Academic Press. 1994, 1-19
    63. Grinsted MM et al. Plant induced changes in the rhizosphere of rape seedlings. I. pH change in the increase in P concentration in the soil solution. New phytolist. 1982, 91: 19-29
    64. Hajabbasi MA and Shumacher TE. Phosphorus effects on root growth and development in two maize genotypes. Plant and Soil. 1994, 158: 39-46
    65. Hall DO, Rao KK et al. Photosynthesis. 4th ed. Edward Arnold Press Ltd. 1988
    66. Hanson GC, Groffman PM and Gold AJ. Symptoms of nitrogen saturation in a wild riparian wetland. Ecology Application. 1994,4: 750-756
    67. Hausler RE, Schlieben NH, Flugge U-I. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.). Ⅱ. Assessment of control coefficients of the triose phosphate/ phosphate translocator. Planta, 2000, 210: 383-390
    68. Hausler RE, Schlieben NH, Nicolay P et al. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.). I. Comparative physiological analysis of tobacco plants with antisense repression and overexpression of the triose phosphate/phosphate translocator. Planta, 2000, 210: 371-382
    69. Hawkins BJ, Henry G and Kiiskila SBR. Biomass and nutrient allocation in Douglas fir and amabilis fir seedlings: influence of growth rate and nutrition. Tree Physiology. 1998, 18: 803-810
    70. Heineke D, Stitt M, Heldt HW. Effects of inorganic phosphate on the light dependent thylakoid energization
    
    of intact spinach chloroplasts. Plant Physiology. 1989, 91: 221-226
    71. Hendrick RL and Pregitzer KS. Patterns of fine root mortality in two sugar maple forests. Nature. 1993a, 361:59-61
    72. Hendrick RL and Pregitzer KS. The dynamic of fine root length, biomass and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research. 1993b, 23: 2507-2520
    73. Herold A. Regulation of photosynthesis by sink activity-The missing link. New Phytolist. 1980, 86: 131-144
    74. Hoffland E, Nelemans JA, Findenegg GR. Origin of organic acids exuded by roots of phosphorus stressed rape(Brassica nupus) plants. In: Plant Nutrition-Physiology and Application (Ed. by ML van Beusichem). Dordrecht, The Netherlands: Kluwer Academic Publishers. 1990, 179-183
    75. Hogberg P, Hogbom L and Schinkei H. Nitrogen related root variables of trees along an N deposition gradient in Europe. Tree Physiology. 1998, 18: 823-828
    76. Hookins WG. Introduction to plant physiology. 2nd. John Wiley and Sons Inc. 1999
    77. Huston MA and TM Smith. Plant succession: life history and competition. American Naturalist. 1987, 130(2) : 168-198
    78. Ibrahim L, Proe MF, Cameron AD. Interactive effects of nitrogen and water availabilities on gas exchange and whole-plant carbon allocation in popular. Tree Physiology. 1998, 18: 481-487
    79. Ibrahim L, Proe MF, Cameron AD. Main effects of nitrogen supply and drought stress upon whole plant carbon allocation in poplar. Canadian Journal of Forest Research. 1997, 27(9) : 1413-1419
    80. Ingestad T and Agren Goran I. Plant nutrition and growth: Basic principles. Plant and soil. 1995, 168-169:15-20
    81. Ingestad T. Mineral nutrient requirements of Pinus silvestris and Picea abies seedlings. Physiologia Plantarum. 1979, 45: 373-380
    82. James E and Box JR. Rhizosphere dynamics. Westview Press. Boulder. Colo. 1990
    83. Jang JC, Leon P, Zhou L, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell. 1997, 9: 5-19
    84. Jones HE, and Dighton J. The use of nutrient bioassays to assess the response of Eucalypus grandis Hill ex Maiden to fertilizer application. 2. A field experiment. Canada Journal of Forest Research. 1993, 23: 7-13
    85. Jones HE, Hogberg P and Ohlsson H. Nutritional assessment of a forest fertilization experiment in northern Sweden by root bioassays. Forest Ecology and Management. 1994, 64: 59-69
    86. Jones HE, Quarmby C and Harrison AF. A root bioassay test for nitrogen deficiency in forest trees. Forest Ecology and Management. 1991, 42: 267-282
    87. Keltjens WG and Van Ulden PSR. Effects of Al on nitrogen (NH_4~+ and NO_3~-) uptake, nitrate reductase activity and proton release in two sorghum cultivars differing in Al tolerance. Plant and Soil. 1987, 104: 227-234
    88. Knoepp JD, Turner DP and Tingey DT. Effects of ammonium and nitrate on nutrient uptake and activity of nitrogen assimilating enzymes in western hemlock. Forest Ecology and Management. 1993, 59 (3-4) : 179-191
    89. Knop C, Voitsekhovskaja O, Lohaus G. Sucrose transporters in two members of the scrophulariaceae with
    
    different types of transport sugar. Planta. 2001, 213: 80-91
    90. Kozlowski TT and Pallardy SG. Physiology of woody plants. New York: Academic Press. 1997
    91. Krajina VJ, Madoc-Jones S, Melor G. Ammonium and nitrate in the nitrogen economy of some conifers growing in Douglas-fir communities of the Pacific northwest of America. Soil Biol Biochem. 1973, 5: 143-147
    92. Krajina VJ. Ecology of forest trees in British Columbia. Ecol West North Am, 1969, 2: 1-146
    93. Kramer P J. Water Relations of Plants. Academic Press INC. 1983
    94. Kronzucher HJ, Siddiqi MH and Glass ADM. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature. 1997, 385: 59-61
    95. Kuhn C, Barker L, Burkle L et al. 1999. Update on sucrose transport in higher plants. Journal of Experiment Botany. 50: 935-953
    96. Kuhn C, Franceschi VR, Schulz A et al. 1997. Macromolecuolar trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science. 1997, 275: 1298-1300
    97. Laine J, Ourry A and Boucaud J. Shoot control of nitrate uptake rates by roots of Brassica napus L: Effects of localized nitrate supply. Planta. 1995, 196: 77-83
    98. Lalonde S, Boles E, and Hellmann H et al. The dual function of sugar carriers: transport and sugar sensing. Plant Cell, 1999, 11:707-726
    99. Lamberss H, Szaniawski RK, Devisser R. Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values, and their significance. Physiology Plant. 1983, 58: 557-563
    100. Larcher W. Plant ecophysiology. Verlag Eugen Ulmer Gmbh and Co, Germany. 1994
    101. Larigauderie A, Reynolds JF, Strain BR. Root response to CO2 enrichment and nitrogen supply in loblolly pine. Plant and Soil. 1994, 165(1) : 21-32
    102. Lauchli A,Bieleski RL著.张礼中,毛知耘译.植物的无机营养.北京:农业出版社.1992,104-106
    103. Lauer MJ, Pallardy SG, Blevins DG, Randall DD. Whole leaf carbon exchange characteristics of phosphate deficient soybean. Plant Physiology. 1989, 91: 848-854
    104. Lea RWC, Tierson DH, Bickelhaupt et al. Differential foliar response of northern hardwoods to fertilization. Plant and soil. 1980, 54: 419-439
    105. Lynch JM. The rhizosphere. John Wiley. Chiehester. 1990
    106. Mackie Davvson LA, Millard P, Proe MF. The effect of nitrogen supply on root growth and development in sycamore and Sitka spruce trees. Forestry. 1995, 68(2) : 107-114
    107. Mackie Dawson LA, Pratt SM and Millard P. Root growth and nitrogen uptake in sycamore (Acer pseudoplantanus L.) seedlings in relation to nitrogen supply. Plant and Soil. 1994, 158: 233-238
    108. Mackown CT, Jackson WA and Volk RJ. Restricted nitrate influx and reduction in corn seedlings exposed to ammonium. Plant Physiology. 1982, 69: 353-359
    109. Maghimi A, Lewis DG and Oades JM. Release of phosphate from calcium phosphates by rhizosphere products. Soil Biology and Biochemistry. 1978, 10: 277-281
    110. Maillard P, Guehl JM, Muller JF and Gross P. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed C and N between shoot and roots pedunculate oak seedlings (Quercus
    
    robur). Tree Physiology. 2001, 21: 163-172
    111. Majdi H and Persson H. Effects of ammonium sulphate application on the chemistry of bulk soil rhizosphere, fine root and fine-root distribution in a Picea abies (L.) Karst Stand. Plant and soil. 1995, 168-169: 151-160
    112. Majdi H and Rosengren Brink. Effects of ammonium sulphate application on the rhizosphere, fine root and needle chemistry in a Picea abies (L.) Karst. Stand. Pland and soil. 1994; 162: 71-80
    113. Makino A, Nakano H, Mae T. Effects of growth temperature on the response of ribulose-1,5-bisphosphate carboxylase, electron transport components and sucrose synthesis enzymes to leaf nitrogen in rice, and their relationships to photosynthesis. Plant Physiolist. 1994b, 105: 1231-1238
    114. Makino A, Nakano H, Mae T. Responses of ribulose-1,5-phosophate carboxylase, cytochrome f, and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis. Plant Physiolist. 1994a, 105: 173-179
    115. Makino A, Sakashita H, Hidenma J et al. Distinctive responses of ribulose-l,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance. Plant Physiolist. 1992, 100: 1737-1743
    116. Makino A, Sato T, Nakano H, Mae T. Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Planta. 1997, 203: 390-398
    117. Malagoli M, Dal Canal A and Quaggiotti S. Differences in nitrate and ammonium uptake between Scots pine and European larch. Plant and Soil. 2000, 221: 1-3
    118. Margolis HA,Vezina LP and Ouimet R et al.. Relation of light and nitrogen source to growth, nitrate reductase and glutamine synthetase activity of jack pine seedlings. Physiologia Plantarum. 1988, 72: 790-795
    119. Marschner H et al. Mobilization of mineral nutrients in the rhizosphere by root exudates. Thansactions 14th Int. Conger of soil. VolⅡ. 1990. 158-163
    120. Marschner H, Hausslings M and George E. 1991. Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce (Picea abies (L. ) Karst.) .Trees, 5:14-21
    121. Marschner H. Mineral Nutrition of Higher Plants. San Diego: Academic Press Inc. 1990
    122. Marschner H著.曹一平,陆景陵等译.高等植物的矿质营养.北京:北京农业大学出版社.1991, 275-276.
    123. Maxwell K, Johnson GN. Chlorophyll fluorescence-a practical guide. Journal of Experiment Botany. 2000, 51 : 659-668
    124. Mccully ME. Roots in soil: Unearthing the complexities of roots and their rhizospheres. Annual Review of Plant Physiology and Plant Mol. Biol. 1999, 50: 695-718
    125. Mcdonald AJS, Ericsson A and Lohammer T. Growth response to stem decrease in nutrient availability in small birch (Betula pendula Roth). Plant Cell and Environment. 1986, 9: 427-432
    126. Mead DJ and Pritchett WL. Fertilizer movement in a slash pine ecosystem. I. Uptake of N and P and N movement in the soil. Plant and soil. 1975, 43: 451-465
    127. Meharg AA and Blatt MR. NO3-transport across the plasma membrane of Arabidopsis thaliana root hairs:
    
    kinetic control by pH and membrane voltage. J Membrane Biol. 1995, 145: 49-66
    128. Mengel K, Robin P and Salsac L. Nitrate reductase activity in shoots and roots of maize seedlings as affected by the form of nitrogen nutrition and the pH of the nutrient solution. Plant Physiology. 1983, 71: 618-622
    129. Middleton KR and Smith GS. A comparison of ammonia and nitrate nutrition of perennial ryegrass through a thermodynamic model. Plant and Soil. 1979, 53: 487-504
    130. Miller PM, Eddleman LE and Miller JM. The response of juvenile and small adult western juniper (Junlperus occidentalis) to nitrate and ammonium fertilization. Canada Journal Botany. 1991, 69 (11) : 2344-2352
    131. Moorby H, White RE, Nye PH. The of phosphate nutrition on H ion efflux from the roots of young rape plants. Plant and Soil. 1988, 105: 147
    132. Mou P, RH Jones, RJ Mitchell & B Zutter. Spatial distribution of roots in sweetgum and loblolly pine monocultures and relations with above-ground biomass and soil nutrients. Functional Ecology. 1995, 9(3) : 689-699
    133. Murthy R, Dougherty PM, Zarnoch SJ and Allen HL. Effects of carbon dioxide, fertilization, and irrigation on photosynthetic capacity of loblolly pine trees. Tree Physiology. 1996, 16: 537-546
    134. Nadelhoffer K.J, Aber JD and Melillo JM. Fine roots, net primary production, and soil nitrogen availability: A New hypothesis. Ecology. 1985, 66(4) : 1377-1390
    135. Nadelhoffer KJ. The potential effects of nitrogen deposition on fine root production in forest ecosystems. New Phytologist. 2000, 147: 131-139
    136. Nakano H, Makino A, Mae T. The effect of elevated partial pressure of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiology. 1997, 115: 191-198
    137. Neilsen GH, Neilsen D and Atkinson D. Top and root growth and nutrient absorption of Prunus avium L. at two soil pH and P levels. Plant and soil. 1990, 121: 137-144
    138. Nelson LE and Selby R. The effect of nitrogen sources and iron levels on the growth and composition of Sitka spruce, and Scots pine. Plant and Soil. 1974, 58: 573-588
    139. Nielsen ME and Barber SA. Differences among genotypes of corn in the kinetics of P uptake. Agronomy Journal. 1978,70:695-698
    140. Noiraud N, Delrot S, Lemoine R, 2000. The sucrose transporter of celery. Identification and expression during salt stress. Plant Physiolist, 122:1447-1455
    141. Norby RJ, Neill EG and Hood WG et al. Carbon allocation root exudation and mycorrhizal colonization of Pinus echinata seedlings growth under CO2 enrichment. Tree Physiology. 1987, 3: 203-210
    142. Nye PH. Change of pH across the rhizosphere induced by root. Plant and Soil. 1981, 61: 7-26
    143. Nye PH. pH changes and phosphate soluilization near roots-an example of coupled diffusion processes. In Barder SA, Boulding DR, eds. Roots, Nutrient and Water Influx, and Plant Growth, Spec. Pub. 49 SSSA, CSSA and ASA, Madison. 1984, 89-100
    144. Nygren P, Vaillant V, Desfontaines L et al. Effects of nitrogen sources and defoliation on growth and biological dinitrogen fixation of Gliricidia Sepium seedlings. Tree Physiology. 2000, 20: 33-40
    
    
    145. Olsthoorn AFM, Keltjens WG, Van Baren B et al. Influence of ammonium on fine root development and rhizosphere pH of Douglas fir seedlings in sand. Plant and soil. 1991, 133: 75-81
    146. Ota K and Yamamoto Y. Effects of different nitrogen sources on glutamine synthetase and ferredoxin dependent glutamate synthase activities and on free amide acid composition in radish plants. Soil Science and Plant Nutrition. 1990, 36: 645-652
    147. Pahey TJ and Hughes JW. Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. Journal of Ecology. 1994, 82: 533-548
    148. Paquin R, Margolis H A, Doucet R and Coyea MR. Physiological responses of blank spruce layers and planted seedlings to nutrient addition. Tree Physiology. 2000, 20: 229-237
    149. Pastor J and Post WM. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry. 1986, 2: 3-27
    150. Paul MJ, Foyer CH. Sink regulation of photosynthesis. Journal of Experimental Botany. 2001, 52: 1383-1400
    151. Persson H, Fircks YV, Majdi H et al. Root distribution in a Norway Spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium sulphate application. Plant and Soil. 1995, 168-169: 161-165
    152. Peuke DA and Tischner R. Nitrate uptake and reduction of aseptically cultivated spruce seedlings, Picea abies (L.) Karst. Journal of Experiment Botany. 1991, 239: 723-728
    153. Plaxton WC, Carswell MC. Metabolic aspects of the phosphate starvation response in plants. In: Lerner HR, ed, Plant Responses to Environmental Stress from Phytohormones to Reorganization. New York, Marcel Dekker. 1999,349-372
    154. Poorter H, and Evans JR. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia. 1998, 116: 26-37
    155. Pregitzer KS, Hendrick RL and Fogel R. The demography of fine roots in response to patches of water and nitrogen. New Phytolist. 1993, 125: 575-580
    156. Pregitzer KS, Kubiske ME, Yu CK et al. Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia. 1997, 111:302-308.
    157. Pregitzer KS, Zak DR, Curtis PS, et al. Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytolist. 1995, 129: 579-585
    158. Prescott CE, McDonald M, Gessel SP et al. Long term effects of sewage sludge and inorganic fertilizers on nutrient turnover in litter in a coastal Douglas fir forest. Forest Ecology and Management. 1993, 59: 149-164
    159. Proe MF and Millard P. Effect of P supply upon seasonal growth and internal cycling of P in Sitka Spruce (Picea Sitchensis (Bong.) Carr.) seedlings. Plant and Soil. 1995, 168-169: 313-317
    160. Quick WP, Mills JD. The kinetics of adenine-nucleotide binding to chloroplast ATPase CF1 during the illumination and post-illumination period in isolated pea thylakoids. Biochimica et Biophysica Acata. 1988, 936: 222-227
    161. Rao IM. Terry N. Leaf phosphate status and photosynthesis in vivo in sugar beet. I Changes in growth, photosynthesis and Calvin cycle enzymes. Plant Physiology. 1989, 90: 814-819
    
    
    162. Ratnayake RT, Leonard RT and Menge JA. Root exduation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytolist. 1987, 81: 543-552
    163. Reich PB, Kloeppel BD, Ellswoth DS and Walters MB. Different photosynthesis nitrogen relations in deciduous hardwood and evergreen coniferous trees species. Oecologia. 1995, 104: 24-30
    164. Riesmeier JW, Willmitzer L, Frommer WB. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J. 1994, 13: 1-7
    165. RoJlwagen BA. Effects of ammonium and nitrate application on rhizosphere pH, growth and nutrient uptake by Douglas-fir, Sitka spruce and Western hemlock. Forestry Abstracts. 1983, 44(11) : 699
    166. Rosolem CA and Marcello CS. Soybean root growth and nutrition as affected by liming and phosphorus application. Scientia Agricola. 1998, 55: 448-455
    167. Rosolem CA, Witacker JPT, Vanzolm S et al. The significance of root growth on cotton nutrition in an acidic low P soil. Plant and Soil. 1999, 212: 185-190
    168. Rothstein DE, Zak DR, Pregitzer KS et al. Kinetics of nitrogen uptake by Populus tremuloides in relation to atmospheric CO2 and soil nitrogen availability. Tree Physiology. 2000, 20: 265-270
    169. Ruan JY, Zhang FS and Ming HW. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L. Plant and Soil. 2000, 223: 63-71
    170. Russell RS. Plant Root System. McGraw-Hill. Book Company Lt. 1977
    171. Rygiewica PT, Bledsoe CS and Zasoski RJ. Effects of ectomycorrhizae and solution pH on [15N] nitrate uptake by coniferous seedlings. Canada Journal of Forest Research. 1984a, 14: 893-899
    172. Rygiewica PT, Bledsoe CS and Zasoski RJ. Effects of ectomycorrhizae and solution pH on [15N] ammonium uptake by coniferous seedlings. Canada Journal of Forest Research. 1984b, 14: 885-892
    173. Sage RF, Pearcy RW, Seemann JR, 1987. The nitrogen use efficiency of C3 and C4 plants. Ⅲ. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amarantus retroflesus (L.). Plant Physiol, 85: 355-359
    174. Schenk MK and Barber SA. Root characteristics of corn genotypes as related to P uptake. Agronomy Journal. 1979,71:921-924
    175. Schulze ED. Air pollution and forest decline in a spruce (Picea abies). Forest. Science. 1989, 224: 776-783
    176. Seith B, George, E, Marschner H et al. Effects of varied soil nitrogen supply on Norway spruce (Picea abies L. Karst.) I. Shoot and root growth and nutrient uptake. Plant and Soil. 1996, 184: 291-298
    177. Seith B, Setzer B and Flaig H et al. Appearance of nitrate reductase and gluatamine synthetase in different organs of the Scots pint(Pinus sylvestris) seedlings as affected by light, nitrate and ammonium. Physiologia Plantarum. 1994,91:419-426
    178. Serna MD, Legaz BF and Primo millo E. The influence of nitrogen concentration and ammonium/nitrate ratio on N-uptake, mineral composition and yield of citrus. Plant and Soil. 1992, 147: 13-23
    179. Shakya R, Sturm A. Characterization of sucrose-and sink-specific sucrose/ H+ symporters from carrot. Plant Physiolist, 1998, 118:1473-1480
    180. Shaver GR and Johnson LC et al., Biomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and light. Ecological Monograph. 1998, 68: 75-98
    
    
    181. Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990, 2: 1027-1038
    182. Sicher RC, Kremer DF. Effects of phosphate deficiency on assimilate partitioning in barley seedlings. Plant Science. 1988, 57: 9-17
    183. Smith AG, Griffiths WT. Enzymes of chlorophyll and heme biosyntheis. In: Lea PJ, ed Enzymes of Secondary Metabolism. New York:Academic Press. 1993, 299-343
    184. Srivastava HS and Singh RP. Role and regulation of L-glutamate dehydrogenase activity in higher plants. Photochemistry. 1987, 26: 597-610
    185. Stadler J and Gebauer G. Nitrate reduction and nitrate content in ash trees (Fraxinus excelsior L.): distribution between compartments, site comparison and seasonal variation. Trees. 1992, 6: 236-240
    186. Steele SJ, Gower ST and Vogel JG et al. Root mass, net primary production and turnover in a spen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology. 1997, 17: 577-587
    187. Stitt M, Schulze D. Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ. 1994, 17: 465-487
    188. Stitt M, Von Schaewen A, Willmitzer L. "Sink" regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a down-regulation of the Calvin cycle and an up-regulation of glycolysis. Planta. 1991, 183: 40-50
    189. Sword MA, Gravatt DA and Faulkner PL et al. Seasonal branch and fine root growth of juvenile loblolly pine five growing seasons after fertilization. Tree Physiology. 1996, 16: 899-904
    190. Tatsuhiro E and T Yoshida. Characterization of phosphatase in Marigold Roots infected with Vesicular arbuscular Mycorrhizal Fungi. Soil Science and Plant Nutrition. 1994, 40(2) : 255-264.
    191. Taylor G, McDonald AJS, Stadenberg I et al. Nitrate supply and the biophysics of leaf growth in Salix viminalis, Journal of Experimental Botany. 1993, 44: 155-164
    192. Thomas RC and Mead DJ. Uptake of nitrogen by Pinus ridita and retention within the soil after applying 15N-labelled urea at different frequencies. 1. Growth response and nitrogen budgets. Forest Ecology and Management. 1992,53: 131-151
    193. Tilman D. Plant strategies and the structure and dynamics of plant communities. Princeton: Princeton University Press. 1988, 52-97
    194. Tingey DT, Johnson MG, Phillips DL, Johnson DW and Ball JT Effects of elevated CO2 and nitrogen on the synchrony of shoot and root growth in Ponderosa pine. Tree Physiology. 1996, 16: 905-914
    195. Tognetti R, Johnson JD. Responses of growth, nitrogen and carbon partitioning to elevated atmospheric CO2 concentration in live oak (Quercus virginiana Mill.) seedlings in relation to nutrient supply. Annals of Forest Science, 1999, 56(2) : 91-105
    196. Tolley HL and Raper CDJ. Utilization of ammonium as a nitrogen source. Plant Physiology. 1986, 82: 54-60
    197. Topa MA and Cheeseman JM. Carbon and phosphorus portioning in Pinus serotina seedlings growing under hypoxic and low phosphorus conditions. Tree Physiology. 1992, 10(2) : 195-207
    198. Troelstra SR and Blacqutere T. Growth, ionic balance, proton excretion, and nitrate reductase activity in Alnus and Hippophae supplied with different sources of nitrogen. Plant and Soil. 1986, 91: 381-384
    
    
    199. Tschaplinski TJ, Norby RJ and Wullschleger DS. Responses of loblolly pine seedlings to elevated CO2 and fluctuating water supply. Tree Physiology. 1993,13: 283-296
    200. Turner DP and Franz EH. The influence of western hemlock and western red cedar on microbial numbers, nitrogen mineralization and nitrification. Plant and Soil. 1985, 88: 259-267
    201. Usuda H, Shimogawara K. Phosphate deficiency in maize, I . Leaf phosphate status, growth, photosynthesis and carbon partitioning. Plant Cell Physiology. 1991, 2: 497-504
    202. Van Breemen N, Burrough PA and Velthorst EJ et al. Soil acidification from atmospheric ammonium sulphate in forest canopy through fall. Nature. 1982, 229: 548-550
    203. Van Den Driessche R. Different effects of nitrate and ammonium forms of nitrogen on growth and photosynthesis of slash pine seedlings. Australian Forest. 1972, 36: 15-137
    204. Van der werf A and Nagel O W. Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: Opinion. Plant and soil 1996, 185: 21-32
    205. Vogt KA, Grier CC and Vogt DJ. Production, turnover, and nutrient dynamics of above and belowground detritus of world forests. Advances in Ecological Research. 1986, 15: 303-377
    206. Vollbrecht A, Klein E and Kasemir H. Different effects of supplied ammonium on glutamine sythetase activity in mustard (Sinapis alba) and pine (Pinus sylvestris) seedlings. Physiologia Plantarum. 1989,77: 129-135
    207. Vollbrecht P and kasemir HI. Effects of exogenously supplied ammonium on root development of Scots Pine (Pinus sylvestris L.) seedlings. Botanica Acta. 1992 105(4) : 306-312
    208. Von Schaewen A, Stitt M, Schmidt R et al. Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to inhibion of sucrose export, accumulation of carbohydrates and inhibiton of photosynthesis, and strongly influences growth and habitus of transgenic tobacco plants. EMBO J, 1990, 9: 3033-3044
    209. Von WirSn N, Gazzarrini S and Frommer WB. Regulation of mineral nitrogen uptake in plants. Plant and Soil. 1997, 196: 191-199
    210. Wallander H, Arnebrant K and Ostrand F. Uptake of 15N-labelled alanine, ammonium and nitrate in Pinus sylvestris L.ectomycorrhiza growing in forest soil treated with nitrogen, sulphur or lime. Plant and Soil. 1997, 195: 329-338
    211. Wang JR, Hawkins CDB, Letchford T. Relative growth rate and biomass allocation of paper birch (Betula papyrifera) populations under different soil moisture and nutrient regimes. Canadian Journal of Forest Research. 1998, 28(1) : 44-55
    212. Warren CR, Adams MA, Chen Z. Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants? Australian Journal Plant Physiology. 2000, 27:407-416
    213. Weber EP and Day FP. The effect of nitrogen fertilization on the phenology of roots in a barrier island sand dune community. Plant and Soil. 1996, 182: 139-148
    214. Welker JM, Gordon DR and Rice KJ. Capture and allocation of nitrogen by Quercus douglasii seedlings in competition with annual and perennial grasses. Oecologia. 1991, 87(4) : 459-466
    215. Wilson JB. Shoot competition and root competition. Journal of Applied Ecology. 1988, 25(2) : 279-296
    
    
    216. Wookey PA et al. Environmental constraints on the growth, photosynthesis, and reproductive development of Dryas octopetala at a high aectic polar semidesert, Svalbard. Oecologia. 1995, 102:478~489
    217. Zhang H, Forde BG. An Arabidopsis MADS-box gene that controls nutrient-induced changes in root architecture. Science. 1998, 279:407~409
    218. Zhang J and Barber SA. Maize root distribution between phosphorus fertilized and unfertilized soil. Soil Science American Journal. 1992, 56:819~822
    219. Zogg GP, Zak DR, Burton AJ et al. Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiology. 1996, 16:719~825
    220.崔水利,张炎,王讲利等.施磷对棉花根系形态及其对磷吸收的影响.植物营养与肥料学报.1997,3(3):249~253
    221.崔晓阳.落叶松、水曲柳的氮营养行为及其种间分异.应用生态学报.2001,12(6):815~818
    222.单建平,陶大立,王淼等.长白山阔叶红松林细根周转的研究.应用生态学报.1993,4(3):241~245
    223.丁应祥.滨海土壤上杨树根际微区性状的研究.南京林业大学学报,1996;20(2):15~19.
    224.范燕萍,余让才,陈建勋等.氮素营养胁迫对匙叶天南星生长及光合特性的影响.园艺学报.2000,27(4):297~299
    225.郭朝晖,张杨珠,黄子蔚.根际微域营养研究进展(一).土壤通报.1999,30(1):46~封3
    226.蒋立平.氮素形态对柑桔根系生长的影响.中国柑桔.1990,19(3):14~16
    227.蒋秋怡.杉木根际土壤特性的研究(Ⅰ).浙江林学院学报.1990,7(2):122~126
    228.李明刚,邹超亚,但野利秋.缺磷条件下作物根分泌性磷酸酶与有机酸的诱导研究.耕作与栽培.1997,14:43~46.
    229.李燕婷,米国华,陈范骏等.玉米幼苗地上部/根间氮的循环及其基因型差异.植物生理学报.2001,27(3):226~230
    230.李贻铨.杉木幼林前三年施肥效果研究.林业科技通讯.1987,11:13~16
    231.李志安,王伯荪,张宏达.关于植物营养生态学.生态科学,1999,18(4):43~47
    232.梁银丽.土壤水分和氮磷营养对冬小麦根系及水分利用的调节.生态学报.1996,16(3):258~264
    233.林文,李义珍,郑景生等.施氮量及施肥法对水稻根系形态发育和地上部生长的影响.福建稻麦科技.1999,17(3):21~24
    234.刘芷宇.根际研究法.南京:江苏科技出版社.1997
    235.娄成后,王学臣主编.作物产量形成的生理学基础.北京:中国农业出版社.2000,167~173
    236.陆景陵主编.植物营养学.北京:北京农业大学出版社.1994,
    237.潘晓华,石庆华,郭进耀等.无机磷对植物叶片光合作用的影响及其机理的研究进展.植物营养与肥料学报.1997,3(3):201~207
    238.上海植物生理学会编.植物生理学实验手册.上海:上海科技出版社,1985
    239.盛炜彤.我国人工林的地力衰退及防治对策.人工林地力衰退研究.北京:中国科学出版社.1992
    240.史瑞和等编著.植物营养原理.南京:江苏科技出版社.1989,5-19:291~295
    241.苏德纯,任春玲,王兴仁.不同水分条件下施磷位置对冬小麦生长及磷营养的影响.中国农业大学学报.1998,3(5):55~60
    242.王敬国编著.植物营养的土壤化学.北京:北京农业大学出版社.1995,66~72
    
    
    243.王淼,代力民,姬兰柱等.长白山阔叶红松林主要树种对干旱胁迫的生态反应及生物量分配的初步研究.应用生态学报.2001,12(4):496~500
    244.王庆仁等.植物高效利用土壤难溶磷研究动态及展望.植物营养与肥料学报.1998,4(2):107~116
    245.王沙生,高荣孚,吴贯明著.植物生理学.北京:中国林业出版社.1991,211~218
    246.肖文发,徐德应著.森林能量利用与产量形成的生理生态基础.北京:中国林业出版社.1999,34~39
    247.严小龙,张福锁著.植物营养遗传学.北京:中国农业大学出版社.1998
    248.杨世杰.植物生物学.北京:科学出版社.2000
    249.余叔文,汤章城主编.植物生理与分子生物学.北京:科学出版社.1999,336~343
    250.曾杰,郑海水,翁启杰.我国西南桦的地理分布与适生条件.林业科学研究.1999,12(5):
    251.张福锁,曹一平.根际动态过程与植物营养.土壤学报.1992,29(3)238~250
    252.张福锁,林翠兰,曹一平.植物磷营养基因型差异的机理.北京农业大学学报,1992:23~27
    253.张福锁.植物营养研究新动态(第一卷).北京:北京农业大学出版社.1992
    254.张福锁主编.植物营养生态生理学和遗传学.北京:中国科学技术出版社.1993,36~76
    255.张万儒.中国主要造林树种土壤条件.北京:中国科学技术出版社.1998
    256.张喜英,Barraclough PB.土壤N、P、K含量对小麦早期根系生长的影响.土壤通报.1998,29(6):270~272
    257.张小全,吴可红,Dieter Murach.树木细根生产与周转研究方法评述.生态学报.2000,20(5):875~883
    258.张彦东,白尚斌,王政权等.混交条件下水曲柳落叶松根系的生长与分布.林业科学.2001,37(5):16~23
    259.张彦东,范志强,王庆成等.N素形态对水曲柳幼苗生长影响.应用生态学报.2000,11(5):665~667
    260.张彦东等.水曲柳落叶松混交林土壤磷活化机理.混交林研究(沈国舫主编).北京:中国林业出版社.1997,136~140
    261.赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究.生态科学.1998,17(2):37~42
    262.中国科学院上海植物生理研究所,上海市生理学会编.现代植物生理学实验指南.北京:科学出版社.1999,138~139
    263.中国土壤学会农业化学专业委员会编.土壤农业化学常规分析方法.北京:科学出版社.1989
    264.周天相等.杉木施肥效果分析.亚林科技,1984,4
    265.周文龙,张福锁,曹一平.根际pH值动态及其效应.见土壤与植物营养研究新进展(张福锁主编).北京:北京农业大学出版社.40~49
    266.周云龙主编.植物生物学.北京:高等教育出版社.1999,158~160
    267.邹琦主编.植物生理生化实验指导.北京:中国农业出版社.1997
    268.邹晓明.植物与磷的生物地球化学循环.见:土壤与植物营养研究新动态(张福锁等主编).北京:中国农业出版社.1995,170~184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700