用户名: 密码: 验证码:
青藏高原地表反照率反演及冷热源分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表反照率是影响地表能量收支平衡的决定性因素之一,青藏高原具有极高的海拔和广阔的面积,其反照率对地区乃至全球的大气运动及气候有重要影响。本文的目的是对青藏高原地表反照率和冷热源参数进行定量反演。为获得较高的反演精度,采取象元组分信息分解的方法,将象元对应地物分解为土壤、植被、水分、水体、雪被等基本组分,然后根据这些组分的光谱组合模型用遥感数据计算象元中各组分含量,再根据组分含量反演半球反射率和反照率。
     为建立象元组分信息模型,本文对土壤光谱与土壤含水量及表面粗糙度的关系进行了深入研究,论证了含水量与土壤光谱呈指数关系,提出了土壤含水量与土壤光谱的函数关系式,并测定了土壤水吸收系数;在研究土壤光谱反射与散射过程基础上,提出了土块级土壤粗糙度与土壤光谱的函数关系式,进而提出了湿润、粗糙土壤反射率的数学模型,并通过实验证明了模型具有较高的精度。
     在植被反射率模型方面,本文根据青藏高原植被特点,对Hapke's等的植被冠层模型进行了改进,提出了更为实用的植被冠层模型。模型考虑前三次散射,既保证了计算精度,又减小了运算量。
     地形与反射率的关系是本文研究的一个重点。本文对崎岖山地象元的各入射光和反(散)射光分量进行了深入分析,在所提出的湿润土壤光谱模型和植被冠层模型的基础之上进一步提出了新的适合青藏高原的山地辐射传输模型。该模型同时考虑了土壤含水量、植被覆盖(LAI)、地形起伏和海拔高度的影响,并以象元坡面定义的半球空间立体角对环境入射光进行积分,使周围地形和天空散射光均得到适当考虑,计算量又在可接受范围内。
     在以上提出的山地辐射传输模型基础之上,对Irons等提出的10波段反照率计算方法进行了发展,提出了高原山区的反照率计算模型。并应用该模型对多时相的青藏高原反照率进行了计算。得到了比传统方法精度更高的结果。对反照率及其变化进行分析,发现反照率的总体分布与地形及雪域密切相关。地形伏大的山坡、山麓地区,反照率明显降低,山顶雪域分布区反照率显著上升。高原反照率年变化的主要原因是土壤含水量、雪盖分布面积及植被覆盖度的变化。
     然后,在翁笃鸣等提出的有关半经验公式的基础上,提出了根据反照率和
    
    地形参数计算高原地面向大气输送能量的日平均通量的算法,并以此作为判定冷
    热源的标准。用该方法对青藏高原1998年夏天、2000年夏至和冬至晴空条件下
    地面向大气的输送能日平均通量进行了计算。结果显示,地形与输送能日平均通
    量成正相关,青藏高原四季均为热源。夏季,整个高原为一强热源,其中高原南
    部为极强热源;冬季,高原南部为强热源,而北部则减弱为弱热源。
     最后针对青藏高原热力作用对气候的影响进行了分析。得到的结论是,高
    原的热源作用使高原上空形成一个大气对流系统,作用强时可形成反气旋,弱时
    在高原上空形成对流云系。在高原热力用和地形的共同作用下,来自西南或西面
    的潮湿空气在高原迎风坡面中部被抬升,两侧被地形分开,导致在高原南部和两
    侧的中国南方及印度一孟加拉地区雨量丰沛,而高原北面的中国北方则形成异常
    干旱的气候。该结论得到了大范围的GMS卫星图像云图和水汽分布图系列的验
    证。
Albedo is one of the most important factor which effect the balance of the outing and incoming solar energy of ground surface. Because Tibetan Plateau has the highest elevation on the world and a vast area, its albedo performs a most important influence to the atmospheric motion and climate of the region, and even of the globe. The objective of this paper is to retrieve the albedo of the plateau and then to calculate the parameters about hot or cold source quantitatively. To gain a higher precision of retrieval, the method of pixel information decomposition is introduced in. The method is to divide ground objects correspond to a pixel in to several basic components: soil, vegetation, moisture, water, and ice, and then, using remote sensing data, calculate the contents of every components according to the model by which the component's spectrum compose. After that semi-globe direction reflectance and albedo of pixel are calculated according to the contents of every component.
    For that, the relationship between soil spectrum and water content and the roughness of soil surface are deeply studied in the paper. And the exponent relation between water content and soil spectrum are demonstrated, then the function of water content and soil spectrum are put forwarded, and the curve of absorption coefficient of water content in soil measured. Basing the study on the course of reflection and scattering taking place on soil surface, a function of relation between soil spectrum and the roughness of clod was put forwarded. Then a mathematic model on the relation between soil spectrum and water content and surface roughness are proposed. The model was verified by experiment.
    To the aspect of bi-directional reflection distribution function of vegetation, according to the characteristics of the vegetation over Tibetan Plateau, a new model was proposed by improve Hapke's model to consider the scattered flux of the first three times, which obviously promote the precision, but the amount of calculation is reduced.
    To the influence of the plateau terrain, the impact of the elevation and the roughness of terrain to every energy component out and incoming are study, and basing the soil spectrum model proposed above, a new radiative transfer model of terrain area was put forwarded in which the soil water content, LAI, terrain roughness and elevation were considered synchronously, and incoming scatter light was integral with the solid angle of semi-globe space defined by the slope of the pixel, so
    
    
    scattering lights of terrain and the sky are properly considered, but the operation is still within the acceptable range.
    Basing the radiative transfer model of terrain area, a new model for calculating the albedo over terrain area was put forwarded by improve Irons' model of albedo calculation with 10 spectrurns. Using this model, albedos over Tibetan Plateau of different time were calculated. The results of albedo have higher precision than that get by traditional method. The result images showed that the distribution of albedo has a close connection with terrain and snow. Rough terrain areas have lower albedo, when albedo on snow area is much higher than other area. By comparing the albedo image of winter and summer, it is shown that albedo of Tibetan Plateau in winter is obviously large than that of in summer. The cause is that there are large distribution areas of moistly soil, wetly lands, and vegetative land, and smaller area of snow on the plateau.
    Then basing the empirical formal proposed by Weng Burning, a method for reckon the average flux of energy transfer from ground surface to the air of a day according albedo and terrain parameters was put forwarded. It is considered that the flux is a proper index to decide if the area is a hot source or a cold source. The average flux of energy transfer from ground surface to the air of a day of Tibetan Plateau in summer, 1998; the Summer Solstice and midwinter, 2000 are calculated. The results show that the flux has a positive relationship with elevation, and that, Tibetan Platea
引文
1. A. P. Leon and R. Escadafal, Statistical analysis of soil colour and spectroradiometric data for hyperspectral remote sensing of soil properties (example in a southern Italy Mediterranean ecosystem), INT. J. REMOTE SENSING, 2001, Vol. 22, No. 12: 2311-2328.
    2. Adams. J. B. Sabal. D. E., Kapos, V., Filho. R. A., Roberts. D. A., et al. Classification of multispectral images tose on tractions of endmembers: application to land-cover change in the Brayition Amayon. Remote Sensing of Environment. 1995. 52: 137-154.
    3. Al-Abbas, A. H., Swain, P. H., and Baumgardner, Relating organic matter and clay content to the multispectral radiance of soils, Soil, Sci. 114: 485
    4. Bowers, S. A., and Hanks, R. J. Reflection of radiant energy from soils, Soil Sci. 1965, 100: 130-138
    5. Brest, C. J. and Goward, S. N., Deriving surface albedo measurement from narrow band satellite data, 1987, Int. J. Remote Sensing, 1987, Vol. 8, No. 3: 351-367.
    6. B. L. Walthall, J, M, Norman, et al. Simple equation to approximate the bi-directional reflectance from vegetative canopies and bare soil surfaces, Applied Optics, 1985, Vol. 24 , No. 3 : 383-387
    7. B. Proy, D. Taner, and P. Y. Deschamps, Evaluation of Topographic Effects in Remotely Sensed Data, Remote Sens. Environ. 1989, 30: 21-32.
    8. Chandrasekhar, S., Radiative Transfer, 1960, Dover, New York
    9. Charles Ichoru, A Review of Mixture Modeling Techniques for Sub-Pixel Land Cover Estimation, Remote Sensing Reviews, 1996,13:161-186
    10. Christoph C. Borel and Siegfried A. W. Gerstl, Nonlinear Spectral Mixing Models for Vegetative and Soil Surfaces, Remote Sens. Environ. 1994,47:403-416
    11. Cipra, J. E., Banumgardner, M. F., Stoner. E. R., and MacDonald, R. B. Measuring radiance characteristics of soil with a field spectroradiometer, Soil Sci. Soc. Am. Proc. 1971, 35: 1014-1017
    12. Cruse, R. M., Linden, D. R., Radke, J. K.,Larsen, W. E., and Larntz, K., A model to predict tillage effects on soil temperature, Soil sci. Soc. Am. Proc., 1980,4: 378-383.
    13. Dana L. Woodruff, Richard P. Stumpf, Julie A. Scope, Remote Estimation of Water
    
    Clarity in Optically Complex Estuarine Waters, REMOTE SENS. ENVIRON. 1998, 68:41-52
    14. David M. Gates, Harry J. Keegan et. al , Spectral Properties of Plants, Applied Optics. 1965, Vol. 4(1) : 11-20
    15. David,L,B., and Alan Strahler, 1996, Image Brigheness & BRDF Workshop Issues. CSIRO Eargh Observation Centre BRDF Workshop ARSC8 March 28.
    16. Deering, D. W, Eck, T. F., and Otterman, J., Bidirectional reflectances of selected desert surfaces and their three-parameter soil characterization, Agric. Forest Meteorol. 1990, 52: 71-93.
    17. Dozier, J., and Grew, J. , Rapid Calculation of Terrain Parameters for Radiation Modeling from digital Elevation Data, IEEE Trans. Geosci, Remote sens., 1990,28:L 963-969.
    18. Dubayah, R., Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data. Water Resour Research, 1992, 28: 2496-2484
    19. Duguay, C. R., surface reflectance and albedo from Landsat-5 Thematic Mapper over Rugged terrain. Photogrammetric Engineering & Remote Sensing, 1992, 58: 551-558
    20. E.J.麦卡特尼,(潘乃先,毛节泰,王永生译),大气光学分子和粒子散射,科学出版社,1998
    21. E. R. Stoner and M. F. Baumgardner, Characteristic Variations in Reflectance of Surface Soil, Soil SCI. SOC.AM.J., 1981,45: 1161-1165.
    22. Escadatal, R., Girard. M., and Courault. D., Munsell soil color and soil reflectance in the visible spectral bands of Landsat MSS and TM data, Remote Sens. Enviro. 27:37-46.
    23. G. M. Foody, Soil moisture cantent data for remote sensing investigations of agricultural regions, INT. J. REMOTE SENSING, 1991, Vol. 12, No. 7: 1461-1469.
    24. G. T. Breece III and R. A Holmes, Bidirectional Scattering Characteristics of Healthy Green Soybean and Corn leaves in Vivo, Applied Optics, 1971, Vol. 10(1) : 119-127
    25. Gvander Heide and A. J. Koolen, Soil surface albedo and multispectral reflectance of ahort-wave radiation as a function of degree of soil slaking, Negh. J. agric. Sci. 1980, 28: 252-258
    26. Gerbermann, A. H. and Weher, D. D. Reflectance of varying mixtures of a clay soil and sand, Photogramm. Eng. Remote Sens. 1979,45: 1145-1151
    27. Goel, N. S., and Rozehnal, I., An Architecturally Realistic Model for Radiation Regime in Vegetation Canopies, Proceeding of IGARSS'92, 1992, 1: 48-50.
    28. Goodchild, M. F., and J. Lee, The coverage Problem and visibility regions on topographic surface, 1989, Annals of Operation Research, 1989, 18: 175-186.
    29. Gratton, J. D., Howarth, P. J., and Marceau, D. J., Using Landsat-5 Thematic Mapper and digital
    
    elevation data to determine the net radiation field of a mountain glacier. Remote Sensing of Environment, 1993, 43: 315-331.
    30. Gwynn H. Suit, The Calculation of the Directional Reflectance of a Vegetation Canopy, Remote Sensing of Environment. 1972. Vol. 2(2) : 117-125.
    31. Hamza Erol, A practical method for constructing the mixture model for a spectral class, INT. J. Remote Sensing, 2000, 21(4) : 823-830
    32. Hapke, B. W. Bidirectional Reflectance Spectroscopy Theory, J. Geophys. Res. 1981, 86:3039-3054.
    33. Hapke, B. W., Bidirectional reflectance spectroscopy, 4. The extinction coefficient and the opposition effect, Icarus, 1986, 67: 264-280
    34. Hill. J., and sturm, B., Radiometric correction of multiec mporal Thematic Mapper data for use in agricultural land-cover clssification and vegotation moniforing. Infernational Jornal of Remote Sensing. 1991, 12:1471-1491.
    35. Hopkinson, R. G, Measurements of sky luminance distribution at Stockholm, 1954, Belg. J. Opt. Soc. Amer., 44, 455-459.
    36. Idso, S. B., Jackson, R. D., Reginato, R. J., Kimball. B. A., and nakayama, f.s. The dependence of bare soil albedo on soil water content, J. Appl. Meteorol. 1975, 14: 109-113
    37. Irons, J. R., Johnson, B. L., and Linebaugh, G.H., Multiple-angle observations of reflectance anisotropy from an airborne linear array sensor, 1987, IEEE, Trans, Geosci. Remote Sens. GE-25:372-383.
    38. Irons, J. R., Johnson, K. J., and Daughtry, C. S. T, Estimating big bluestem albedo from directional reflectance measurements, Remote Sens. Enviorn. 1988, 25: 185-199.
    39. Irons, J. R., Weismiller, R. A., and Petersen , G. W., Soil reflectance, in Theory and Applications of Optical Remote Sensing (G. Asrar, Ed.). Wiley-Interscience, New York, 1989, 66-106.
    40. Ito, t., and Fujimura. S., Estimation of cover area of each category in a pixel by pixel decomposition into categories. Transactions of the soilety of Instrument and contral Engineers. 1987, 8: 20-25.
    41. J. R. IRON and K. J. RANSON, Estimation Big Bluestem Albedo from Directional Reflectance Measurements, REMOTE SENSING OF ENVIRONMENT, 1988, 25: 185-199
    42. J. Ranson and J. R. Iron, et al. Surface Albedo from Bidirectional Reflectance, REMOTE SENS. SENVIRON, 1991,35:201-211
    
    
    43. J. Wang, K. White and G. J. Robinson, Estimating surface net solar radiation by use of Landsat-5 TM and digital elevation models, INT. J. Remote sensing, 2000,Vol.1, 31-43.
    44. Jackson, F. X., Anderson, P.j., and Reginato, R. J, Net radiation calculated from remote multispectral and ground station meteorological data, Agricultural and Forest Meteorology, 1985,35:153-164
    45. Jerzy Cierniewski, A Model for Soil Surface Roughness Influence on the Spectral Response of Bare Soil in the Visible and Neat-Infrared Range, Remote Sensing. Environ. 1987. 23: 97-115.
    46. Jianjun Wang, Gary J. Robinson, and Kevin White, A Fast Solution to Local Viewshed Computation Using Grid-Based Digital Elevation Models, Photogrammetric Engineering & Remote sensing, 1996, Vol. 62, No. 10: 1157-1164
    47. John B Adams, Donald E. Said, Valerie Kapos, Raimundo Almeida Filho. et al, Classification of Multispectral Images Based on Fractions of Endmembers: Application to Lard-Cover change in the Brayilian Amayon. Remote Sensing. Environ. 1995. 52: 137-154.
    48. John B. Adams and Milton O. Smith. Spectral Mixture Modeling. A New Analysis of Rock and Soil Types at the Viking Lander 1 site, Journal of Geophysical Research, 1986. 7. 10. Val. 91, No.B8, P8098-8112.
    49. Joseph T. Woolley, Reflectance and Transmittance of Light by Leaves. Plant Physiology. May 1971, Vol. 47(5) : 656-662
    50. Jupp,D.L.B., Walker, J., Penridge, L, K, Interpretation of Vegetation Structure in Landsat MSS Imagery: A Case Study in Disturbed Semi-aric Eucalypt Woodland. Part2. Model-based Analysis, J. Environmental Management, 1986, 23:35-57
    51. Kawata, Y, Ueno, S., and Ohtani, A., The Surface Albedo Retrieval of Mountainous Forest Area from Satellite MSS Data, Appl. Math, Computation, 1995, 69(1) : 41-59.
    52. Kimes, D. S., and Sellers, P. J., Inferring Hemispherical reflectance of the earth's surface for global energy budgets from remotely sensed nadir of directional radiance values, Remote Sens. Environ., 1985, 18:205-223.
    53. Kimes, D. S., Markham, B. L., Tucker, C. J. and McMurtrey, J.E. Temporal Relationships Between Spectral Response and Agronomoic Variabjes of a Com Canopy, Remote Sens. Environ., 1981, 11:401-411.
    54. Kondratyev, L, Ya., Radiation Regime on Inclined Surfaces, Note Technique 152, 1977, MF No. 79 N 11613, World Meteorological Organization, Geneva, Switzerland.
    
    
    55. Kondratyev,k. Y., and Fedchenko, P. P., Recognition of soils by their reflectance spectra, Pochvovedenije 1980, 12: 47-53
    56. Krieble, K. T., Albedo of vegetated surfaces: its variability with differing irradiances, 1979, 8: 283-290.
    57. Li, X., and Strahler, A.H., Modeling ghe Gap Probability of Discontinuous Vegetation Canopy, IEEE Trans. Geosci. Remote Sens., 1988, GE-24: 906-919.
    58. Li, X., and Strahler, A.H., Modeling the Gap Probabibity of Discontinuous Vetetation Canopy, IEEE Trans. Geosci. Remote Sens, 1988, 26: 161-170.
    59. Li, X., Strahler, A.H., and Woodcock, C., A Hybird Geometric Optical-radiative Transfer Approach for Modeling Albedo and Direcion al Reflectance of Discontinuous Canopies, IEEE Trans. Geosci. Remote Sens., 1995, 33(2) :466-480.
    60. Li,X., and A.H.Strahler, 1992,Geometric-optical bi-directional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing, IEEE Trans. Geosic Rem. Sens, GE-30, 276-292.
    61. Li,X., and Atrahler, A.H., Geometric-optical Modeling of a Conifer Forest Canopy, IEEE Trans. Geosci. Remote Sens., 1985, GE-23,705-721.
    62. Li., and A.H Strahler, 1986, Geometric-optical bi-directional relectance modeling of a xonifer forest canopy, IEEE Trans. Geosci. Rem. Sens, GE-24,906-919.
    63. Mamabe, S. and D. G. Hahn, Simulation of atmospheric variability, Mon.wea. Rev., 1981, 109:2260-2286.
    64. Michel M. Verstraete, Bernard Pinty and Robert E. Dickinson, A Physical Model of Bidirectional Reflectance of Vegetation Canopys Theory, Journal of Geophysical Research, 199, 95(D8) :11755-11765
    65. Muramatusu,S.Furumi, A.Hayashi, M.Daigo, Pattern decomposition Method in the albedo space for Landsat TM and MSS data analysis, INT. J. Remote Sensing, 2000, 21(1) : 99-119
    66. Nandish Mattikalli, Soil Color Modeling for the Visible and Nearlnfrared Bands of Landasat Sensors Using Laboratory Spectral Measurements, Remote Sensing. Environ. 1997. 59: 14-28.
    67. Nilson, T., and Luusk, A. A Reflectance Model for the Homogeneous Plant Canopy and its Inversion, Remote Sens. Environ., 1989, 27: 157-167.
    68. Obukhor, A. I., and Orlov. D. s. Spectral reflectivity of the major soil groups and possibility of using diffuse reflection. Plchvovedenije 1964,2:83-94
    
    
    69. Orlov, D. S., 1966, Quantitative patterns of light reflection by soils. I. Influence of particle (aggregate) size of reflectivity. Doklady soil Sci.-Supplement Soviet Sci. 1966, 13: 1496
    70. Piech, K. r., and Walker, j. E., Interpretation of soils, Photogramm. Eng., 1974, 40: 87-94
    71. Pinker, R. T., and Stowe, L. L., Modelling planetary bi-directional reflectance over land, Int. J. Remote Sens., 1990, 11: 113-123.
    72. Pinty, B., and Verstraete, M. M., and Dickinson, R. E., A Physical model for prediction bi-directional reflectances over bare soils. Remote Sens. Environ. 1989, 27: 273-288
    73. Pokrowski, G. I. Ubereinen scheinbaren Mie-Effect und seine mogiche Rolle in der Atmospharenoptik, Z. Phys., 1929: 67-71
    74. Proy, C., Tanre, D., and Deschampls, P. Y., Evaluation of Topographic Effects in Remotely Sensed Data, Remote Sens. Environ. ,1989,30: 21-32.
    75. Ralph C. Temps and K. L. Coulson, Solar Radiation incident upon slopes of different orientations, Solar Energy, 1977, Vol. 19: 179-184
    76. Rayleigh, Lord, On the light from the sky, its polarization and colour, Phil. Mag., 1871, 41: 107-120.
    77. Robin M. Pope and Edward S.Fry, Absorption spectrurm (380-700 nm) of pure water. II. Integrating cavity measurements, Applied Optics, 1997, 36(33) :8710-8723
    78. Roujean, J. L., M. Leroy, and Deschamps, P.Y., Bidirectional Reflectance Model of the Earth's Surface for the Correction of Remote Sensing Data, J, Geophys. Res., 1992, 97: 20455-20468.
    79. S. A Bowers and R. J. Hanks, Reflection of Radiant Energy From Soil, Soil Science, Vol. 100,No.2:130-138
    80. S. Jacquemoud , F. Baret, and J. F. Hanocq, Modeling Spectral and Bidirectional Soil Reflectance, Remote Sens. Environ., 1992,41:123-132.
    81. Sandmerier, S., and Itten, K.L, A Physically-based Model to Correct atmospheric and Illumination Effects in Optical Satellite Data of Rugged Terrain, IEEE Trans. Geosci. Remote Sens., 1997,35:708-717.
    82. Steven, M. D., Standar distributions of clear sky radiance, Quarterly Journal Royal Meteorological Society, 1977, 103: 457-465.
    83. Stoner, E. R., Baumgardner, M. F., Weismiller, R. A., Biehl, L. L., and Robinson, B. F, Extension if laboratory-measured soil spectra to field conditions, Soil Sci. Soc. Am. Proc. 1980, 44:
    
    572-574
    84. Suits, G.H. The Calculation of the Directional Reflectance of Vevetative Canopy, Remote Sens. Environ., 1972,2:117-125.
    85. T.P. Dawson, P.J. Curran, P. R. J. North, and S. E. Plummer. The Propagation of Foilar Biochenical Absorption Features in Forest Canopy Reflectance: A Theoretical Analysis
    86. T.P. Dawson, P.j. Curran, P.R.J. North, and S.E. Plummer, The Propagation of Foliar Biochemical Absorption Features in Forest Canopy Reflectance: A Theoretical Analysis. Remote Sens. Environ. 1999, 67:147-159
    87. Teillet, P. M., Guindon, B., and Goodenough, D. G. , On, the Slope-aspoct Correction of Multispectral Scanner Data, Can. J. Remote Sens., 1982, 8(2) :84-106.
    88. Temps, R. C., and Coulsom, K., L., Solar radiation incident upon slope of different orientations. Solar Energy, 1977, 19:179-184
    89. Tousey, R. and hulburt, E. O., The visibility of stars in the daylight sky, 1948, J. Opt. Soc. Am.,1948, 38:886-896
    90. W. Verhoef, Light Scattering by Leaf Layers with Application to Canopy Mideling: The SAIL Model, Remote Sensing of Environment. 1984. Vol. 16(2) : 125-141.
    91. Walghall, C.L., Norman, J.M., Welles, J.M., Campbell, G, and Blad, B.L. 1985, Simple equation to approximate the bi-directional relectance from vegetation canopies and bare soil surfacels, Appl. Opt. Vol. 24, No.3, 383-387.
    92. Walsh, J. W. T., The science of daylight, 1961, Macdonald, London.
    93. Walthall, C. L., Norman, J. M., Wells, J. M., et al., Simple equation to appromimate the bi-directional reflectance from vegetative canopies and bare soil surfaces, Appl. Opt. 1985, 24: 383-387
    94. Wanner, W., X. Li, A. Strahler. On the Derivation of kernels and kernel-driven models of bidiredtional reflectance. Journal of Geophysical Research, 1995,100(D10) :21077-21089
    95. Wiesnet, D.,R., and Matson, M., Remote Sensing, 2nded. (J. E. Estes and G. A. Thorley, Eds.), 1983, American Society of Photogrammetry, Falls Church, VA, Vol. II
    96. Wolfg Wanner, Xiao Wen Li, and Alan H. Strahler 1995, On The Derivation of Kernels for Kernal-Driven Models of Bidirectional Reflectance. Manuscript, Being submiktted to JGR.
    97. Xiaowen Li, Alan H. Strahler, Geometric-Optical Modeling of a Conifer Forest Canopy, IEEE Transactions on Geoscience and Remote Sensing, 1985, Vol. GE-23(5) : 705-721
    98. Y. Q. JIN and Y, WANG, A genetic algorithm to simultaneously retrieve land surface roughness and soil wetness, INT. J. REMOTE SENSING 2001, Vol. 22. No 16: 3093-3099
    
    
    99. Yang, C., and Vidal, A., Combination of Digital Elevation Models wigh SPOT-1 HRV Multispectral Imagery for Reflectance Factor Mapping, Remote sens. Environ., 1990, 32:35-45
    100. Zhong Qiang, et al., Satellite observation of surface albedo over ghe Qinghai-Xizang plateau region. Advances in Atmospheric Sciences. 1988, 5: 57-85.
    101.陈烈庭,阎志新,青藏高原冬季异常雪盖影响初夏季风的统计分析,青藏高原气象会议论文集,科学出版社,1979.
    102.陈隆勋,龚知本,陈嘉滨等,东亚地区大气辐射能收支(二),气象学报,1964,34(3),329—344。
    103.陈隆勋,龚知本,陈嘉滨等,东亚地区大气辐射能收支(三),气象学报,1965,35(1),6—17。
    104.陈隆勋,龚知本,温玉濮等,东亚地区大气辐射能收支(一),气象学报,1964,34(2),146—161。
    105.陈世训,陈创买,气象学,农业出版社,1981
    106.陈晓峰,基于遥感和GIS的西藏“一江两河”地区环境动态监测与评价方法研究,博士论文,1996.6.
    107.陈章昭,夏季青藏高原地区的平均环流与对流活动情况,青藏高原气象学,科学出版社会1979,213-214
    108.董敏,徐祥德,朱文妹,青藏高原地表热通量变化及其对初夏东亚大气环流的影响,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,81-89。
    109.高志球,卞林根等,土壤热传导、热模型的解析解和那曲地区水热运动数值模拟研究,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,174-182.
    110.葛旭阳,陶立英等,青藏高原热力状况异常与长江中下游地区梅雨关系的相关分析及数值实验,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,64-71.
    111.龚子同,陈鸿昭,刘良梧,中国古土壤与第四纪环境,土壤学报,1989,26(4),379~387.
    112.何立富,青藏高原冬半年大-雪暴雪过程的研究,硕士论文,1998.5。
    113.简茂球,罗会邦,1998年青藏高原东部及其邻近地区大气热源与南海夏季风建立的关系,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,158-165.
    114.李放、吕达仁,1995,珠峰地区大气气溶胶光学特性,大气科学,19(6),755~763
    115.李微,陈隆勋,1998年青藏高原夏季降水季节变化特征及其对中国夏季降水和副热带同压活动影响的初步分析,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,16-27
    
    
    116.李维亮,夏季青藏高原上空臭氧总量低值区形成的模拟试验,中国地区大气臭氧变化及其对气候环境的影响论文集,气象出版社,1997.2,274~284.
    117.李小文,王锦地,植被光学遥感模型与植被结构参数化,科学出版社,1995
    118.刘晶淼,余锦华等,青藏高原西部地区地表通量的分布特征,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,196-203.
    119.刘强,地表组分温度反演方法及遥感像元的尺度结构,博士论文,2002.6。
    120.刘文军,青藏高原和邻近地区TBB的日变化特征及其与对流活动的关系,硕士论文,1996.5。
    121.乔全明,张雅高,青藏高原天气学,气象出版社,1994
    122.舒守仁,陈健,邓仁达,遥感反射光谱测试与应用研究,科学出版社,1988:10~19
    123.宋振鑫,青藏高原陆面过程参数化及中尺度二维数值试验,硕士论文,1997.5。
    124.宋正山,杨辉,我国夏季降水和青藏高原的作用,灾害性天气的过程及诊断,气象出版社,1995,114-119.
    125.孙治安,翁笃鸣,青藏高原地区及行星反射击率,应用气象学报,1994,5(4),394—401。
    126.陶诗言等,中国之暴雨,科学出片社,1980,140-144。
    127.王贵勇,塔里木盆地南缘戈壁的形成演变及其与沙漠黄土的关系,硕士论文,1990.6,P942
    128.王衍明,大气物理学,青岛海洋大学出版社,1993
    129.翁笃鸣,高建云,,青藏高原地表净辐射的气候学研究,南京气象学报,1993,16(4):464-470.
    130.翁笃鸣,张文宗,青藏高原夏季的散射辐射,南京气象学院学报,1984,(1):28-35
    131.翁笃鸣,高歌,利用卫星资料试作青藏高原地表净辐射场的气候反演,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,126-134.
    132.翁笃鸣,罗哲贤,山区地形气候,气象出版社,1988
    133.翁笃鸣等,青藏高原夏季大气透明度特征分析,南京大学气象学院学报,1983,(2):139-149.
    134.吴爱明,混合海气耦合模式的发展与ENSO气候系统预测,博士论文,1997.10
    135.吴国雄,张永生,青藏同原的热力和机械强迫作用以及亚洲季风的暴发,大气科学,1998,22(6):825-838
    136.肖青,机载遥感数据的定量化研究,博士论文,2002.6。
    137.徐国昌,李珊,洪波,青藏高原雪盖异常对我国环流和降水的影响,应用气象学报,1994,5(1):62-67.
    138.徐明,赵永提,青藏高原科季积雪对华东梅雨汛期限降水影响的数值试验,应用气象学报(增刊),110-115.
    
    
    139.徐祥德,张雪金等,青藏高原下垫面热力作用异常对江淮地区旱涝影响的动力学特征,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,1-15.
    140.徐兴奎,基于遥感和地理信息系统的中国地表能量特征分析,博士论文,1999.8。
    141.许绍祖,大气物理学基础,气象出版式社,1993
    142.闫广建,地表遥感要素反演研究,博士论文,1999.8。
    143.叶笃正,高由禧等,青藏高原气象学,科学出版社,1979.
    144.尹宏,大气辐射学基础,气象出版社,1993
    145.袁福明,青藏高原及其邻近地区的天气现象的气候特征,青藏高原气象学,科学出版社会1979,74-88
    146.张军华、刘莉、毛节泰,地基多波段遥感西藏当雄地区气溶胶光学特性,2000,大气科学,Vol.24(4):549~558
    147.章澄昌,周文贤,大气气溶胶教程,气象出版社,1995
    148.赵声蓉,宋正山,华北迅期降水与青藏高原热力异常关系的研究,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,27-42.
    149.郑庆林,宁青丽等,青藏高原动力和热力作用对热带大气环流影响的数值研究,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,98-105.
    150.中国科学院空间科学技术中心,中国地球资源光谱信息汇编,1986,能源出版社。
    151.钟强,吴士杰,利用AVHRR资料推算青藏高原地区地表反射率的方法,高原气象,1985,4(3),193—203
    152.周广胜,张新时,全球变化的中国气候-植被分类研究,植物学报,1996,38,(1)。
    153.朱国富,陈受钧,1995-1998年夏季青藏高原上及其邻域对流活动的天气气候学特征,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,106-117.
    154.朱乾根,白虎志,青藏高原冬季TBB特征及其与夏季亚澳季风异常的联系,亚洲季风研究的新进展,气象出版社,1996,143-149
    155.朱乾根,林锦瑞,寿绍文,天气气象学原理,气象出版社,1983。
    156.朱乾根,徐国强,1998年夏季青藏高原及其邻近地区低频降水分布和传播特征,第二次青藏高原大气科学实验理论研究进行,气象出版社,2000.8,52-63.
    157.朱永豪,邓仁达,卢亚非等,不同湿度下棕黄壤光谱反射率的变化特征及其在遥感意义,土壤学报,1984,21(2):194-201
    158.祝汉文等,青藏高原晴空行星反照率与地面反照率关系的研究,气象学报,1993,51(1),57—65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700