用户名: 密码: 验证码:
红松和落叶松人工林养分生态学比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对黑龙江省勃利县通天一林场相近林龄、相似林分结构、相同立地和经营措施的红松和落叶松人工林的生物量、生产力和养分循环进行比较研究,发现二者在生物量分布格局、养分的吸收与积累、生产力分配、养分循环和在回收等方面存在较大差别,在乔木层和林下植被生物量分布比例和林下植被养分积累方面颇为相近。
     研究结果表明,落叶松人工林群落总生物量为82.13t·hm~(-2),其中乔木层占96.31%。落叶松乔木层生物量分布格局为:树干生物量为48.55t·hm~(-2),约占60%,地下部分(包括根颈在内)生物量为16.18 t·hm~(-2);枝生物量为6.82 t·hm~(-2);皮5.84 t·hm~(-2);叶1.7t·hm~(-2)。红松人工林群落总生物量为70.32 t·hm~(-2),乔木层总生物量为68.89t·hm~(-2),其中树干生物量为29.65t·hm~(-2),约占50%,地下部分(包括根颈在内)生物量为14.61t·hm~(-2);枝生物量为12.68t·hm~(-2);叶7.10t·hm~(-2);皮4.91t·hm~(-2)。二者相比较,落叶松人工林树干比例大于红松人工林,而叶和枝的生物量比例远低于红松人工林。落叶松人工林乔木层生产力为8.59t·hm~(-2)·a~(-1),红松人工林乔木层的生产力为8.41t·hm~(-2)·a~(-1),二者的生产力分配与生物量分配比例相近。
     落叶松人工林乔木层的五种大量元素养分积累为:落叶松树干营养元素积累量152.88kg·hm~(-2),枝、皮、根、叶养分积累量分别为96.62kg·hm~(-2)、104.34kg·hm~(-2)、108.62kg·hm~(-2),53.539kg·hm~(-2),落叶松人工林对钙元素有最大的积累量,为173.65kg·hm~(-2),氮次之,为150.61kg·hm~(-2),钾103.95kg·hm~(-2),镁36.03kg·hm~(-2)。红松人林工乔木层养分总积累量为656.97kg·hm~(-2),各元素分别为:氮素积累为246.16kg·hm~(-2),磷的积累量40.50kg·hm~(-2),钾的积累量113.99kg·hm~(-2),钙的积累量205.08kg·hm~(-2),镁的积累量51.23kg·hm~(-2)。与落叶松人工林相比,红松人工林在叶、根、皮、枝积累了大量养分,尤其是氮素,红松人工林的养分积累量远远高于落叶松人工林,发现红松人工林自身贮存养分的能力大于落叶松人工林。落叶松与红松针叶大量养分氮、磷、钾之间存在显著的正相关,钙与镁含量正相关也达到显著水平。而红松针叶中钾与钙、氮与钙则有显著的负相关。
     落叶松人工林针叶氮、磷的回收率分别为61%、58%、,高于红松人工林。红松人工林针叶凋落时氮回收率30%、磷回收率51%。落叶松人工林每年吸收和通过落叶流失的氮素低于红松人工林,落叶松人工林的氮素利用效率比红松人工林高。
The biomass, productivity and nutrient cycle of Larch plantation and Korean pine plantations in Boli of Heilongjiang Province were studied by selecting the similar stands in stand age, stand structure, site and management practices. Results indicated that the two stands were significantly different in biomass allocation, nutrient absorption and accumulation, productivity allocation, nutrient cycle, and nutrient return. The biomass allocations of tree stratum and understory plants, and the nutrient accumulation of understory plants, were similar for the two stands.
    The community biomass of larch plantation were 82.13t· hm-2, of which 96.31% of the community biomass was allocated to tree stratum(79.10t ·m-2). The allocation pattern of biomass in tree stratum were 48.55t·hm-2 in stem (approach to 60% of tree stratum biomass), 16.18t ·hm-2 in underground (include root crown), 6.82t·hm-2 in branch, and 1.7t·hm-2 in leaf. The community biomass of Korean pine plantatoin was 70.321 · hm-2, 68.89t ·hm-2 in tree stratum, 29.65t ·hm-2 in stem (approach to 50% of tree stratum biomass), 14.61t · hm-2 in underground (include root crown), 12.68t·hm-2 in branch, 7.10t ·hm-2 in leaf, 4.91t ·hm-2 in bark. The comparison of the larch and Korean pine plantations showed that the stem proportion in larch plantation was higher than that in Korean pine plantation, but the leaf and branch proportion in larch were lower than that of Korean pine plantation. The productivities of tree stratum in larch and Korean pine plantations were similar, 8.59t · hm-2 · a-1 and 8.41t · hm-2 · a-1, respective
    ly. The allocations of productivity and biomass were similar.
    The nutrient accumulation of the five macronutrients in tree stratum of larch plantation were 152.88kg ·hm-2 in stem, 96.62kg · hm-2 in branch, 104.34kg ·hm-2 in bark, 108.62 kg ·hm-2 in root, and 53.54kg · hm-2 in leaf. In larch plantation, the accumulation of calcium, nitrogen, potassium and magnesium elements were 173.65 kg · hm-2, 150.61kg · hm-2, 103.95kg · hm-2, and 36.03kg · hm-2, respectively. The total nutrient accumulation in tree stratum of Korean pine plantation was 656.97 kg ·hm-2, of which 246.16 kg ·hm-2 nitrogen, 40.50kg ·hm-2 phosphorous, 113.99kg · hm-2 potassium, 205.08 kg · hm-2 calcium and 51.23kg · hm-2 magnesium. Compared with larch plantation, the nutrient accumulation in leaf, root, bark and branch of Korean pine plantation were higher, especially in nitrogen.
    The return amount of nitrogen and phosphor in leaves of larch plantation were 61% and 58%, higher than those of Korean pine plantation, with 30% and 51%, respectively. The nitrogen amount of absorbing by root and losing by abscising leaves in larch plantation was lower than those in Korean pine. The nigrogen utilization efficiency of larch plantation were higher than that of Korean pine.
引文
1.《展望21世纪的生命科学》编写组编著.展望21世纪的生命科学.济南:山东教育出版社,2002:206~235
    2.H.马斯纳著,曹一平,陆景陵等译.植物营养学.北京:北京农业大学出版社,1991:118~150
    3.K.A.沃科特,J.C.戈尔登等著,欧阳华,王政全,王群力等译.生态系统—平衡与管理的科学,北京:科学出版社,2002:136~184
    4.陈辉,何方.锥栗人工林生态系统养分特征和生物循环的研究.林业科学,1999;35(6):19~27
    5.陈灵芝,黄建辉,韩兴国,严昌荣.中国东部主要松林营养元素循环的比较研究.植物生态学报,1999:23(4):351~360
    6.陈大珂、周晓峰、祝宁等著.天然次生林:结构、功能、动态与经营.哈尔滨:东北林业大学出版社,1994:319~342
    7.陈灵芝,黄建辉,严昌荣.中国森林生态系统养分循环,北京:气象出版社,1997:16~233
    8.崔国发.落叶松人工林土壤生态系统的研究.哈尔滨:东北林业大学博士论文,1995:1~9
    9.崔晓阳著.东北森林氮素营养的生态学.哈尔滨:东北林业大学出版社,1998:62~80
    10.丁宝永等.红松人工林培育技术与理论.哈尔滨:黑龙江科学技术出版社,1994:10~25
    11.方升佐,李光友.立地条件对青檀檀皮中矿质元素含量的影响.林业科学,2002:38(1):8~14
    12.费世民.火炬松人工林养分体内转移与内循环研究.林业科学,2001;37(3):13~18
    13.冯宗炜,王效科等著.中国森林生态系统的生物量和生产力.北京:科学出版社,1999:3~36
    14.高甲荣,张东升,肖斌,牛健植.黄土区油松人工林生态系统营养元素分配格局和积累的研究.北京林业大学学报,2002;24(1):26~30
    15.葛剑平编著.森林生态学建模与仿真.哈尔滨:东北林业大学出版社,1996:193~202
    16.何兴元,赵淑清,杨思河,田春杰.固氮树种在混交林中的作用研究Ⅲ.固氮树种凋落物分解及N的释放.应用生态学,1999:10(4):404~406
    17.姜志林,赵珊主编.下蜀森林生态系统定位研究论文集.北京:中国林业出版社,1992:20~36
    18.孔国辉,张佑昌,莫江明.鼎湖山马尾松林营养元素的分布和生物循环特征.生态学报,1999:19(5):635-640
    19.李贵才,韩兴国,黄建辉,唐建维.森林生态系统土壤氮矿化影响因素研究进展.生态学报,2001;21(7):1187-1195
    20.李景文等著,红松混交林生态与经营.哈尔滨:东北林业大学出版社,1997:151~186
    21.李培芝,王力华,许思明.北方阔叶树木固氮与非固氮树种间营养元素含量的差异及数量化分类.应用生态学报,1998:9(3):242~246
    
    
    22.李志安,王伯荪等.植物营养转移研究进展.武汉植物学研究,2000;18(3):229~236
    23.李志安,王伯荪,张宏达.关于植物营养生态学.生态科学,1999;18(4):43~47
    24.廖红,严小龙编著.高级植物营养学.北京:科学出版社,2003:84~231
    25.廖利平.国外林木养分内循环研究.生态学杂志,1994;13(6):34~382
    26.林睦就,薛萍,张云跃等.引种针叶树种矿质元素浓度及季节变化的比较研究.林业科学,1998;34(5):21~28
    27.林业部科技司编.森林生态系统定位研究方法.北京:中国科学技术出版社,1994:173~230
    28.刘广全等.秦岭松栎林带生物量及其营养元素分布特征.林业科学,2001;37(1):28~138
    29.刘广全等.锐齿栎林非同化器官营养元素含量的分布.生态学报,2001:21(3):422~429
    30.刘阳,李培芝,王力华,许思明.张颂云.日本落叶松营养元素的代谢与①生长量的相关性研究.辽宁林业科技,2001:3:11~13
    31.刘玉萃,吴明,蒋有绪,刘世荣等.内乡宝天曼自然保护区锐齿栎林生物量和净生产力研究.生态学报,2001;21(9):1450~1456
    32.刘增文,李雅素,吕月玲,贺秀.刺槐主要养分元素内循环及外循环研究.南京林业大学学报,1997:21(4):6~10
    33.刘增文,李雅素.刺槐人工林养分利用效率.生态学报,2003;23(3):445~449
    34.刘增文,强虹.森林生态系统养分循环研究中若干问题的讨论.南京林业大学学报(自然科学版),2002;26(4):27~30
    35.莫良玉,吴良欢等.高等植物对有机氮吸收与利用研究进展.生态学报,2002:22(1):110~124
    36.任继凯.矿质元素在油松树干中分布的研究.植物学报,1985:27(2):196~202
    37.沈善敏,宇万太,张璐.杨树主要营养元素内循环及外循环研究Ⅰ.落叶前后各部位养分浓度及养分贮量变化.应用生态学报,1992;3(4):296~301
    38.沈善敏,宇万太,张璐等.杨树主要营养元素内循环及外循环研究.落叶前后养分在植株体内外的迁移和循环.应用生态学报,1993;4(1):27~317
    39.宋君,王伯荪,彭少麟,黄铭洪.南亚热带常绿阔叶林粘木种群营养元素的分布与循环.生态学报,1999;19(2):223~245
    40.苏波,韩兴国,黄建辉,渠春梅.植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略.生态学报,2000;20(2):36~41
    41.苏波等.自然丰度法在生态系统氮素循环研究中的应用.生态学报,1999:19(3):408~416
    42.苏波,韩兴国,渠春梅,李贵才.森林土壤氮素可利用性的影响因素研究综述.生态学杂志,2002:21(2):40~46
    43.孙书存.东灵山地区辽东栎叶养分的季节动态与回收效率.植物生态学报,2001;25(1):76~82
    
    
    44.田大伦,康文星,文仕知等著.杉木林生态系统学.北京:科学出版社,2003:49~306
    45.王文卿等.树木叶片衰老过程中养分元素内吸收研究.武汉植物学研,1999;17(增刊):117~122
    46.王业遽等著.阔叶红松林.哈尔滨:东北林业大学出版社,1995:330~381
    47.吴晓芙,胡曰利.林木生长与营养动态模型研究——立地养分效应配方施肥模型.中南林学院学报,2002;22(3):15~19
    48.武维华主编.植物生理学.北京:科学出版社,2003:86~115
    49.邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述.应用生态学报,2000;11(5):785~790
    50.徐福余,王力华,李培芝.若干北方落叶树木叶片养分的内外迁移:浓度和含量的变化.应用生态学报,1997:8(1):1~6
    51.杨玉盛,林鹏,郭剑芬等.格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解.生态学报,2003;23(7):1278~1289
    52.杨玉盛,邱仁辉,何宗明,俞新妥,黄宝龙.不同栽杉代数29年生杉木林净生产力及营养元素生物循环的研究.林业科学,1998;34(6):3~11
    53.宇万太,陈欣,张璐等.不同施肥杨树主要营养元素内外循环比较研究.Ⅰ.施肥对杨树生物量及落叶前后N内外循环的影响.应用生态学报,1995:6(4):341~345
    54.张成刚,杨思河,苏道岩.张粤,刘惠.结瘤固氮树种叶部主要养分迁移特征.生态学杂志,1997:16(3):63~66
    55.张福锁主编.环境胁迫与植物营养.北京:北京农业大学出版社,1993:201~210
    56.赵平,孙谷畴等.植物氮素营养的生理生态学研究.生态科学,1998:17(2)
    57.赵竹青等.矿质营养对生长素代谢影响的研究现状与展望.植物学通报,1998;15(1):37~42
    58.周晓峰主编.中国森林生态系统定位研究.哈尔滨东北林业大学出版社,1994;235~244
    59.邹碧,曹裕松等.华南两种豆科人工林体内养分转移特性.生态学报,2003;23(7):1396~1402
    60.邹春静等.长白松人工林群落生物量和生产力的研究.应用生态学报,1995:6(2):123~127
    61. Alison D. Munson, Hank A. Margolis and David G. Brand. Seasonal nutrient dynamics in white pine and white spruce in response to environmental manipulation. Tree Physiology, 1995; 151:41~149
    62. Amy E. Miller, William D. Bowman. Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form? Oecologia, 2002; 13: 609~616
    63. Ankila J. Hiremath. Photosynthetic nutrient-use efficiency in three fast-growing tropical trees with differing leaflongevities. Tree Physiology, 2000: 20: 937~944
    64. Ankila J. Hiremath, John J. Ewel. Ecosystem Nutrient Use Efficiency, Productivity, and Nutrient Accrual in Model Tropical Communities. Ecosystems, 2001; 4:669~682
    
    
    65. Annika Nordin, Claes Uggla and Torgny Nasholm. Nitrigon forms in bark, wood and foliage of nitrogen-fertilized Pinus sylvestris. Trre Physiology, 2001; 21: 59~64
    66. B.J. Hawkins, G. Henryand S. B. R. Kiiskila. Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings: influence of growth rate and nutrition. Tree Physiology, 1998; 18: 803~810
    67. Benendicte Cherbuy, Richard Joffre, Dominique Gillon and Serge Rambal. Internal remobilization of carbohydrates, iipids, nitrogen and phosphorous in the Mediterranean evergreen oak Quercus ilex. Tree Physiology, 2001; 21: 9~17
    68. C. H. Lusk, OIga Contreras, Javier Figueroa. Growth, biomass allocation and plant nitrogen concentration inChilean temperate rainforest tree seedlings: effects of nutrient availability. Ecosystems, 2001; 4: 669-682
    69. C. R. Warren, N. J. Livingston and D. H. Turpin. Response of Douglas-fir seedlings to a brief pulse of ~(15)N-labeled nutrients. Tree Physiology, 2003; 23: 1193~1200
    70. Carswell F.E., Millard P., Rogers G.N.D., Whitehead D. Influence of nitrogen and phosphorus supply on foliage growth and internal recycling of nitrogen in conifer seedlings(Prumnopitys ferruginea). Functional Plant Biology, 2003; 30(1): 49~55
    71. Christine Billow, Pamela Matson and Barbara Yoder. Seasonal biochemical changes in coniferous canpies and response to fertilization. Tree physiology, 1994; 14: 563~574
    72. Courchesne, F. Hendershot, WH. SavoieS. Effects of base cation fertilization on soil and foliage nutrient concentrations, and litter-fall and throughfall nutrient fluxes in a sugar maple forest. Canadian journal of forest research, 1994; 24(3): 542~549
    73. D.W. Sheriff. Responses of carbon gain and growth of Pinus radiata stands to thinning and fertilizing. Tree Physiology, 1996; 16: 527-536
    74. David A. King. A model analysis of the influence of root and foliage allocation on forest production and competition between trees. Tree Physiology, 1993; 12: 119~135
    75. David R. Vann, Amishi Joshi. Distribution and cycling of C, N, Ca, Mg, K and P in three pristine, old-growth forests in the Cordillera de Piuchué, Chile. Biogeochemistry, 2002; 60(1): 25~47
    76. Donagld J.Mard and Caroline M. Preston. Distribution and retranslocation of ~(15)N in lodgepole pine over eight growing seasons. Tree physiology, 1994; 14: 389~402
    77. E.K. Sadanandan Nambiar and David N. Fife. Nutrient retranslocation in temperate conifers. Tree Physiology, 1991; 9: 185~207
    78. E. Saur, E. K. S. Nambiar and D. N. Fife. Foliar nutrient retransiocation in Eucalyptus globulus. Tree Physiology, 2000; 20: 1105~1112
    
    
    79. E.K. Sadanandan Nambiar and David N. Fife. Nutrient retranslocation in temperate conifers. Tree physiology, 1991; 9: 185~207
    80. El Omari B., Aranda X., Verdaguer D., Pascual G., Fleck I.. Resource remobilization in Quercus ilex L. resprouts. Plant andSoil, 2003; 252(2): 349~357
    81. Elaine M. Birk and Peter M. Vitousek. Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology, 1986; 67(1): 69~79
    82. H.G. Miller. Carbon×nutrient interactions—the limitations to productivity. Tree Physiology, 1986: 2: 373~385
    83. Harmand J.-M., Njiti C.F., Bernhard-Reversat F., Puig H.. Aboveground and belowground biomass, productivity and nutrient accumulation in tree improved fallows in the dry tropics of Cameroon. Forest Ecology and Management, 2004; 188(1): 249~265
    84. Helj-Sisko Heimisaar. Nutrient retranslocation within the foliage ofPinus sylvestris. Tree Physiology, 1992; 10: 45~58
    85. Henning Pedersen, Kristie A. Dunkin. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by ~(15)N tracer and pool dilution techniques. Biogeochemistry, 1999; 44(2): 135~150
    86. Imo M. Timmer V. R. Growth and nitrogen retranslocation of nutrient loaded Picea mariana seedlings planted on boreal mixedwood sites. Canadian_Journal of Forest Research, 2001; 31(8): 1357~1366
    87. J. Wright and Westoby. Nutrient concention, resoption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology, 2003; 17: 10~19
    88. Jens Dyckmans and Heiner Flessa. Influence of tree internal N status on uptake and translocation of C and N in beech: a dual ~(13)C and ~(15)N labeling approach. Tree Physiology, 2001; 21: 395~401
    89. Jill S. Baron, Heather M. Rueth. Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystem, 2000; 3: 352~368
    90. Johannes M. H. Knops, Walter D. Koenig, Thomas H. Nash. On the relationship between nutrient use efficiency and fertility in forest ecosystems. Oecologia, 1997; 110(4): 550~556
    91. John Pastor, Scott D. Bridgham. Nutrient efficiency along nutrient availability gradients. Oecologia, 1999; 118(1): 50~58
    92. John Pastor. Nitrogen fixation and the mass balances of carbon and nitrogen in ecosystems. Biogeochemistry, 1998; 43(1): 63~78
    93. Keenan, RJ, Prescott, CE, Kimmins, JP. Litter production and nutrient resorption in western red cedar and western hemlock forests on northern Vancouver, Island, British. Canadian journal of forest
    
    research, 1995; 25(11), 1850~1857
    94. Keith T. Kllingbeck. Nutrients in sensced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 1996; 77(6): 1716~1727
    95. Kenichi Yazaki, Ryo Funada, Shigeta Mori, Yutaka Maruyama. Growth and annual ring structure of Larix sibirica grown at different carbon dioxide concentrations and nutrient supply rates. Tree Physiology, 2001; 21: 1223~1229
    96. Lars Vesterdal and Karsten Raulund-Rasmussen. Forest floor chemistry under seven tree species along a soil fertilitygradient. Can. J. For. Res, 1998; 28: 1636~1647
    97. Lin P., Wang W. Changes in the leaf composition, leaf mass and leaf area during leaf senescence in three species of mangroves. Ecological Engineering, 2001; 16(3): 415~424
    98. M. B. Murray, R.I. Smith, A. Friend and P. G. Jarvis. Effect of elevated[CO_2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce(Picea sitchensis). Tree Physiology, 2000; 20: 421~434
    99. M. F. Proe and P. Millard. Relationships between nutrient supply, nitrogen partitioning and growth in young Sitka spruce(Picea sitchensis). Tree Physiology, 1994; 14: 75~88
    100. Magnus F. Knecht, and Anders Gransson. Terrestrial plants require nutrients in similar roportions. Tree Physiology, 2004; 24: 447~460
    101. Marianne K. Burke, B. Graeme Lockaby, and William H. Conner. Aboveground production and nutrient circulation along flooding gradient in a South Carolina Coastal Plain forest. Can. J. For. Res, 1999; 29: 1402~1418
    102. Mark Ducey and H. Lee Allen. Nutrient supply and fertilization efficiency in Midrotation Lobiolly Pine plantations: a modeling analysis. Forest Scienee, 2001; 47(1): 96~102
    103. Martha R. McKevlin, Donal D. Hook and William H. McKee, Jr. Growth and nutrient use efficiency of water tupelo seedlings in flooded and well-drained soil. Tree Physiology, 1995; 15: 753~758
    104. Masazumi Kayama, Kaichiro Sasa and Takayoshi Koike. Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology, 1998; 2: 707~716
    105. Melany C. Fisk Timothy J. Fahey. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry, 2001; 53(2): 201~223
    106. Mugasha A.G., Macdonald. Needle litter responses of peatland tamarack and black spruce to fertilization of minerotrophic peatland sites. Firest Ecology and Management, 1996; 87(1): 257~264
    107. Binkley-D, Graham-RL. Biomass, production, and nutrient cycling of mosses in an old-growth
    
    Douglas-fir forest. Ecology, 1981; 62(5): 1387~1389
    108. Myron J. Mitchell. Nitrogen biogeochemistry of three hardwood ecosystems in the Adirondack Region of New York. Biogeochemistry, 2001; 56(2): 93~133
    109. Neal A. Scott, Joseph D. White. Carbon and nitrogen distribution and accumulation in a New Zealand scrubland ecosystem. Can. J. For. Res, 2000; 30: 1246~1255
    110. Norby R.J., Long T.M., Hartz-Rubin J.S., O'Neill E.G.. Nitrogen resorption in senescing tree leaves in awarmer, CO2-enriched atmosephere. Plant and Soil, 2000; 224(1): 15~29
    111. Piatek K.B., Lee Allen H.. Site preparation effects on foliar N and P use, retranslocation, and transfer to litter in 15-years old Pinus taeda. Forest Ecology and Management, 2000; 129(1): 143~152
    112. Oliver Dilly and Paolo Nannipieri. Response of ATP content, respiration rate and enzyme activities in an arable and a forest soil to nutrient additions. Oecologia, 2001; 128(3): 431~442
    113. P. J. Correia and M. A. Martins-Louco. Leaf nutrient variation in mature carob(Ceratonia siliqua) trees in response to irrigation and fertilization. Tree Physiology, 1997; 17: 813~819
    114. P. Millard and M. F. Proe. Storage and internal cycling of nitrogen in relation to seasonal growth of Sitka spruce. Tree Physiology, 1992; 10: 33-43
    115. Jens Dyckmans and Heiner Flessa. Influence of tree internal N status on uptake and translocation of C and N in beech: a dual ~(13)C and ~(15)N labeling approach. Tree Physiology, 2001; 21: 395~401
    116. P. Millard. Measurement of the remobilization of nitrogen for spring leaf growth of trees under field conditions. Tree Physiology, 1994; 14: 1049~1054
    117. Peter M. Attiwill. Interactions between carbon and nutrients in the forest ecosystem. Tree Physiology, 1986; 2: 389~399
    118. R. B. Thomas, J.D. Lewis and B. R. Strain. Effects of leaf nutrient status on photosynthetic capacity in loblolly pine(Pinus taeda L.)seedlings grown in elevated atmospheric CO_2. Tree Physiology, 1994; 14: 947~960
    119. R. L. Everett and D. F. Thran. Nutrient dynamics in singleleaf pinyon(Pinus monophylla Torr & Frem.) needlesTree. Physiology, 1992; 10: 59~68
    120. R. Wendler, P. O. Carvalho, J. S. Pereira and P. Millard. Role of nitrogen remobilization from old leaves for new leaf growth of Eucalyptus globulus seedlings. Tree Physiology, 1995; 15: 679~683.
    121. R. J. Raison and R. Stottlemyer. Considerations in modeling change in temperate forest nitrogen. Tree Physiology, 1991; 9: 209~225
    122. Rine Aerts and Hannie de Caluwe. Nitrogen use efficiency of Carex species in relation to nitrogen supply. Ecology, 1994; 75(8): 2362~2372
    
    
    123. Rine Aerts. Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology, 1996; 84: 579~608
    124. Ross E. McMurtrie. Relationship of forest productivity to nutrient and carbon supply—a modeling analysis. Tree Physiology, 1991; 9: 87~99
    125. Sally Liu, Ronaid Munson, Dale Johnson, Steven Gherini. Application of a nutrient cycling model (NuCM)to a northern mixed hardwood and a southern coniferous forest. Tree Physiology, 1991; 9: 173~184
    126. Scott X. Chang and Caroline M. Preston. Understorey competition affects tree growth and fate of fertilizer-applied 15N in a Coastal British Columbia plantation forest: 6-year results. Can. J. For. Res, 2000; 30: 1379~1388
    127. Van Heerwaarden L. M., Toet S.; Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology, 2003; 91(6): 1060~1070
    128. Wahid P.A., Suresh P.R., George S.S. Absorption and partitioning of applied ~(15)N in a black pepper erythrina system in Kerala, India. Agroforestry System, 2004; 60(2): 143~147
    129. Wang W-Q, Wang M., Lin P.. Seasonal changes in element contents in mangrove element retranslocation during leafsenescene. Plant and Soil, 2003; 251(2): 187~193
    130. Holopainen J.K., Peltonen P.. Bright autumn colours of deciduous trees attract aphids: nutrient retransiocation hypothesis. Oilos, 2002; 99(1): 184~188
    131. Imo M., Timmer V.R. Growth and nitrogen retranslocation of nutrient loaded Picea mariana seedlings planted on boreal mixedwood sites. Canadian Journal of Forest Research, 2001; 31(8): 1357~1366
    132. Wingler A., Marès M., Pourtau N.. Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytologist, 2004; 161(3): 781~789

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700