用户名: 密码: 验证码:
遥感提取植被生化组分信息方法与模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被是生态系统中最重要的组成成分之一。正确估计植被的生化含量为了解不同尺度的生态系统功能提供了非常有用的帮助。遥感为获得不同尺度生化组分含量提供了一个便捷的多元化工具。本文围绕遥感提取植被生化组分信息这一中心,从经验半经验的统计回归提取方法到反演物理模型来提取的方法,从方法分析到模型建立,进行了一个较为系统的研究。本文研究的主要内容和结论如下:
     首先回顾了不同的冠层和叶片物理模型,以生化组分反演为目的,对两个典型叶片模型PROSPECT和LIBERTY进行了详细讨论,从理论上模拟了叶片光谱,分析了PROSPECT和LIBERTY模型的每个参数的敏感性。
     其次讨论了利用经验和半经验关系提取植被生化组分信息的方法:1)用多元回归方法提取了干叶片纤维素,木质素,总碳和总氮含量,发现对于干叶片,无论是直接利用反射率还是利用反射率一阶导数都能得到很好的回归效果,并且能够很好的估计检验样本的组分含量,其中反射率一阶导数能够有效地去除部分干扰因素,表现要好于反射率。2)在叶片水平,从理论上分析了目前研究者提出的各种光谱指数的可用性及对叶片种类的敏感性,解释了为什么研究者利用这些指数都能很好地建立和叶绿素含量的回归关系,但又由于这些指数对于叶片类型的敏感性,从某个样本集上建立的的预测模型用于其它样本时会失效。考虑到要对叶片类型尽量不敏感,所建立的模型又要简单易用,本文利用指数GM建立了叶片叶绿素含量提取模型,通过实验数据验证,估计值和实际值非常一致,是一种可能加以应用的普适模型。3)在冠层水平,利用光谱指数TCARI和土壤可调节指数OSAVI的结合,能够明显地去除背景因素和LAI的影响,通过分析前人模型的优缺点,提出了一个新的叶绿素含量提取模型,经过实测玉米冠层数据验证,认为是可以用于提取农作物冠层叶绿素含量的方法。
     接下来本文对利用反演物理模型来提取生化组分含量的方法和存在的问题进行了详细的讨论:1)该方法受模型可反演性的约束,只有那些可反演的模型才能用于提取生化组分含量,叶片模型PROSPECT是一个完全可反演的模型,而LIBERTY模型对于生化组分含量的准确反演则依赖于对其它模型参数的准确先验知识。2)通过分析数据中的噪声性质,对反演所用的代价函数的选择进行了讨论,对于具体的应用问题,反演中应根据数据的性质选择不同的代价函数,如果数据中存在系统噪声,利用相关系数构造代价函数可明显地减小反演对于系统噪声的敏感性。3)以应用为目的,对于不同的反演算法(传统迭代优化算法SIMPLEX法,NEWTON法,Levenberg—Marquardt(LM)法以及近年被广泛应用的遗传算法)的反演结果从反演精度和所需要的CPU时间两方面进行了比较,指出LM是所讨论算法中反演准确性和耗费机
    
    遥感提取植被生化组分信息方法与模型研究
    时综合性能最好的;4)实际的反演问题常常是非常复杂的,利用多阶段反演,能够
    将复杂的问题化简,本文通过分隔参数集和数据集,在不同的波段反演不同的生化组
    分以及反演冠层模型得到叶片光谱,再反演叶片光谱得到生化组分的实践说明了多阶
    段反演的可行性;5)高光谱数据存在冗余,因此,进行波段选择是必要的,针对叶
    绿素和水分含量反演进行了波段选择,并对所选波段的意义进行了分析。反演结果说
    明,并不是波段数越多,反演生化组分信息就越准确,当波段数达到一定数目后,反
    演准确性不再提高,因此实际反演中只需要选择几个最优波段的组合就能达到目的;
    6)探讨了贝叶斯反演在生化组分反演中的作用,分别在叶片水平和冠层水平利用实
    测数据进行了生化组分含量的贝叶斯反演,并与其他的反演方法进行了对比,结果证
    明贝叶斯反演充分利用先验知识,反演结果受观测数据和先验知识的共同制约,对于
    大噪声数据,利用贝叶斯反演能够很好地约束反演结果。
     最后本文提出了一个冠层光谱的多项式表达模型,利用高阶多项式来描述光在冠
    层中的多次散射过程,不仅能很好地拟合冠层光谱,而且多项式系数具有明确的物理
    意义。植被结构信息体现在多项式系数上,对于任何结构的植被,都可以清楚地描述。
    多项式系数对于传统冠层模型中的热点现象、观测角度、LAI及叶片倾角的影响都能
    够真实地反映。利用多项式表达祸合叶片模型PROSPECT反演了两个不同类型的冠层的
    生化组分含量,得到了满意的结果。此外,反演实测的玉米冠层多角度高挂高光谱数据,
    获得了比较理想的叶绿素含量反演结果。说明多项式表达是一个有理论意义和潜在应
    用价值的新方法。
Vegetation is one of the most important components of the ecosystem. So it is important to obtain the content and spatial distribution of vegetation biochemical information over local to regional and eventually global scales. Remote sensing provides an easy and versatile tool to accurately estimate biochemical content information at different scales. Centered on biochemical information retrieval by remote sensing, this paper did a detailed study from retrieval by empirical and semi-empirical regression methods to retrieval by physical model inversion, and from method analysis to model development. The main contents and conclusions of this paper are summarized below.
    First, after different canopy and leaf physical models were reviewed, two traditional leaf models, PROSPECT and LIBERTY, were discussed in detail with respect to the aim of biochemical inversion. Leaf spectra were modeled theoretically and every parameter's sensitivity of these two models was analyzed.
    Second, empirical and semi-empirical vegetation biochemical information retrieval methods were discussed. l)Cellulose, lignin, total carbon and total nitrogen concentration of dry leaf were estimated by multiple regression. It was found out that good regression results can be obtained both by reflectance and first derivative of spectra, and biochemical concentration can be well estimated from validation data with the relationship derived by correction data. And the first derivative of reflectance performed better than reflectance. 2)Chlorophyll content retrieval methods at both leaf and canopy level were analyzed from theoretical as well as practical point of view. At leaf level, the applicability of different kinds of spectral indexes and their sensitivity to leaf types were analyzed, which explained why researchers can construct a good regression relationship between these indexes and chlorophyll content, but because these indexes are sensitive to leaf types, the estimation regression relationship made by
    some samples can not be applied to other samples. Considering as less sensitive as possible to leaf types and easy for application, this paper
    
    
    
    gave a chlorophyll content estimation relationship made with index GM; and testing with experiment data, the estimation and real values were consistent, which showed that it is a possibly applicable model. At canopy level, with spectral index TCARI and soil adjusted index OSAVI, the background and LAI's effects can be effectively removed. By analyzing former model's merits and drawbacks, a new chlorophyll content retrieval model was put forward at canopy level, and through validation with experimental com data, it is thought to be applicable to crop canopy chlorophyll content estimation.
    Third, a detailed discussion of physical model inversion to estimate biochemical content and existing problems was made. l)This method is limited by models' invertibility: only those models that are invertible can be applied to estimate biochemical content. Leaf model PROSPECT is totally invertible while accurate inversion of biochemical content information by LIBERTY model relies on accurate a priori knowledge of the other model parameter. 2)Through analyzing the properties of noises, how to choose the cost function used in inversion process was discussed. It is pointed out that for specific application, different cost function should be chosen according to data's property in inversion: if there exists systematic noise, correlation coefficient can be used in cost function to reduce inversion results' sensitivity to systematic noise. 3)Aiming at application, the performance of different algorithms(traditional optimization algorithm SIMPLEX, NEWTON, Levenberg-Marquardt(LM) and genetic algorithm that is widely used in recent years) were compared in terms of inversion accuracy and CPU time cost. The study pointed out that LM algorithm is the best one. 4)Actual inversion problem is often very complex, multi-stage inversion can simplify complicated inversion problems. In this paper, the feasibility of multi-stage inversion was
引文
[1] Aber, J. D., and Federer, C. A. (1992), A generalized, lumped-parameter model of photosynthesis, evaportranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92, 463-474.
    [2] Aber, J. D., and M. Martin. 1999. Leaf Chemistry, 1992-1993 (ACCP). Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, U.S.A.
    [3] Ahem, F. J. (1988), The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine. Int. J. Remote Sens., 9:1451-1468.
    [4] Allen, W. A. and Richardson, A. J.(1968), Interaction of light with a plant canopy. Journal of the Optical Society of America, 58:1023-1028.
    [5] Allen, W. A., Gansman, H. W., Richardson, A. J., and Thomas, J.R. Interaction of Isotropic Light with a Compact Plant Leaf[J]. J. Opt. Soc. Am., 1969,59(10): 1376-1379.
    [6] Allen, W. A., Gayle and Richardson, A. J. (1970), Plant canopy irradiance specified by the Duntley equations, J.Opt. Soc.Am., 60(3):372-376.
    [7] Allen W.A., Gausman H.W., Richardson A.J. (1973a), Willst?tter-Stoll theory of leaf reflectance evaluation by ray tracing,. Appl. Opt., 12:2448-2453.
    [8] Allen, W. A.(1973b), Transmission of isotropic light across a dielectric sttrface in two and three dimensions. J. Opt. Soc. Am, 63(6): 664-667.
    [9] Aoki M., Yabuki K., Totsuka T., Nishida M. (1986), Remote sensing of chlorophyll content of leaf (I) Effective spectral reflection characteristics of leaf for the evaluation of chlorophyll content in leaves of dicotyledons. Environ. Control in Biol., 24(1):21-26.
    [10] Barbara J. Yoder and Rita E. Pettigrew-Crosby (1995). Predicting Nitrogen and Chlorophyll Content and Concentrations from Reflectance Spectra (400-2500nm) at Leaf and Canopy Scales. Remote Sensing of Environment, 53, 199-211.
    [11] Baret, E, Vanderbilt, V. C., Steven, M. D., and Jacquemoud, S. (1994), Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical properties. Remote Sens. Envrion., 48, 253-260.
    [12] Baret, F., and Fourty, Th. (1997), The limits of a robust estimation of canopy biochemistry. In: G. Guyot, & Th. Phulpin (Eds.). Physical measurements and signatures in remote sensing (pp. 413-420). Rotterdam: A. A. Balkema.
    [13] Barnes, J. D. (1992), A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higer plants. Environmental Experimental Botany., 2: 85-100.
    [14] Barry D. Ganapol, Lee F. Johnson, Philip D. Hammer, Christine A. Hlavka, and David L. Peterson (1998), LEAFMOD: a new within-leaf radiative transfer model. Remote Sens. Environ, 63, 182-193.
    [15] Belanger M.J. (1990), A seasonal perspective of several leaf developmental characteristics as related to the red edge of plant leaf reflectance", MSc Thesis, York University, 110 pp.
    [16] Benford, F. (1946), Radiation in a diffusing medium. Journal of the Optical Society of America, 36: 524-537.
    [17] Bisun Datt (1998), Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total
    
    carotenoid content in Eucalyptus leaves. Remote Sens. Environ., 66, 111-121.
    [18] Blackburn, G. A. (1998), Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sens. Environ., 66, 273-285.
    [19] Brakke T.W., Smith J.A.(1987 ), A ray tracing model for leaf bidirectional scattering studies, in Prec. 7th Int. Geosci. Remote Sens. Syrup. (IGARSS'87), Ann Arbor (MI), pages 643-648.
    [20] Broge, N. H. and Mortensen, J. V. (2002), Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ., 81, 45-57.
    [21] Card, D. H., Peterson, D. L., &Matson (1988), Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy, Remote Sensing of Envrionment, 26, 123-147.
    [22] Carter, G. A. (1991), Primary and secondary effects of water content of the spectral reflectance of leaves. Am. J. Bot., 78: 916-924.
    [23] Carter, G. A. (1993), Responses of leaf spectral reflectance to plant stress. Am. J. Bot., 80:239-243.
    [24] Carter, G. A. (1994), Ratios of leaf reflectance in narrow wavebands as indicators of plant stress. Int. J. Remote Sensing, 15:697-704.
    [25] Chang, S. and Collins, W. (1983), Confirmation of the airborne biogeophysieal mineral exploration technique using laboratory methods. Economic Geology, 723-736.
    [26] Chappelle, E. W., Kim, M. S., and McMurtrey, J. E., Ⅲ(1992), Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B and the carotenoids in soybean leaves. Remote Sens. Environ., 39, 239-247.
    [27] Collins, W.(1978), Remote sensing of crop type and maturity. Photogrammetric Engineering and Remote Sensing, 44, 43-55.
    [28] Conel J.E., van den Bosch J., Grove C.I. (1993), Application of a two-stream radiative transfer model for leaf lignin and cellulose concentrations from spectral reflectance measurements. Parts 1 & 2, in Proc. 4th Annual JPL Airborne Geoscience Workshop, Volume I. AVIRIS Workshop (R.O. Green, Ed), 25-29. October 1993, Washington (DC), NASA-JPL Publication 93-26, pages 39-51.
    [29] Curran, P. J. (1989), Remote sensing of foliar chemistry, Remote Sensing of Environment, 30, 271-278.
    [30] Curran, P. J., Dungan, J. L., and Gholz, H. L.(1990), Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology, 7, 33-48.
    [31] Curran, P. J., Dungan, J. L., Macler, B. A., and Plummer, S. E. (1991), The effect of a red leaf pigment on the relationship between red-edge and chlorophyll concentrations. Remote Sens. Environ., 35, 69-75.
    [32] Curran, P. J, Dungan, J. L., Macler, B. A., Plummer, S. E., & Peterson, D. L. (1992), Reflectance spectroscopy of fresh whole leaves for the estimation of chemical composition. Remote Sensing of Environment, 39, 153-166.
    [33] Curran, P. J., Dungan, J. L., Peterson, D. L. (2001), Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sens. Environ, 76, 349-359.
    [34] Curran, P. J., Kupiec, J. A., & Smith, G. M. (1997), Remote sensing the biochemical composition of a slash pine canopy. IEEE Transactions on Geoscience and Remote Sensing, 35, 415-420.
    [35] Daughtry, C. S. T., Walthall, C. L., Kim, M. S., E. Brown de Colstoun, and McMurtrey Ⅲ, J. E. (2000), Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ., 74, 229-239.
    [36] Davis, L. D. (1991), Handbook of genetic algorithms, Van Nostrand Reinhold.
    
    
    [37] Dawson, T. P., Curran, E J., North, P. R. J., &Plummer, S. E. (1998), LIBERTY: modeling the effects of leaf biochemistry on reflectance spectra. Remote Sens. Environ. 65, 50-60.
    [38] Dawson, T. P., Curran, P. J., North, P. R. J., & Plummer, S. E. (1999), The propagation of foliar biochemical absorption features in forest canopy reflectance: a theoretical analysis. Remote Sensing of Environment, 67, 147-159.
    [39] Dungan, J. L., Johnson, L., Billow, C. et al. (1996), High spectral resolution reflectance of Douglas fir grown under different fertilization treatments: experiment design and treatment effects, Remote Sensing of Environment, 55,217-228.
    [40] Filella and J. Pe?uelas (1994), The red edge position and shape as indicators of plant chlorophyll content, biomass and hydrie status. Int. J. Remote Sens., 15, 1459-1470.
    [41] Fillella, I., Amaro, T., Araus, J. L., and Pe?uelas, J., (1996), Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI). Physiologia Plantarum, 96:211-216.
    [42] Fourty, Th, E Baret, S. Jacquemoud, G. Schmuck, and J. Verdebout (1996), Leaf optical properties with Explicit Description of its biochemical composition: direct and inverse problems, Remote Sens. Environ.,56:104-117.
    [43] Fourty, Th., & Baret, E (1998), On spectral estimates of fresh leaf biochemistry. International Journal of Remote Sensing, 19, 1283-1297.
    [44] Fukshanky, L., Fukshansky-Kazarinova, N. and Remisowsky, A. M. V. (1991), Estimation of optical parameters in a living tissue by solving the inverse problem of the multiflux radiative transfer. Appl. Opt.,30:3145-3153.
    [45] Gamon, J. A., Field, C. B., Bilger, W., Bj?rkman, O., Fredeen, A. L., and Pe?uelas, J. (1990), Remote sensing of the xanthophylls cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia, 85: 1-7.
    [46] Gamon, J. A., Pe?uelas, J., and Field, C. B. (1992), A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ., 41:35-44.
    [47] Gamon, J. A., Serrano, L. and Surfus, J.S. (1997), The photochemical reflectance index: an optical indicator of photosynthetic radiation-use efficiency across species, functional types, and nutrient levels. Oecologia, 112:492-501.
    [48] Gamon, J. A. and Surfus, J.S. (1999), Assessing leaf pigment content and activity with a reflectometer. New. Phytol., 143:105-117.
    [49] Ganapol B., Johnson L., Hammer P., Hlavka C., Peterson D. (1998), LEAFMOD: a new within-leaf radiative transfer model. Remote Sens. Environ., 6:182-193.
    [50] Gitelsoa, A. A., Merzlyak, M. N. (1994), Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves, Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 143,286-292.
    [51] Gitelson, A. A., Merzlyak, M. N., and Grits, Y. (1996a), Novel algorithms for remote sensing of chlorophyll content in higher plants. IEEE Trans. Geosci. Remote Sens. 4, 2355-2357.
    [52] Gitelson, A. A., and Merzlyak, M. N. (1996), Signature analysis of leaf reflectance spectra: J. Plant Physiol., 148,494-500.
    [53] Gitelson, A. A., Merzlyak, M. N., and Lichtenthaler, H. K. (1996b), Detection of red edge position and chlorophyll content by reflectance measurements near 700nm. J. Plant Physiol., 148,501-508.
    [54] Gitelson, A. A., &Merzlyak, M. N. (1997), Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18,2691-2697.
    
    
    [55] Gitelson, A. A., Bnschman, C., and Lichthenthaler, H.K. (1999), The chlorophyll fluorescence ratio F735/F700 as an accurate measure of chlorophyll content in plants. Remote Sens. Environ., 69:296-302.
    [56] Goel, N. S., and D. E. Strebel (1983), Inversion of vegetation canopy reflectance models for estimating agronomic variables. Remote Sens. Environ., 13: 487-507.
    [57] Goel, N. S., and Thompson, R.L. (2000), A snapshot of canopy reflectance models and a universal model for the radiation regime. Remote Sensing Reviews.
    [58] Goetz, S. J. and Prince, S. D. (1996), Remote sensing of net primary production in boreal forest stands. Agricultural and Forest Meteorology, 78: 149-179.
    [59] Govaerts Y.M., Jacquemoud S., Verstraete M.M., Ustin S.L. (1996), Three-dimensional radiation transfer modeling in a dicotyledon leaf, Appl. Opt., 35(33):6585-6598.
    [60] Goward, S. N., Tucker, C. J., and Dye, D. G.(1985), North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetation, 64: 3-14.
    [61] Gregory A. Carter, and Alan K. Knapp(2001), Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot., 88:677-684.
    [62] Grossman, Y. L, S. L. Ustin, S. Jacquemoud, E. W. Sanderson, G Schmuck, and J. Verdebout (1996), Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sens. Enviorn., 56, 182-193.
    [63] Guyot, G.(1990), Optical properties of vegetation canopies. In Applications of Remote Sensing in Agriculture, edited by M. D. Steven and J. A. Clark (London: Butterworths),pp. 19-44.
    [64] Haboudane, D., Miller, J. R, Tremblay, N., Zarce-Tejada, P. J., and Dextraze, L. (2002), Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ., 81, 416-426.
    [65] Horler, D.N.H., Barber J., and Dockray M.(1980), Effects of heavy metals on the absorbance and reflectance spectra of plants. Int. J. Remote Sensing, 1:121-136.
    [66] Horler, D.N.H., Dcckray, M., and Barber, J. (1983), The red edge of plant leaf reflectance. Int. J. Remote Sens., 4, 278-288.
    [67] Hosgood, B., Jacquemoud, S., Andreoli, G, Verdebout, J., Pedrini, G, and Schmuck, G.(1995), Leaf Optical Properties Experiment 93 (LOPEX93) Report EUR-16096-EN[R]. European Commission, Joint Research Centre, Institute for Remote Ssnsing Applications, Ispra, Italy.
    [68] Huete, A. R. (1988), A soil-adjusted vegetation index (SAVI). Remote Sens. Environ., 25, 295-309.
    [69] Hunt E.R., Rock B.N., Nobel P.S. (1987), Measurement of leaf relative water content by infrared reflectance. Remote Sens. Environ., 22:429-435.
    [70] Hunt E.R., Rock B.N. (1989), Detection of changes in leaf water content using near and middle-infrared reflectances. Remote Sens. Environ., 30(1):43-54.
    [71] Inian Moorty, John R. Miller, P.J.Zarco-Tejada, and Th. L. Noland (2003), Needle chlorophyll content estimation: a comparative study of PROSPECT and LIBERTY. Proc. of International Geoscience and Remote Sensing Symposium, 21-25, July, Toulouse, France.
    [72] Inian Moorty, John R. Miller, Th. L. Noland, Udo Nielsen, and P.J.Zarco-Tejada, and(2003), Chlorophyll content estimation of boreal conifers using hyperspectral remote sensing.Prec, of International Geoscience and Remote Sensing Symposium, 21-25, July, Toulouse, France.
    [73] Inoue Y., Morinaga S., Shibayama M (1993), Non-destructive estimation of water status of intact crop leaves based on spectral reflectance measurements. Jpn. J. Crop. Sci., (3):462-469.
    [74] J. Bayliss, J. A. Gualtieri, R.E Cromp (1998), Analyzing hyperspectral data with independent
    
    component analysis. Proc. SPIE, vol. 3240, pp. 133-143.
    [75] J.M. Chen and S. G. Leblane(1997), A four-scale bidirectional reflectance model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 35:1316-1337.
    [76] Jackson, R.D., Reginato, R. T., Printer, P.J., and Idso, S.B. (1979), Plant canopy information extraction from composite scene reflectance of row crops. Appl. Opt., 18:3775-3782.
    [77] Jahnke, L.S. and Lawrence, D.B. (1965), Influence of photosynthetic crown structure on potential productivity of vegetation, based primarily on mathematical models. Ecology, 16:319-326.
    [78] Knipling E. B.(1969), Leaf reflectance and image formation on color infrared film, in Remote Sensing in Ecology (P.O. Johnson, Ed), University of Georgia, Athens, pp. 17-29.
    [79] Kokaly, R. F.and Clark R. N. (1999), Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression, Remote Sens. Environ., 67: 267-287.
    [80] Kokaly, R. F.(2001), Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens. Environ., 75, 153-161.
    [81] Kupiec, J. A., and Curran, P. J. (1995), Decoupling the effect of the canopy and foliar biochemical concentration in AVIRIS spectra. Int. J. Remote Sens., 16, 1731-1739.
    [82] Kumar R., Silva L. (1973), Light ray tracing through a leaf cross section, Appl. Opt., 12: 2950-2954.
    [83] Kussk (1991), The hot spot effect in plant canopy reflectance, in Photon-Vegetation Interactions. Application in Optical Remote Sensing and Plant Ecology.
    [84] Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. Wright(1998), Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization, 9(1): 112-147..
    [85] Li, X., and Strahler, A.H. (1986), Geometrical-Optical bidirectional reflectance modeling of a conifer forest canopy. IEEE Trans. Geosci. Remote Sensing, GE-24:906-909.
    [86] Li, X., and Strahler, A.H. (1992), Geometric-optical bidirectional reflectance modeling of the discrete-crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sensing, 30:276-292.
    [87] Li, X., Strahler, A.H., and Woodcock, C.E. (1995), A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies. IEEE Trans. Geosci. Remote Sens., 33: 466-480.
    [88] Lichtenthaler, H.K.(1988), Applications of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. The Netherlands :Kluwer Academic Publishers.
    [89] Lichtenthaler, H.K. and Rinderle, U.(1988), The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev. Anal. Chem 19 (Suppl. 1): 529-585.
    [90] Lichtenthaler, H.K.(1992), The kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynthetica, 27:45-55.
    [91] Lichtenthaler H.K., Gitelson A., Lang M. (1996), Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. J. Plant Physiol., 148:483-493.
    [92] Lorenzen, B., and Jensen, A. (1989), Changes in leaf spectral properties induced in barley by cereal powdery mildew. Remote Sens. Environ., 27: 201-209.
    [93] Madsen, K. and H. Schjaer-Jacobsen(1979), "Algorithms for Worst Case Tolerance Optimization," IEEE Transactions of Circuits and Systems, Vol. CAS-26.
    
    
    [94] Ma.Q., Ishimaru A., Phu P., Kuga Y. (1990), Transmission, reflection, and depolarization of an optical wave for a single leaf, IEEE Trans. Geosci. Remote Sens., 28:865-872.
    [95] Marten, G, Shenk, J., Barton Ⅱ, F.E. (1989). Near infrared reflectance spectroseopy(NIRS): Analysis of forage quality, U. S. Dept. of Agric. Handbook 643, USDA, Washington, DC.
    [96] Maier S.W., L?deker W., G?nther K.P. (1999), SLOP: A revised version of the stochastic model for leaf optical properties, Remote Sens. Environ., 68(3):273-280.
    [97] Martinez v. Remisowsky A., McClendon J.H., Fukshansky L. (1992), Estimation of the optical parameters and light gradients in leaves: multi-flux versus two-flux treatment. Photochem. Photobiol., 55:857-865.
    [98] MeLellan, T. M., Aber, J. D., Martin, M. E., Melillo, J.M., and Nadelhoffer, K. J. (1991), Determination of nitrogen, lignin, and cellulose content of decomposing leaf material by near infrared reflectance spectroscopy, Can. J. For. Res., 21, 1684-1688.
    [99] Milton, N. M., and Mouat, D.A.(1989), Remote sensing of vegetation response to natural and cultural environment conditions. Photogrammetric Engineering and Remote Sensing, 55, 1167-1173.
    [100] M.M.Verstraete and Bernard Pinty(1996a), Designing optimal spectral indexes for remote sensing applications. IEEE Transactions on Geoscience and Remote Sensing, 34(5): 1254-1265.
    [101] M.M.Verstraete, Bernard Pinty and Ranga B. Myneni(1996b), Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sens. Environ., 58, 201-214.
    [102] Moulin ,S., Guerif M., Baret F.(2003), Retrieval of biophysical variables on N-treatments of a wheat crop using hyperspectral measurements. Proc. of International Geoseience and Remote Sensing Symposium, 21-25, July, Toulouse, France.
    [103] Moulin. S, R. Zurita Milla, M. Gueri and E Baret (2003), Characterizing the spatial and temporal variability of biophysical variables of a wheat crop using hyperspectral measurements. Proc. of International Geoscience and Remote Sensing Symposium, 21-25,July, Toulouse, France.
    [104] Myneni, R. B., and Ross, J. N., Eds(1991), Photon-vegetation interactions: applications in optical remote sensing and plant ecology, Springer-Verlag, New York.
    [105] N. Keshava and J.E Mustard(2002),Spectral unmixing. IEEE Signal Processing, 19(1): 44-57.
    [106] Ni, W., Li, X., Curtis, E., Caetano, M., and Strahler, A. H.(1999), An analytical hybrid GORT model for bidirectional reflectance over discontinuous plant canopies. IEEE Trans. Geosci. Remote Sensing, 37(2): 987-999.
    [107] Patrice Bicheron and Marc Leroy (1999), A Method of Biophysical Parameter Retrieval at Global Scale by Inversion of a Vegetation Reflectance Model. Remote Sens. Environ.,67,251-266.
    [108] P.Kubelka and EMunk(1931), Z.Tech.Physik 11,593.
    [109] Park, J.K., and Deering, D.W., (1982), Simple radiative transfer model for relationships between canopy biomass and reflectance. Appl. Opt., 21:301-309.
    [110] Pe?uelas, J., Fillella, I., Lloret, P., Mu?oz, F., Vilajeliu, M., (1992), Remotely measured canopy temperature of greenhouse strawberries as indicator of water stress and yield under mild and very mild water stress conditions. Agricultural and Forest Meteorology, 58: 63-77.
    [111] Pe?uelas, J., Gamon, J.A., Fredeen, A.L., Merino, J., and Field, C.B. (1994), Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environ., 48: 135-146.
    [112] Pe?uelas J., Filella I., Biel C., Serrano L., Sav? R. (1993), The reflectance at the 950-970
    
    nm region as an indicator of plant water status. Int. J. Remote Sens., 14(10): 1887-1905.
    [113] Pe?uelas, J., Baret, F., & Fillella, I. (1995), Semi-empirical indioes to assess carotenoids/ehlorophyll a ratio from leaf spectral reflectance. Photosynthetiea, 31, 221-230.
    [114] Pe?uelas, J., Llusia, J., Pifiol, J. and Fillella, I. (1997), Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in Mediterranean trees. Int. J. Remote Sensing, 18: 2863-2868.
    [115] Pe?uelas, J., Fillella, I., Llusia, J., Siscart, D. and Pi?ol, J. and (1998), Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterrranean tress Quereus ilex and Phillyrea latifolia.. J.Exp. Bot., 49:229-238.
    [116] Peterson, D. L., and Hubbard, G. S. (1992), Scientific issues and potential remote sensing requirements for plant biochemical content, J. Imaging Sci. Technol. 36:445-455.
    [117] Pragn?re, A,, E Baret, M. Weiss, R.Myneni, Y. Knyazikhin and L.B.Wang(1999), Comparison of three radiative transfer model inversion techniques to estimate canopy biophysical variables from remote sensing data. Proc. of IGARSS'99.
    [118] Richter, T., Fukshansky L.,(1996), Optics of a bifacial leaf: 1. A novel combined procedure for deriving the optical parameters. Photochem. Photobiol., 63, 507-516.
    [119] Rock, B. N., Hoshizaki, T., and Miller, J.R. (1988), Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sens. Environ., 24: 109-127.
    [120] Rondeaux, G., Steven, M., and Baret, F. (1996), Optimization of soil-adjusted vegetation indices. Remote Sens. Environ., 55, 95-107.
    [121] Rosemary A. Jago, Mark E. J. Cutler, and Paul J. Curran (1999), Estimating canopy chlorophyll concentration from field and airborne spectra. Remote Sens. Environ., 68, 217-224.
    [122] Running, S. R., and Nemani, R. R. (1988), Relating seasonal patterns of the AVHRR vegetation index to simulate photosynthesis and transpiration of forests in different climates. Remote Sens. Environ., 24: 347-367.
    [123] S. Jacquemoud, and Baret, E (1990), PROSPECT: a model of leaf optical properties. Remote Sens. Envrion. 34, 75-91.
    [124] S. Jacquemoud(1993), Inversion of the PROSPECT+SAIL canopy reflectance model from AVRIS equivalent spectra: theoretical study. Remote Sensing of Environment, 44, 281-292.
    [125] S. Jacquemoud, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood (1995a), Investigation of leaf biochemistry by statistics, Remote Sensing of Environment, 54, 180-188.
    [126] S. Jacquemoud, F.Baret, B. Andrieu, F.M. Danson, and K. Jaggard (1995b), Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens. Environ., 52, 163-172.
    [127] S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli and B. Hosgood (1996), Estimating leaf biochemistry using the PROSPECT leaf optical properties model, Remote Sens. Environ, 56, 194-202.
    [128] Sellers, P.J. (1987), Canopy reflectance, photosynthesis, and transpiration. Ⅱ, The role of biophysics in the linearity of their interdependence. Remote Sens. Environ., 21:143-183.
    [129] Shanno, D.F(1970), "Conditioning of Quasi-Newton Methods for Function Minimization,"Mathematics of Computing, Vol. 24, pp. 647-656.
    [130] Sims, D. A. and Gamon, J. A. (2002), Relationships between leaf pigment content and
    
    spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ., 81,337-354.
    [131] Strahler, A.H., and Jupp, D.L.B. (1990), Modeling bidirectional reflectance of forest and woodlands using Boolean models and geometric optics. Remote Sens. Environ., 34:153-160.
    [132] Suits, G.H.,(1972a), Azimuthal variation in directional reflectance of vegetative canopies. Remote Sens. Environ, 2:175-182.
    [133] Suits, G.H.,(1972b), Prediction of directional reflectance of a corn under stress. 4th Annual ER. Program Review, Jan, 17-21, 11pp.
    [134] Suits, G.H.,(1972e), The calculation of the directional reflectance of vegetative canopy. Remote Sens. Environ, 2:117-175.
    [135] Suits, G.H., and Safir, G. (1972), Verification of a reflectance model for mature corn with application to corn blight detection. Remote Sens. Environ, 2:183-192.
    [136] Tarantola A. (1987), Inverse Problem theory: Method for Data Fitting and Model Parameter Estimation. Amsterdam: Elservier Science Publishers.
    [137] Thenkabail, P. S., Ronald B. Smith, and Eddy De Panw(2000), Hyperspeetral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ., 71: 158-182.
    [138] Thomas, J. R., and Gaussman, H. W. (1977), Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal, 69:799-802.
    [139] Tucker, C. J., and Garratt, M.M. (1977), Leaf optical system modeled as a stochastic process. Applied Optics, 16(3): 635-642.
    [140] V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marly, and C. Proisy (1999), Seasonal variation of leaf chlorophyll content of a temperate forest. Inversion of the PROSPECT model. International Journal of Remote Sensing, 20(5), 879-894.
    [141] V. Demarez and J. P. Gastellu-Etchegorry (2000), A modeling approach for studying forest chlorophyll content. Remote Sens. Environ., 71,226-238.
    [142] Verdebout, J., S. Jacquemoud, and G. Schmuek (1994). Optical properties of leaves: modeling and experimental studies. Imaging Spectrometry-a tool for Environmental Observations. J. Hill and J. Megier, (EAs). Dordrecht, The Netherlands: Kluwe Academic Publishers. 4, 335p.
    [143] Verhoef. W and Bunnik, N.J.J. (1981), Influence of crop geometry on multispectral reflectance determined by the use of canopy reflectance models. Proc. Int. Colloquium on Spetral Signatures of Objects in Remote Sensing, Avignon, France, Sept.
    [144] Verhoef. W (1984), Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment, 16:125-141.
    [145] Verhoef. W (1998), Theory of radiative transfer models applied in optical remote sensing of vegetation canopies. Wageningen: Grafisch Service Centrum Van Gils.
    [146] Vogelmann, J. E., Rock, B. N. and Moss, D.M. (1993), Red edge spectral measurements from sugar maple leaves. Int. J Remote Sensing, 14:1563-1575.
    [147] Weiss, M., F. Baret, R. B. Myneni, A. Pragn?re and Y. Knyazikhin(1999), Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomic, 20: 3-22.
    [148] Wessman, C. A., Aber, J. D., Peterson, D. L., and Mellilo, J. M. (1988a), Foliar analysis using near infrared reflectance spectroscopy. Can. J. For. Res. 18, 6-11.
    [149] Wessman, C. A., Aber, J. D., Peterson, D. L., and Mellilo, J. M. (1988b), Remote sensing of
    
    canopy chemistry and nitrogen cycling in temperate forest ecosystems, Nature, 335, 154-156.
    [150] Williams, P. C., and Norris, K. H., Eds. (1987), Near-infrared technology in the agricultural and food industries.
    [151] William Menke(1984), Geophysical Data Analysis: Discrete Inverse Theory. Academic Press.
    [152] Yamada, N. and Fujimura, S. (1991), Nondestructive measurement of chlorophyll pigment content in plant leaves from three-color reflectance and transmittance. Applied Optics, 30: 3964-3973.
    [153] Yoder B.J., Daley L.S. (1990), Development of a visible spectroscopic method for detemining chlorophyll a and b in vivo in leaf samples. Spectrosc., 5(8):44-50.
    [154] Youkhana,S.K. (1983),Canopy modeling studies. Ph.D. Thesis. Colorado State University, Fort Collin, Co.
    [155] Zarco-Tejada, P.J. and Miller, J. R. (1999), Land cover mapping at BOREAS using red edge spectral parameters from CASI imagery. Journal of Geophysical Research, 104: 27921-27933.
    [156] Zarco-Tejada, P.J., Miller, J. R., Mohammed, G. H., Noland, T. L. and Sampson, P. H.(1999a), Canopy optical indices from infinite reflectance and canopy reflectance models for forest condition monitoring: applications to hyperspectral CASI data. In IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS'99, Hamburg, Germany.
    [157] Zareo-Tejada, P.J., Miller, J. R., Mohammed, G.H., Noland, T. L. and Sampson, E H.(1999b), Optical indices as bioindicators of forest condition from hyperspectral CASI data. In Proceedings 19th Symposium of the European Association of Remote Sensing Laboratories (EARSel), Valladolid, Spain.
    [158] 李小文,高峰,王锦地,朱启疆(1997),遥感反演参数的不确定性与敏感性矩阵。遥感学报,1(1):5-14。
    [159] 李小文,王锦地,胡宝新,A.H.Strahler(1998),先验知识在遥感反演中的作用。中国科学,28(1):67—72。
    [160] 刘强,李小文,项月琴,王锦地(2000),水平均匀植被结构参数的贝叶斯反演。遥感学报,4,增刊,16—24。
    [161] 刘强(2002),地表组分温度反演方法及遥感像元的尺度结构。中国科学院遥感应用研究所博士论文。中科院遥感所图书馆。
    [162] 刘良云(2002),高光谱遥感在精准农业中的应用研究。中国科学院遥感应用研究所博士后研究工作报告。中科院遥感所图书馆。
    [163] 牛铮,陈永华,隋洪智等(2000),叶片化学组分成像光谱遥感探测机理分析。遥感学报,4(2):125-130。
    [164] 田庆久,宫鹏,赵春江等(2000),用光谱反射率诊断小麦水分状况的可行性分析。科学通报,45(24):2645-2649。
    [165] 项月琴,覃文汉,林忠辉,王锦地,莫兴国(2002),Change of BRDF of winter wheat canopy during growing period:a simulation study.遥感学报,6卷增刊:64-75。
    [166] 杨文采(1997),地球物理反演的理论与方法。地质出版社。
    [167] 张霞,刘良云,赵春江,张兵(2003),利用高光谱遥感图像估算小麦氮含量。遥感学报,7(3):176-181。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700