用户名: 密码: 验证码:
北京西南山地森林绿量遥感反演的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文提出既能表现植被三维的特征,同时又要能够反映植被动态变化规律,本质上具有绿色色度内涵,能够更为真实地反映植被现实绿量,且适用于遥感影像数据的绿量表征指标;基于遥感影像资料结合同步样点实测数据,构建绿量经验反演模型,探寻能够达到精度要求,具有实用价值的基于像元信息分解的绿量反演模型,应用所构建的经验反演模型和研究区相关遥感影像资料,确定北京西南山地不同植被类型,不同坡向,不同海拔高度的森林绿量,分析北京西南山地森林绿量的空间分布和季节动态规律。研究结果如下:
     1.本研究提出采用叶面积指数(LAI)与叶绿素含量指数(CVI)的乘积形成耦合指标来表征绿量(vegetation quantity, VQ),即VQ=LAI×CVI。其本质上是具有绿色色度内涵的叶面积指数,能够较好的反映植被的三维空间特征,且对叶绿素含量高度灵敏。实际应用表明本文所界定的绿量指标能够在遥感影像中更为真实地反映植被的现实绿量。
     2.回归模型对比分析、绿量模拟值与实测值散点图分析和森林绿量季节动态监测表明,TSAVI作为自变量的乘幂回归方程适合作为绿量反演模型输入参数(R2=0.918, RMSE=1.534),绿量经验反演模型为:VQ=14.892×TSAVI0.779
     3.叶面积指数实测值与反演值之间的拟合精度检验表明,基于像元信息分解的绿量反演模型能够达到精度要求,可以采用像元分析法进行叶面积指数遥感反演,对于大尺度绿量反演和动态监测具有实用价值。
     4.北京西南山地森林绿量空间分布差异明显,绿量主要分布在海拔500m-1500m范围的山地。绿量分布格局上,房山和门头沟交界的山地以及门头沟区和房山区与河北交界山区等区域山地森林为高绿量分布区域。北京西南山地森林绿量总体平均值为8.378,其中,阔叶林8.028、针叶林8.354、灌木林8.905。绿量分布格局受林分类型变化影响明显。坡向对绿量存在一定影响,绿量平均值阴坡9.015,阳坡7.986,相同林分类型在4个海拔梯度均表现为阴坡绿量值大于阳坡。森林平均绿量随着海拔显著升高,不同海拔区平均绿量为海拔500m以下6.764,海拔500-1000m8.54,海拔1000-1500m9.318,海拔1500m以上为11.64,可以明显的看出在海拔500m以下的森林容易遭到破坏和干扰导致绿量降低,且阴坡和阳坡绿量均值差异较大。
     5.北京西南山地森林绿量变化规律与物候相关联密切。森林绿量平均值季节变化表现为:3月1.479,5月3.789,8月7.129,11月1.629,12月0.966;生长盛期(8月)绿量明显高于其他月份;阴坡和阳坡森林绿量季节变化均呈单峰曲线,在8月和12月分别达到极大值和极小值。4个海拔梯度上的植被绿量均在生长盛期(8月)达到最高值,生长停滞期(12月)达到最低值。
     本研究所提出的绿量指标,能够在遥感影像中更为真实地反映植被的现实绿量。采用本文的绿量指标,基于遥感影像资料和样点实测数据,对北京西南山区森林绿量的研究结果,可为北京城市不同的功能区的绿化系统评价提供技术参数,可供北京城市森林生态效益监测和评价参考。
This dissertation proposed vegetation quantity index that was capable of describing the 3-dimensional characteristics and dynamics of vegetation, with consideration of chromaticity of greenness and accurate estimation of vegetation quantity, and at the same time applicable for remote sensing data. Based on the remote sensing imagery and synchronized measurements from sample plots, empirical retrieval model of vegetation quantity was built, and effort was made on building practical and accurate retrieval vegetation quantity models based on pixel decomposition. Using the built retrieval models and related remote sensing imagery in the research area, a variety of forest types, slope aspects, and forest vegetation quantities at different altitudes in mountain area of southwestern Beijing were identified, and also analysis the spatial distribution and seasonal dynamics of forest vegetation quantity in mountain area of south-western Beijing. The results were as follows.
     (1) This study proposed using the product of leaf area index (LAI) and chlorophyll volume index (CVI) to describe the vegetation quantity, i.e. VQ=LAI X CVI. This was essentially an index with consideration of chromaticity of greenness, capable of better describing 3-dimensional characteristics of vegetation with high sensitivity on chlorophyll volume. Application showed that this index can estimate vegetation quantity more accurately from remote sensing imagery.
     (2) Comparisons among regression models, estimated vegetation quantities, scatter plots of measured values, and monitoring of seasonal forest vegetation dynamics showed that the power equation with TSAVI as the independent variable can be a good estimator of vegetation quantity (R2=0.918. RMSE=1.534). The empirical retrieval vegetation quantity model is VQ=14.892×TSAVI0.779.
     (3) Based on the validation of prediction accuracy using measured values of leaf area index and retrieved values, it was shown that retrieval vegetation quantity model based on pixel decomposition, which retrieves leaf area index by pixel decomposition, can meet the demand of accuracy. Thus it is useful in large-size vegetation quantity retrieval and dynamic monitoring.
     (4) There was significant heterogeneity in the spatial distribution of forest vegetation quantity in mountain area of south-western Beijing, with vegetation concentrated between 500m-1500m in altitude. In terms of the pattern of vegetation quantity distribution, forests in the mountain areas between Fangshan and Mentougou as well as between Fangshan and Hebei had high intensity of vegetation quantity. The average vegetation quantity in mountain area of southwestern Beijing was 8.378, with averages for broad-leaved forest, coniferous forest, and shrubbery being 8.028,8.354, and 8.905 respectively. The distribution patterns of vegetation quantity were significantly affected by the types of forest stand. Slope aspect had some effect on vegetation quantity, with averages at shady slope and sunny slope being 9.015 and 7.986 respectively. Shady slope had higher vegetation quantities than sunny slope at all four altitudes with the same type of forest stand. Average forest vegetation quantity increased significantly with altitude, with average vegetation quantities being:6.764 below 500m,8.54 between 500-1000m,9.318 between 1000-1500m, and 11.64 above 1500m. It was obvious that average vegetation quantity below altitude of 500m was low because forests there were vulnerable to destruction and disturbance, with significant difference between shady slope and sunny slope.
     (5) The dynamics of vegetation quantity in mountain area of southwestern Beijing were highly correlated with climate. The average forest vegetation quantities in different months were: March 1.47、May 3.789, August 7.129, November 1.629, December 0.966; growth season (August) had significantly higher value than other months; the seasonal dynamics of vegetation quantity at shady and sunny slopes can be both described by parabolic curves, with maximum and minimum at August and December respectively. The vegetation quantities at four altitudes all achieved their maximums in growth season (August) and their minimums in stagnation season (December).
     The vegetation quantity index proposed in this study can better describe the actual vegetation quantity from remote sensing imagery. Using the index proposed by this dissertation, the results from the research on forest vegetation quantity in mountain area of southwestern Beijing based on remote sensing imagery and data measured at sample sites, can provide technical support for the assessment of ecosystems in districts of different functions in Beijing, serving as references for monitoring and assessment of the benefit of forest ecosystems in Beijing.
引文
1. 安勇,卓丽环.哈尔滨市紫丁香绿量[J].东北林业大学学报,2004,32(6):81-83
    2. 安勇.哈尔滨市紫丁香“绿量”的研究[D],东北林业大学:哈尔滨,2003
    3. 曹骊.城市近郊绿地在城市生态与城市景观中的作用.中国园林,1989,(1):21-24
    4. 常学向,赵文智,赵爱芬·黑河中游二白杨叶面积指数动态变化及其与耗水量的关系[J].冰川冻土.2006,28(1):85-90.
    5. 陈春来,石纯,俞小明RS、GIS技术在城市绿地综合效益研究中的应用现状及展望[J].中国园林,2006(2):47-49
    6.陈自新,苏雪痕,刘少宗等.北京城市园林绿化生态效益的研究(6).中国园林,1998(6):53-56.
    7. 陈白新,苏雪痕.北京城市园林绿化生态效益的研究(2)[J].中国园林,1998,(2):51-54
    8.陈白新,苏雪痕.北京城市园林绿化生态效益的研究(3)[J].中国园林,1998,(3):53-56
    9. 陈白新,苏雪痕.北京城市园林绿化生态效益的研究(4)[J].中国园林,1998,(4):46-49
    10.邓孺孺,田国良,柳钦火.基于多次散射的植被一土壤二向反射模型.遥感学报,2004,5:193-200.
    11.邓孺孺.青藏高原地表反射率反演及冷热源分析.博士论文,北京:中国科学院研究生院,2002
    12.范闻捷等译,梁顺林著定量遥感[M].科学出版社:北京,2009,
    13.方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述(J).国土资源遥感,2003,3:58-62.
    14.傅银贞,汪小钦,江洪.马尾松LAI与植被指数的相关性研究[J].国土资源遥感.2010,85(3):41-46
    15.高清.都市森林[M].台湾:国立编译出版社,1984
    16.弓瑞.兴安落叶松叶面积指数反演与验证研究[D].呼和浩特:内蒙古农业大学,2008.;
    17.宫鹏,史培军,浦瑞良等.对地观测技术与地球系统科学[M].北京:科学出版社,1996
    18.郭威 李湛东 浅议绿量作为创建生态园林城市绿化指标的可行性[J].园林规划与设计,2007,30(126):37-39
    19.郭雪艳,南京常见园林植物的绿量研究[T].南京林业大学:南京.2009
    20.郭旖旎,沈阳市主要园林树种的绿量研究[T].沈阳农业大学:沈阳.2006
    21.郝敏,孔刚.城市林业[J].黑龙江园林,1995,3:69-70.
    22.黄慧萍,面向对象影像分析中的尺度问题研究[D].中国科学院研究生院:北京,2003
    23.黄晓鸾 城市生存环境绿色量值群的研究(2)关于城市生存环境的绿色量中国园,1998,14(2):55-57
    24.季彪俊等.遥感在城镇绿化植物三维绿色生物量和生态环境效应估算中的应用[J],附件农林大学学报.2005,34(1):102-107
    25.焦全军,张霞,张兵,等.基于叶片光谱的森林叶绿素浓度反演研究[J].国土资源遥感2006,68(2):26-30
    26.金福宇,曹立科,周大鹏等.城市绿量研究进展[J].现代园林,2002,(5):10-11
    27.靳华安,刘殿伟.三江平原湿地植被叶面积指数遥感估算模型(J).生态学杂志,2008,27(5):803-808.
    28.孔东莲门头沟道路边坡绿化植物选择研究[T].北京林业大学:北京.2007
    29.李大茂.紫丁香叶片面积测量方法的研究[J].甘肃林业科技,1994,1:25-27
    30.李凤秀,张柏.基于垂直植被指数的东北黑土区玉米LAI反演模型研究(J).干旱区农业研究,2008,26(3):33-38
    31.李凤秀,张柏.玉米叶面积指数与高光谱植被指数关系研究(J).遥感技术与应用,2007,50(10):586-592.
    32.李娟.垂直面绿化植物遮阳系数与叶面积指数研究[J].城市环境与城市生态,2001,14(5):4-5.
    33.李伟,家保全,王城,等.城市森林三维绿量研究现状与展望[J].世界林业研究.2008,21(4):31-34
    34.李小文植被光学遥感模型与植被结构参数化[M],科学出版社:北京,1995,
    35.李小文,遥感原理与应用[M],2008,科学出版社:北京
    36.李一为 京西矿业废弃地生境特征及植被演替研究[D],北京林业大学:北京.2007
    37.林文鹏,赵敏,张翼飞,等.基于SPOT 5遥感影像的城市森林叶面积指数反演[J].测绘科学,2008,33(2):57-63.;
    38.刘常富,何兴元,陈玮等.沈阳城市森林三维绿量测算[J].北京林业大学学报,2006,28(3):32-38
    39.刘礼.SPOT影像植被指数与落叶松林LAI相关性分析[T].南京:南京林业大学,2008.;
    40.刘立民,刘明.绿量-城市绿化评估的新概念[J].中国园林,2000,16(71):32-34
    41.刘琳.基于RS和GIS的半干早地区城市绿化三维量测算研究——以兰州市安宁区为例.[D].西北师范大学,2006
    42.柳钦火等,定量遥感模型、应用及不确定性[M],科学出版社:北京2010
    43.吕长春,王忠武,钱少猛.混合像元分解模型综述.遥感信息,2003,3:55-60
    44.吕妙儿,蒲英霞,黄杏元.城市绿地监测遥感应用[J].中国园林.2000,16(71):41-43
    45.骆知萌,田庆久,惠凤鸣.用遥感技术计算森林叶面积指数以江西兴国县为例[J].南京大学学报(自然科学),2005,41(3):253-258.;
    46.茅荣正基于Landsat图像的LAI提取研究[T]:河海大学:南京,2002
    47.蒙继华,吴炳方.李强子.全国农作物叶面积指数遥感估算方法[J].农业工程学报,2007.23(2):160-167
    48.倪健;蒋本和;吴继友.山东省台上金矿区赤松林叶绿素含量的季节动态[J],植物资源 与环境学报1993,2(4):54-39
    49.彭晓鹃 山区植被遥感及其多尺度研究—以广东省为例(T).中山大学:中山,2005
    50.彭望碌遥感概论[M].高等教育出版社:北京.2002
    51.彭镇华.中国城市森林.北京:中国林业出版社,2002
    52.#12
    53.浦瑞良,宫鹏,约翰R.米勤.美国西部黄松叶面积指数与高光CASIACASISI.数据的相关分析[J]环境遥感,1993,8(2):112-125
    54.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000
    55.戚继忠.枝径与叶面积协调生长关系的比较研究[J].南京林业大学学报(自然科学版),2004.28(1):92-94
    56.乔欣,马旭.冠层光谱植被指数评价大豆叶绿素和氮含量的优化研究[C]中国农业工程学会学术年会论文集第五分册.2005,135-139
    57.任海,彭少麟.鼎湖山森林群落的几种叶面积指数测定方法的比较[J].生态学报,1997,17(2):220-223.
    58.申晓瑜.北京市常见园林绿化植物的叶面积模型研究[T].北京林业大学.2007.
    59.孙筱祥,现代城市园林绿地生态系统工程与城市可持续发展风景园林2005,(1):3-8
    60.谭一波,赵仲辉.叶面积指数的主要测定方法[J].林业调查规划,2008.3(33)
    61.汤旭光,刘殿伟,宋开山,等.东北主要绿化树种叶面积指数高光谱估算模型研究遥感技术与应用2010,25(3):334-341
    62.唐延林,王纪华,黄敬峰,等,水稻成熟过程中高光谱与叶绿素、类胡萝卜素的变化规律研究[J].农业工程学报2003,19(6):167-173
    63.陶青,唐荣南,吴钰等.城郊森林区对城区环境生态影响.城市环境与城市生态,1995,8(2):13-16
    64.田庆久,闵祥军.植被指数研究进展(J).地球科学进展,1998,13(4):327-332.
    65.仝慧杰 森林生物量遥感反演建模基础与方法研究[D],北京林业大学:北京,2007
    66.宛敏渭论北京物候季节的划分与农时预测[J].中国农业气象1980,4:1-9
    67.王浩 基于高光谱测量的不同城市绿地群落类型绿化三维量反演[T].2008.华中农业大学.武汉
    68.王宏全,孙晓梅,张灿明,等,基于TM的北亚热带高山区日本落叶松林生物量模型[J].中南林业科技大学2010,30(10):10-17
    69.王巨斌,赵慧珠.提高沈阳市绿化生态效益的重要途径[J].辽宁师专学报,2004,6(4):86-88
    70.王蕾,张宏,哈斯等.基于冠幅直径和植株高度的灌木地上生物量估测方法研究[J].北京师范大学学报(自然科学版),2004,40(5):700-704.
    71.王木林.城市林业的研究与发展[J].林业科学,1995,31(5):460-466.
    72.王谦,陈景玲,孙志强.LAI-2000冠层分析仪在不同植物群体光分布特征研究中的应用中国农业科学2006,38(5):922-927
    73.吴朝阳牛铮基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进[J].植物学通报2008,25(6):714-721
    74.吴胜泽.绿量概念在城市绿化中的应用[J].内江科技,2006,2(23):153-156
    75.吴伟斌,洪添胜等.叶面积指数地面测量方法的研究进展[J].华中农业大学学报,2007:2(26).
    76.武红敢,乔彦友,陈林洪,等.马尾松林叶面积指数动态变化的遥感监测研究[J].植物生态学报,1997,21(5):485-488.;
    77.武鹏飞,李良序,朱进忠中大山北坡草地生物量估产模型研究[J].沙漠与绿洲气象2008,2(6):49-53
    78.席建超,张红旗,张志强.应用遥感数据反演针叶林有效叶面积指数[J].北京林业大学学报,2004,26(6):36-39.;
    79.肖荣波,周志翔,王鹏程等.3S技术在城市绿地生态研究中的应用[J].生态学杂志,2004,23(6):71-76
    80.薛利红,曹卫星,罗卫红等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报,200,28(1):47-52.
    81.阎传海,徐科峰.城市森林研究进展青岛建筑工程学院学报.2004,25(4):49-52
    82.阎传海,张海荣.宏观生态学[M].北京:科学出版社,2003;
    83.阎传海.植物地理学[M].北京:科学出版社,2001
    84.颜春燕,遥感提取植被生化组分信息方法与模型研究[D],中国科学院研究生院:北京,2003
    85.杨小波,吴庆书.城市生态学[M].北京:科学出版社,2000,129-147;
    86.姚付启,张振华,杨润亚,等.ANFIS在植被叶绿素含量高光谱反演中的应用[J].光谱学与光谱分析2010,7:1834-1838
    87.叶勤,骆天庆.航空遥感在城市绿色三维量调查中的应用[J].铁路航测,2000,(2):25-28
    88.叶勤,骆天庆.航空遥感在城市绿色三维量调查中的应用[J].铁路航测,2000,(2):25-28
    89.游先详,遥感原理及在资源环境中的应用[M],中国林业出版社2003
    90.张杭.基于RS的武汉城市乔木绿化二维量测算研究—以武汉市蛇山和紫阳湖公园为模式[D]华中农业大学:武汉,2007.
    91.张红旗,陈永瑞,牛栋.红壤丘陵区针叶林有效叶面积指数遥感反演模型[J].江西农业大学学报,2004,26(2):159-163.;
    92.张建国,吴静和.现代林业论[M].北京:中国林业出版社,1996,167-175
    93.张庆费,徐绒娣.城市森林建设的意义和途径探讨[J].大自然探索,1999,18(2):82-86.
    94.张晓阳,李劲峰.利用垂直植被指数推算作物叶面积系数的理论模式[J].遥感技术与应 用,1995,10(3):13-1
    95.张玉虎流域典型区土地利用/覆被变化与生态安全格局构建分析[D].新疆大学:乌鲁木齐.2008
    96.张志东 臧润国 基于植被指数的海南岛霸干岭热带森林地上生物量空间分布模拟[J].植物生态学报2009,3(5):833-841
    97.赵英时等,遥感应用分析原理与方法[M],2003,北京:机械工业出版社
    98.周坚华,黄顺忠.上海市绿化三维量调查及对策研究[J].中国园林,.997,(2):32-34
    99.周坚华,孙天纵.三维绿色生物盈的遥感模式研究与绿化环境效益估算[J].环境遥感,1995,(3)
    100.周坚华.城市绿量测算模式及信息系统.地理学报[J].2001,56(1):14-23
    101.周坚华.城市生存环境绿色量值群的研究(5)——绿化三维量及其应用研究.中国园林,1998,14(5):61-62
    102.周廷刚,罗红霞,郭达志.基于遥感影像的城市空间三维绿量(绿化三维量)定量研究[J1.生态学报,2005,25(3):415-420
    103.周一凡,周坚华.基于绿化三维量的城市生态环境评价系统[J].中国园林,2001,(5):77-78
    104.周宇宇,唐世浩,朱启祖,等.长白山自然保护区叶面积指数侧童及结果[J].资源科学,2003,25(6):38-42
    105.朱文泉,何兴元,陈玮.城市森林研究进展[J].生态学杂志,2001,20(5):55-59
    106.朱晓霞.兰州市主要绿化树种绿量的测定与评价[T].甘肃农业大学,2007
    107. Baldridge, A. M., S.J. Hook, C.I. Grove and G. Rivera,.. The ASTER Spectral Library Version 2.0. Remote Sensing of Environment,2009,113:711-715.
    108. Barclay, HJ et al. Conversion of total to projected leaf area index in conifers[J]. Canadian Journal of Botany.2000,78(4):447-454
    109. Baret, F., Jacquemoud, S., Guyot, G.,& Leprieur, C. (1992). Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sensing Environment,41(2-3),133-142.
    110. Blackburn, G. A. (1998). Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing Environment,66(3), 273-285.
    111.Blackmer, T. M., Shepers, J. S.,& Varvel, G. V. (1994). Light reflectance compared with other nitrogenstress measurements in corn leaves[J]. Agronomy Journal,86(6),934-938.
    112. Bonhomme R. Varlet Bc. Chartier P. The use of photo~graphs for determining the leaf area index of young crops[J].Photosynthesis.1974.8:299-301
    113. Broge,N.H. E.Leblance. comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J].Remote Sensing of Environment,2000,76:156-172
    114. Broge,N.H. J.V.Mortensen. Deriving green crop area index and canopy chloronphyll density of winter wheat from spectral reflectance data [J].Remote Sensing of Environment 2002,81:45-57
    115. Cable D. R. Estimating surface area of Ponderosa Pine foliage in central Arizona.1958. for. Sei.4:45-49;McPherson. E.G. Comparison of Five Methods for estimating Leaf Area index of Open-Grown Decifuous Tree[J].1998,24(2):98-11
    116. Chen J M etal. Defining leaf index for non-flat leaves[J]. Plant Cell Environ. 1992a.15:421-429
    117. Chen J M etal. Defining leaf index for non-flat leaves[J], Plant Cell Environ. 1992a.15:421-429;
    118. Chen J M, Pavlic G, Brown L, et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high resolution satellite imagery and ground measurements. Remote Sensing of Enviroment,2001,80:165-184.;
    119. Chen J M. Paul M R,Gower ST. et al Leaf area index of boreal forests:Theory, techniques and measurements[J].Journal of Geophysical Research.1997,102(24):29429-29443
    120. Chen J M. Paul M R,Gower ST. et al Leaf area index of boreal forests:Theory, techniques and measurements[J].Journal of Geophysical Research.1997,102(24):29429-29443
    121. Chen JM, Evaluation of Vegetation indices and a Modified Simple Ratio for Boreal Applications[J].IEEE Transactions on Geo science and Remote Sensing, 1996,34:1353-1368
    122. Chen JM,Cihlarj,Retrieving Leaf Area Index for Boreal Conifer Forests Using Landsat TM Images [J]. Remote Sensing of Evironment,1996,55:153-162
    123. Chen JM,Evaluation of Vegetation indices and a Modified Simple Ratio for Boreal Applications[J].IEEE Transactions on Geo science and Remote Sensing,1996,34:1353-1368
    124. Collins W. Photogram metric Engineering and Remote Sensing,1978,44(1):43
    125. Daughtry C. S. T. et.al Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing Environment,2000,74(2),229-239.
    126. Ek lundh, Lars. Estimating Leaf Area Index in Coniferous and Deciduous Forests in Sweden U sing Landsat Optical Sensor Data[C]//Proceedings of SPIE-The International Society for Optical Engineering.2002,4879:379-390.
    127. Eric F. Vetmote et al,1997)(Eric F. Vet-mote, Didier Tan& Jean Luc DeuzC, Maurice Herman, and Jean-Jacques Morcrette, Second Simulation of the Satellite Signal in the Solar Spectrum,6s:An Overview[J] IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.1997,35(3):675-686
    128. Forman RTT, Godron M. Landscape ecology. NewYork:John Wiley&Sons,1986 Forman RTT. Land Mosaics:The Ecology of Landscapes and Regions. London:Cambridge University Press,1995
    129. Gitelson, A. A.,& Merzlyac, M. N. (1996). Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiolology[J], 148(1),494-500.
    130. Gitelson, A. A., Kaufman, J. Y.,& Merzlyac, M. N. (1996). Use of a Green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing Environment,58(3), 289-298.
    131. Gong P. PU.R. and miller, J.R. Correlating Leaf area index of Pondersa pine with hyperspectral CASI data. Remote Sens.1992,18:275-281
    132. Gong,PuR, MillerjR, Coniferous forest leaf area index estimation Along the Oregon transect using compact air born espectro graphic imager data[J] Photo grammetric Engineering&RemoteSensing,1995,61(9):1107-1117
    133. Gonz lez-Sanpedro M C, Toan T L, Moreno J, et al Seasonal Variations of Leaf Area Index of Agricultural Fields R retrieved from Land sat Data [J]. Remote Sensing of Environment, 2008,112(3):810-824.
    134. Grace, J. Theoretical ratio between "one-side" and total surface area pine needles. Fof.Sci.1987,17:296-296
    135. Haboudane, D., Miller, J., Tremblay, N., Zarco-Tejada, P. J.,& Dextraze, L. (2002). Integration of narrowband vegetation indices for prediction of crop chlorophyll content for application to precision agriculture.
    136. Horler, D. N. H., Dockray, M.,& Barber, J. (1983). The red-edge of plant leaf reflectance. International Journal of Remote Sensing,4(2),273-288.
    137. Huete A R. A soil-adjusted vegetaion index (SAVI). Remote Sensing of Environment,1988,25:295-309.
    138. Jing M.Chen and Josef Cihlar. Retrieving leaf area index of Boraeal Conifer Forests using Landsat TM images[J]. remote sens. Environ.1996,(55):153-162
    139. Mcpherson E G. Accounting for benefits and costs of urban green space Landscape Urban Plann,1992,22:41-51
    140. Miller,R.W.Urban Forestry[M].New Jersey:Prentice Hall,1996.
    141. Price. J.C.Estimating leaf erea index ftom satellite data. Remote Sens.1993,31:727-734
    142. Ralf. K et al. comparison of direct and indirect estimation of leaf area index in mature Norway sprure stands of eastern Gemany[J]. Canadian Journal of Forest Research.2000,30(3)440-447
    143. Running S W, Nenani R R. Relating seasonal patterns of the AVHRR vegetation index to simulate photosynthesis and transpiration of forests in different climates[J]. Remote Sensing of Environment,1988,24:347-367
    144. Schepers, J. S., Blackmer, T. M., Wilhelm, W. W.,& Resende, M.. Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply [J]. Journal of Plant Physiology,1996,148:523-529.
    145. Smith,W.K, Schoettle, A. W. and Cui, M. Importance of method of leaf area measurement to the interpretation of gas exchange fo comples shoots. Tree physiol.1991,8:121-127
    146. Stnberg,P. Simulations of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canppies. Tree Physiol,1996,16:99-108
    147. Turner D P, Warren B C, Robert E K, et al Relationships Between Leaf Area Index and Landsat TM Spectral Vegetation Indices Across Three Temperate Zone Sites[J]. Remote Sensing of Environment,1999,70(1):52-68.
    148. V.incini M., E. Frazzi, P. D'Alessio. A broad-band leaf chlorophyll vegetation index at the canopy scale[J]. Precision Agric.2008,9:303-319.
    149. Vincini, M., Frazzi, E.,& D'Alessio, P.. Comparison of narrow-band and broad-band vegetation indexes for canopy chlorophyll density estimation in sugar beet. In J. V. Stafford (Ed.), Precision agriculture'07:Proceedings of the 6th European Conference on Precision Agriculture 2007:189-196). Wageningen, The Netherlands:Wageningen Academic Publishers.
    150. W u Jindong, Wang Dong, Bauer M E. Assessing Broadband Vegetation Indices and Quick Bird Data in Estimating Leaf Area Index of Corn and Potato Canopies [J]. Field Crops Research,2007,102(1):33-42.
    151. Watson. D J. Comparative Physiological studies on the growth field crops:I. Variation on net assimilation rate and leaf area betweens Pecies and varieties and within and between years[J], AnnBot.1947,11:41-76
    152. Wilson J W. Inclined Point quadrars[J]. New Phytology,1960,59:1-8
    153. Zhou J-H,Sun T-Z. Study on remote sensing model of three-dimensional green biomass and the estimation of environmental benefits of greenery[J]. Remote Sensing of Environment China,1995,10(5):162-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700