用户名: 密码: 验证码:
油菜超量表达柠檬酸合成酶和植酸酶基因提高抗土壤磷铝胁迫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝毒害和有效磷缺乏是酸性土壤中限制作物生长的两个主要因子。虽然土壤中有效磷很低,但总磷量很高,其中有机磷占总磷的20%-80%,是植物可吸收利用的潜在磷源。甘蓝型油菜占我国油菜种植面积的80%以上,但其主产区土壤偏酸,或酸性,活性铝偏高,有效磷缺乏。因此,减轻或消除酸性土壤的铝毒害、提高土壤磷的有效性对我国油菜产业可持续发展具有重要意义。本研究通过农杆菌介导的基因遗传转化技术,在获得甘蓝型油菜超量表达Pseudomonas aeruginosa柠檬酸合成酶(CS)基因、及整合有胡萝卜外展蛋白的植酸酶基因phyA和appA的转基因株系的基础上,利用水培、砂培、土培等方法研究了转基因植株对铝毒害和低磷胁迫的抗性、及其生理和分子机理。获得的主要结果如下:
     1.通过筛选鉴定获得5个T3代甘蓝型油菜转基因株系。利用Southern blotting分析T3转基因植株外源基因的拷贝数,结果显示:超量表达CS的转基因株系CS3含有两个P. aeruginosa CS基因拷贝,而CS6株系含有一个拷贝;超量表达phyA的转基因株系P3含有一个Aspergillus niger phyA基因拷贝,P11株系含有3个phyA基因拷贝,而超量表达植酸酶基因appA的转基因株系a18含有两个Escherichia coli appA拷贝。利用Northern blotting分析外源基因表达量,结果显示:在mRNA水平上,CS3和CS6株系有较高的P. aeruginosa CS基因表达量;P3和P11株系有较高的A. niger phyA基因表达量;a18株系有较高的E. coli appA基因表达量。卡那抗性筛选结果显示,5个转基因株系均无Km抗性分离。
     2.超量表达CS基因的转基因株系CS3和CS6的铝毒抗性显著增强。铝胁迫下,转基因株系CS3和CS6不仅柠檬酸的分泌量显著增加,而且苹果酸的分泌量也显著高于野生型植株(WT)。转基因株系较高的三羧酸循环途径(TAC)相关的柠檬酸合成酶(CS)、苹果酸脱氢酶(MDH)、磷酸烯醇式丙酮酸羧化酶(PEPC)的活性以及较高的柠檬酸和苹果酸转运子的表达量,导致了其有机酸分泌量的增加。25μM AICl3处理48h后,CS3和CS6的相对主根伸长量极显著大于WT,并且长期50μM AICl3胁迫下CS3和CS6的生物量显著高于WT,说明在甘蓝型油菜中超量表达CS基因增强了植株的铝毒抗性。
     3.超量表达CS基因的转基因株系CS3和CS6的抗低磷胁迫能力增强。低磷胁迫下,CS3和CS6根系分泌的柠檬酸和苹果酸含量显著高于WT,并且CS、MDH和PEPC的活性得到显著提高。盆栽土培试验表明,以FePO4作为土壤中的磷源时,油菜超量表达CS基因显著提高植株从土壤中获取磷的能力,转基因植株苗期地上部和籽粒中的磷累积量显著高于WT植株。
     4.超量表达植酸酶基因的转基因株系P3、P11和a18的抗低磷能力增强。在油菜中超量表达整合有胡萝卜外展蛋白信号肽序列的植酸酶基因ex::phyA和ex::appA,获得转基因植株在水培试验中的结果表明,根组织和分泌的植酸酶活性显著高于WT。砂培试验结果显示,当以植酸钠作为唯一磷源时,P3、P11和a18株系地上部磷累积量分别比WT植株增加了70.8%、36.8%和19.6%。并且,三个转基因株系的地上部生物量均显著高于WT植株。盆栽土培试验结果显示,当以植酸钠作为唯一磷源时,P11和a18株系的籽粒产量分别比WT植株提高了20.9%和59.9%,种子中磷的累积量分别比WT植株增加了20.6%和46.9%。三个转基因株系种子的植酸酶活力约为1000U/kg种子,而WT的种子中没有检测到植酸酶活性。并且P11和a18株系种子的植酸含量显著低于WT。
     综上所述,在甘蓝型油菜中超量表达CS基因不仅提高了转基因株系柠檬酸的分泌量,而且影响了苹果酸的合成代谢,这两种有机酸分泌量的增加提高了转基因株系CS3和CS6的铝毒抗性和低磷忍耐力。甘蓝型油菜超量表达融合有胡萝卜外展蛋白信号肽序列的植酸酶基因可以显著增强转基因植株根系分泌的植酸酶活性,提高转基因株系对植酸磷的吸收利用能力。并且,转基因植株种子具有很高的植酸酶活性。
Aluminum (Al) toxicity and low phosphorus (P) availability are two major constraints on crops growth in acid soil. Although P availability is very low, total P is quite abundant in soils with organic P constituting up to20%-80%, which is the potential P source for plant growth. Brassica napus is one of the main oil crops and is cultivated up to more than80%of cultivated region of oil crops in China. However, these cultivated region of Brassica napus are acid or relatively acid soil, with high Al toxic levels and low P availability. So, reducing or eliminating Al toxicity of acid soils and improving soil P availability are essential to enhance Brassica napus production.
     In this research, based on the Agrobacterium-mediated gene transformation, we introduced a Pseudomonas aeruginosa citrate synthase (CS) gene and two phytase genes phyA and appA which include an extracellular targeting sequence from the carrot extension (ex) gen into Brassica napus cv Westar10. The tolerances of the transgenic lines to Al toxicity and P deficiency, and their physiological and molecular mechanism were studied using hydroponics, sand and soil culturing in the study. The main results were listed as follows:
     1. Five T3generation transgenic Brassica napus lines were obtained by molecular identification and Km-resistance screening. The results of Southern blotting showed that CS3and CS6transgenic lines overexpressing CS gene harboured two and single P. aeruginosa CS loci, respectively. P3and P11transgenic lines harboured single and three A. niger phyA loci, respectively, and a18transgenic line harboured two E. coli appA loci. Northern blotting analysis showed that transgenic lines CS3and CS6showed an accumulation of P. aeruginosa CS transcripts. The expression of A. niger phyA at the mRNA level was very high in P3and P11transgenic lines. a18transgenic lines showed an accumulation of E. coli appA transcripts. All of the five transgenic lines are lack of segregation with kanamycin-resistant screening.
     2. Transgenic lines CS3and CS6overexpressing CS gene improved the tolerance to Al toxicity. Both root concentration and exudations of citrate and malate in transgenic lines CS3and CS6significantly increased compared with wild type (WT) following exposure to Al. These may be attributed to higher activities of the CS, malate dehydrogenase (MDH) and phosphoenolpyruvate carboxylase (PEPC) enzymes in the TCA cycle and the expression of BnALMT and BnMATE in the transgenic plants following Al exposure.
     Transgenic lines CS3and CS6have enhanced Al tolerance. When exposed to25μM AICI3for48h, the relative root lengths of transgenic plants are significantly longer than WT. Moreover, prolonged Al treatment (10days) experiments revealed that transgenic lines accumulated much more biomass than WT.
     3. Transgenic lines CS3and CS6overexpressing CS gene improved the tolerance to P deficiency. Transgenic lines CS3and CS6showed enhanced citrate and malate exudation when grown in P-deficient conditions. Moreover, the enzyme activities of the transgenic lines were significantly higher compared with WT in response to P-deficient stress. The soil culture experiment showed that transgenic lines CS3and CS6possessed improved P uptake from the soil and accumulated more P in their shoots and seeds when FePO4was used as the sole P source.
     4. Transgenic lines P3, P11and a18overexpressing phytase gene enhanced the tolerance to P deficiency. The extracellular phytase activities of transgenic Brassica napus overexpressing ex::phylappA are significantly higher than WT in hydroponic culture. Quartz sand culture experiment showed that the shoots P accumulation in the three transgenic lines P3, P11and a18increased by70.8%,36.8%and19.6%compared with WT, respectively, when phytate was used as the sole P source. Moreover, the shoots biomass of the three transgenic lines was all significantly higher than WT. The soil culture experiment showed that seed yields of transgenic lines P11and a18increased by20.9%and59.9%, and seeds P accumulation increased by20.6%and46.9%compared with WT, respectively, when phytate was used as the sole P source. Phytase activities in P3, P11and a18seeds reached approximately1000units per kg seed, whereas no phytase activities were detected in WT seeds. Moreover, phytic acid contents of P11and a18seeds were significantly lower than WT.
     In conclusion, the overexpression of the CS gene in B. napus can not only lead to increased citrate synthesis and exudation, but also altered malate metabolism. The increased rate of the two organic acids exudation in transgenic canola overexpressing CS lead to significantly improved capacities for Al tolerance and soil P acquisition. The increased extracellular phytase activities in transgenic canola overexpressing ex::phylappA lead to significantly improved the ability of plants to utilize phytate. Moreover, transgenic seeds of P3, P11and a18have highly phytase activities.
引文
1.陈凯,马敬,曹一平,张福锁.磷亏缺下不同植物根系有机酸的分泌.中国农业大学学报,1999,4(3):58-62
    2.段海燕,徐芳森,王运华.甘蓝型油菜不同品种磷运转和再利用差异的研究.中a)国油料作物学报,2002,24(4):46-4
    3.胡慧蓉,郭安,王海龙.我国磷资源利用现状与可持续利用的建议.磷肥与复肥,2007,22(2):1-5
    4.刘建中,李振声,李继云.利用植物自身潜力提高土壤中磷的生物有效性.生态农业研究,1994,2(1):16-23
    5.陆海明,盛海君,毛健,汪晓丽,封克.有机酸根阴离子对土壤无机磷生物有效性的影响.扬州大学学报,2003,24(2):49-53
    6.陆景陵.植物营养学(上册).北京:中国农业大学出版社,2003
    7.陆文龙,曹一平.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,1999,10(3):379-382
    8.罗小英,崔衍波,邓伟,李德谋,裴炎.超表达苹果酸脱氢酶提高苜蓿对铝毒的耐受性.分子植物育种,2004,2(5):621-626
    9.王汉中.发展油菜生物柴油的潜力、问题与对策.中国油料作物学报,2005,27(2):74-76
    10.王琪,徐程扬.氮磷对植物光合作用及碳分配的影响.2005,5:59-62
    11.王庆仁,李继云,李振声.植物高效利用土壤难溶态磷研究动态及展望.植物营养与肥料学报,1998,4(2):107-116
    12.王学敏.低磷供应对拟南芥根系构型的影响.植物研究,2010,30(4):496-502
    13.吴军林,吴清平,张菊梅.L-苹果酸的生理功能研究进展.食品科学,2008,29(11):692-696
    14.吴平,印利萍,张立平.植物营养分子生理学.北京:科学出版社,2001
    15.杨建立,何云峰,郑绍建.植物耐铝机理研究进展.植物营养与肥料学报,2005,11(6):836-845
    16.易杰祥,吕亮雪,刘国道.土壤酸化和酸性土壤改良研究.华南热带农业大学学报,2006,12(1):23-27
    17.余利平,田立荣,张春雷,马霓,李俊.低磷胁迫对油菜不同生育期叶片光合作用的影响.中国农学通报,2008,24(12):232-236
    18.张海伟.甘蓝型油菜磷高效的生理机制研究.[博士论文].武汉:华中农业大 学图书馆,2009
    19. Abelson P H. A potential phosphate crisis. Science,1999,283:2015-2021
    20. Adams MA, Pate JS. Availability of organic and inorganic forms of phosphorus to lupins(Lupinus spp.). Plant Soil,1992,145:107-113
    21. Anghinoni I, Barber SA. Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agronomy J,1980,72:685-688
    22. Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ. Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol,2003,132:2205-2217
    23. Asmar F. Variation in activity of root extracellular phytase between genotypes of barley. Plant Soil,1997,195 (1):61-64
    24. Banfield JF, Barker WW, Welch SA, Taunton A. Biological impact on mineral dissolution:application of the lichen model to understand mineral weathering in the rhizosphere. Proc Natl Acad Sci USA,1999,96:3404-11
    25. Barcelo J, Poschenrieder C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance:a review. Environ Exp Bot,2002,48:75-92
    26. Barone P, Rosellini D, LaFayette P, Bouton J, Veronesi F, Parrott W. Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Rep, 2008,27:893-901
    27. Bates TR, Lynch JP. Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana(Brassicaceae). Am J Bot,2000,87: 58-963
    28. Bieleski RL. Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol,1973,24:225-52
    29. Bilyeu KD, Zeng P, Coello P, Zhang ZJ, Krishnan HB, Bailey A, Beuselinck PR, Polacco JC. Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase. Plant Physiol,2008,146:468-477
    30. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254
    31. Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB. Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Molecular Breeding,2000,6:195-206
    32. Chen J, Varner JE. An extracellular matrix protein in plants:characterization of a genomic clone for carrot extensin. EMBO J,1985,4:2145-2151
    33. Chen LS. Physiological responses and tolerance of plant shoot to aluminum toxicity. J Plant Physiol Mole Biol,2006,32 (2):143-155
    34. Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski MC, Shi J. Transgenic maize plants expressing a fungal phytase gene. Transgenic research,2008, 17:633-643
    35. Cheryan M, Rackis JJ. Phytic acid interactions in food systems. Crit Rev Food Sci Nutri,1980,13:297-335
    36. Chiera JM, Finer JJ, Grabau EA. Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mole Biol, 2004,56:895-904
    37. Condron LM, Turner BL, Cade-Menun BJ, et al. Chemistry and dynamics of soil organic phosphorus. Phosphorus:agriculture and the environment,2005, pp.87-121
    38. Cromwell GL, Coffey RD, Monegue HJ, Randolph JH. Efficacy of low-activity, microbial phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs. J Anim Sci,1995,73:449-456
    39. Dalal RC. Soil organic phosphorus. Adv Agron,1977,29:83-117
    40. de la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 1997,276:1566-1568
    41. Delhaize E, Ryan PR, Randall PJ. Aluminum tolerance in wheat (Triticum aestivum L.). Ⅱ. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol, 1993,103:695-702
    42. Delhaize E, Hebb DM, Ryan PR. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol,2001,125:2059-2067
    43. Delhaize E, Ryan PR, Hocking PJ, Richardson AE. Effects of altered citrate synthase and isocitrate dehydrogenase expression on internal citrate concentrations and citrate efflux from tobacco (Nicotiana tabacum L.). Plant Soil,2003,248:137-144
    44. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Pro Nat Aca Sci US A,2004,101:15249-54
    45. Deng W, Luo KM, Li ZG, Yang YW, Hu N, Wu Y. Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance. Planta,2009,230:355-365
    46. Dinkelaker B, Hengeler C, Marschner H. Distribution and function of proteoid roots and other root clusters. Acta Botanica,1995,108:169-276
    47. Dinkelaker B, Romheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin(Lupinus albus L.). Plant Cell Environ,1989,12:285-92
    48. Duff SMG, Moorhead GBG, Lefebvre DD, Plaxton WC. Phosphate starvation inducible "by passes" of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol,1989,90:1275-78
    49. Fohse D, Claassen N, Jungk A. Phosphorus efficiency of plants I. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil, 1988,110:101-109
    50. Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Herndndez-Riquer MV, Gallego FJ. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye(Secale cereale L.). Theor Appl Genet,2007,114:249-260
    51. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF. An aluminum-activated citrate transporter in barley. Plant Cell Physiol 2007, 48:1081-1091
    52. Gardner WK, Parberry DG, Barber DA. The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant Soil,1982,68:19-32
    53. George TS, Richardson AE, Hadobas PA, Simpson RJ, Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil. Plant Cell Environ,2004,27: 1351-1361
    54. George TS, Richardson AE, Simpson RJ. Behaviour of plant-derived extracellular phytase upon addition to soil. Soil Biol Biochem,2005a,37:977-988
    55. George TS, Richardson AE, Smith JB, Hadobas PA, Simpson RJ. Limitations to the potential of transgenic Trifolium subterraneum L. plants that exude phytase when grown in soils with a range of organic P content. Plant Soil,2005b,278:263-274
    56. Glass ADM, Siddiqi MY. The control of nutrient uptake rates in relation to the inorganic composition of plants. Adv Plant Nutri,1984,1:103-147
    57. Grierson CS, Parker JS, Kemp AC. Arabidopsis genes with roles in root hair development. J Plant Nutri Soil Sci,2001,64:31-140
    58. Gruber BD, Ryan PR, Richardson AE, et al. HvALMTl from barley is involved in the transport of organic anions. J Exp Bot,2010,61:1455-1467
    59. Han YY, Zhang WZ, Zhang BL, Zhang SS, Wang W, Ming F. One novel mitochondrial citrate synthase from Oryza sativa L. can enhance aluminum tolerance in transgenic tobacco. Mol Biotechnol,2009,42:299-305
    60. Hayes JE, Richardson AE, Simpson RJ. Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Fun Plant Biol, 1999,26:801-809
    61. Hayes J, Simpson R, Richardson A. The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil,2000,220:165-174
    62. Hegeman CE, Grabau E. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol,2001,126 (4):1598-1608
    63. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. California Department of Agriculture experimental station circular 347,1950
    64. Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV. AtALMTl, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA,2006, 103:9738-9743
    65. Hoekenga OA, Vision TJ, Shaff JE, Mon-forte AJ, Lee GP, et al. Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta× Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol,2003,132:936-48
    66. Hoffland E, Boogaard RVD, Nelemans J, Findenegg G. Biosynthesis and root exudation of citricandmalic acids in phosphate-starved rape plants. New Phytol,1992, 122:675-80
    67. Hoffland E, Findenegg GR, Nelemans JA. Solubilization of rock phosphate by rape. Plant Soil,1989,113:155-60
    68. Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiol,2002,148:2097-2109
    69. Javot H, Penmetsa RV, Terzaghi N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA,2007,104(5):1720-1725
    70. Jeschke WD, Pate JS. Mineral nutrition and transport in xylem and phloem of Banksia prionotes (Proteaceae), a tree with dimorphic root morphology. J Exp Bot, 1995,289:895-905
    71. Johnson JF, Allan DL, Vance CP. Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol,1994,104:657-665
    72. Johnson JF, Allan DL, Vance CP, Weiblen G. Root carbon dioxide fixation by phosphorus-deficient Lupinus albus (Contribution to organic acid exudation by proteoid roots). Plant Physiol,1996a,112:19-30
    73. Johnson JF, Allan DL, Vance CP. Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphor-enolpyruvate carboxylase. Plant Physiol,1996b,112:31-41
    74. Jones DL, Darrah PR. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil,1994,166:247-57
    75. Jones DL, Darrah PR. Influx and efflux of organic acids across the soil-root in-terface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil,1995a, 173:103-9
    76. Jones DL, Kochian LV. Aluminum inhibition of the inositol 1,4,5-trisphosphate signal transduction pathway in wheat roots:A role in aluminum toxicity? Plant Cell Online 1995b,7:1913-1922
    77. Jones DL. Organic acids in the rhizosphere:a critical review. Plant Soil,1998,205: 25-44
    78. Jungk A. Root hairs and the acquisition of plant nutrients from soil. J Plant Nutri Soil Sci,2001,164:121-129
    79. Kieliszewski MJ, Lamport DTA, Kieliszewski MJ, Lamport DTA. Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J, 1994,5:157-172
    80. Kirk GJD, Santos EE, Findenegg GR. Phosphate solubilization by organic anion excretion from rice (Oryza sativa L.) growing in aerobic soil. Plant Soil,1999,211: 11-18
    81. Kochian LV, Hoekenga OA, Pineros MA. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol, 2004,55:459-493
    82. Konietzny U, Greiner R. Molecular and catalytic properties of phytate degrading enzymes (phytases). Inter J Food Sci Tech,2002,37:791-812
    83. Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol,2000,41:1030-1037
    84. Koyama H, Takita E, Kawamura A, Hara T, Shibata D. Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Physiol,1999,40:482-488
    85. Kwanyuen P, Burton JW. A simple and rapid procedure for phytate determination in soybeans and soy products. J Am Oil Chem Soc,2005,82:81-85
    86. Latta M, Eskin M. A simple and rapid colorimetric method for phytate determination. J Agric Food Chem,1980,28:1313-1315
    87. Lazof DB, Goldsmith JG, Rufty TW, Linton RW. The early entry of Al into cells of intact soybean roots. A comparison of three developmental root regions using secondary ion mass spectrometry imaging. Plant Physiol,1996,112:1289-300
    88. Lee RB, Ratcliffe RG. Nuclear magnetic resonance studies of the location and function of plant nutrients in vivo. Plant Soil,1993,156:45-55
    89. Li G, Yang S, Li M, Qiao Y, Wang J. Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants. Biotechnol Lett,2009,31:1295-1301
    90. Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA. Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol, 1997a,114:1103-1111
    91. Li M, Osaki M, Madhusudana Rao I, Tadano T. Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil,1997b,195: 161-169
    92. Li XF, Ma JF, Matsumoto H. Aluminum-induced secretion of both citrate and malate in rye. Plant Soil,2002,242:235-243
    93. Li, XF, Ma JF, Matsumoto H. Pattern of Al-induced secretion of organic acids differ between rye and wheat. Plant Physiol,2000,123:1537-1543
    94. Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol,2006,142:1294-1303
    95. Ligaba A, Maron L, Shaff J, Kochian L, Pineros M. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant Cell Environ,2012, doi:10.1111/j.1365-3040.2011.02479.x
    96. Ligaba A, Shen H, Shibata K, Yamamoto Y, Tanakamaru S, Matsumoto H. The role of phosphorus in aluminium-induced citrate and malate exudation from rape (Brassica napus). Physiol Plant,2004,120:575-584
    97. Lipton DS, Blanchar RW, Blevins DG. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol, 1987,85:315-317
    98. Liu J, Magalhaes JV, Shaff J, Kochian LV. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J,2009,57:389-399
    99. Liu JF, Wang XF, Li QL, Li X, Zhang GY, Li MG, Ma ZY. Biolistic transformation of cotton (Gossypium hirsutum L.) with the phyA gene from Aspergillus ficuum. Plant Cell Tiss Org Cul,2011,106:207-214
    100.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods,2001,25:402-408
    101.Lottl JNA, Ockenden I, Raboy V, Batten GD. Phytic acid and phosphorus in crop seeds and fruits:A global estimate. Seed Sci Res,2000,10:11-33
    102.Lung SC, Lim B. Assimilation of Phytate-phosphorus by the extracellular phytase activity of tobacco(Nicotiana tabacum) is affected by the availability of soluble phytate. Plant Soil,2006,279:187-199
    103.Lynch JP, Beebe SE. Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. HortSci,1995,30:1165-1171
    104.Lopez-Bucio J, de La Vega OM, Guevara-Garcia A, Herrera-Estrella L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotech, 2000,18:450-453
    105.Ma JF, Furukawa J. Recent progress in the research of external Al detoxification in higher plants:a minireview. J Inorg Biochem,2003,97:46-51
    106.Ma JF, Ryan PR, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci,2001,6:273-278
    107.Ma, JF, Zheng SJ, Matsumoto H, Hiradate S. Detoxifying aluminum with buckwheat. Nature,1997a,390:569-570
    108.Ma, JF, Zheng SJ, Matsumoto H. Specific secretion of citric acid induced by Al stress in Cassia tor a L. Plant Cell Physiol,1997b,38:1019-1025
    109.Ma, JF, Taketa S, Yang ZM. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol,2000, 122:687-694
    110.Magalhaes JV, Lui J, Guimaraes CT, Lana U, Alves V, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coello CM, Trick HN, Kochian LV. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet,2007,39:1156-1161
    111.Maron LG, Pineros MA, Guimaraes CT, Magalhaes J, Pleiman JK, Mao C, Shaff J, Belicuas SNJ, Kochian LV. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J,2010,61:728-740
    112.Marschner H. Mineral nutrition of higher plants,2nd edn. Boston, MA, USA: Academic Press,1995
    113.Martins N, Goncalves S, Palma T, Romano A. The influence of low pH on in vitro growth and biochemical parameters of Plantago almogravensis and P. algarbiensis. Plant Cell Tiss Org,2011,107:113-121
    114.Maugenest S, Martinez I, Lescure A M. Cloning and characterization of a cDNA encoding a maize seedlings phytase. Biochem J,1997,322:151-157
    115.Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, Gambale F, Martinoia E. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J,2011,67:247-257
    116.Mimura T, Dietz KJ, Kaiser W, Schramm MJ, Kaiser G, Heber U. Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves. Planta, 1990,180:139-46
    117.Mimura T, Sakano K, Shimmen T. Studies on the distribution, retranslocation and homeostasis of inorganic phosphate in barley leaves. Plant Cell Environ,1996,19: 311-320
    118.Mimura T. Homeostasis and transport of inorganic phosphate in plants. Plant Cell Physiol,1995,36(1):1-7
    119.Miyasaka SC, Buta JG, Howell RK, Foy CD. Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant Physiol,1991,96:737-743
    120.Mudge SR, Smith FW, Richardson AE. Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. Plant Sci,2003,165:871-878
    121.Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Analy Chim acta,1962,27:31-36
    122.Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res,1980,8:4321-4326
    123.Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Romheld V, Martinoia E. Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann Bot,2000,85:909-919
    124.Nunes ACS, Vianna GR, Cuneo F, Amaya-Farfan J, de Capdeville G, Rech EL, Aragao FJL. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPSl) in transgenic soybean inhibited seed development and reduced phytate content. Planta,2006,224:125-132
    125.O'Dell BL, De Boland AR, Koirtyohann SR. Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem,1972,20:718-723
    126.Osawa H, Matsumoto H. Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiol,2001,126: 411-420
    127.Pal'ove-Balang P, Mistrik I. Impact of low pH and aluminium on nitrogen uptake and metabolism in roots of Lotus japonicus. Biologia,2007,62:715-719
    128.Pallauf J, Rimbach G. Nutritional significance of phytic acid and phytase. Arch Ani Nutri,1997,50:301-319
    129.Parker JS, Cavell AC, Dolan L, et al. Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell Online,2000,12:1961-1974
    130.Pate J, Watt M. Roots of Banksia spp. (Proteaceae) with special reference to functioning of their specialized root clusters. In:Waisel Y Eshel A Kafkafi U, eds. Plant roots:the hidden half,3rd edn. New York, NY, USA:Marcel Dekker Inc,2001, 989-1006
    131.Pellet DM, Papernik L, Kochian L. Multiple aluminum-resistance mechanisms in wheat. Roles of root apical phosphate and malate exudation. Plant Physiol,1996, 112:591-97
    132.Pellet, DM, Grunes DL, Kochian LV. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta,1995,196:788-795
    133.Pen J, Verwoerd TC, van Paridon PA, Beudeker RF, van den Elzen PJM, Geerse K, van der Klis JD, Versteegh HAJ, van Ooyen AJJ, Hoekema A. Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio Technol,1993,11:811-814
    134.Peng RH, Yao QH, Xiong AS, Cheng ZM, Li Y. Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep,2005,25:124-132
    135.Pilbeam DJ, Cakmak I, Marschner H, Kirkby EA. Effect of withdrawal of phosphorus on nitrate assimilation and PEP carboxylase activity in tomato. Plant Soil, 1993,154:111-17
    136.Polle E, Konzak CF, Kittrick JA. Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci,1978,18:823-827
    137.Ponstein AS, Bade JB, Verwoerd TC, Molendijk L, Storms J, Beudeker RF, Pen J. Stable expression of phytase (phyA) in canola (Brassica napus) seeds:towards a commercial product. Mol Bre,2002,10:31-44
    138.Raboy V. myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochem,2003,64: 1033-1043
    139.Radin JW, Eidenbock MP. Carbon accumulation during photosynthesis in leaves of nitrogen-and phosphorus-stressed cotton. Plant Physiol,1986,82:869-871
    140.Raghothama KG. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 1999,50:665-693
    141.Richardson AE, Hadobas PA, Hayes JE. Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ,2000,23: 397-405
    142.Richardson AE, Hadobas PA, Hayes JE. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J,2001,25:641-649
    143.Ridge RW. A model of legume root hair growth and rhizobium infection. Symbio, 1993,14:1-3
    144.Riviere-rolland H, Contard P, Betsche T. Adaptation of pea to elevated atmospheric CO2:Rubisco, phosphoenolpyruvate carboxylase and chloroplast phosphate translocator at different levels of nitrogen and phosphorus nutrition. Plant Cell Environ,2006,19:109-117
    145.Ryan PR, Delhaize E, Jones DL. Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol,2001,52:527-560
    146.Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol,2009,149:340-351
    147.Saber N, Abdel-Moneim A, Barakat S. Role of organic acids in sunflower tolerance to heavy metals. Biol Plant,1999,42:65-73
    148.Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto M, Yamamoto Y. Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol,2006,47:1343-1354
    149. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. Plant J,2004,37:645-653
    150. Sasaki T, Mori IC, Furuichi T, et al. Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol,2010,51:354-365
    151.Saxena SN. Phytase activity of plant roots. J Exp Bot,1963,15:654-658
    152.Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by Ppants:From soil to cell. Plant Physiol,1998,116:447-453
    153.Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Hideo S, Matsumoto H. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol,2005,138:287-296
    154. Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biot,2007,25:930-937
    155.Singh Gahoonia T, Care D, Nielsen NE. Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant Soil,1997,191:181-188
    156.Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW. Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol,2000,123:543-552
    157.Sivaguru M, Baluska F, Volkmann D, Felle HH, Horst WJ. Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol,1999,119:1073-1082
    158.Skene KR, Kierans M, Sprent J, Raven JA. Structural aspects of cluster root development and their possible significance for nutrient acquisition in Grevillea robusta (Proteaceae). Ann Bot,1996,77:443-451.
    159.Srere PA, Brazil H, Gonen L. The citrate condensing enzyme of pigeon breast muscle and moth flight muscle. Acta Chem Scand,1963,17:129-134
    160.Tarafdar JC, Claassen N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots. Biol Fertil Soils,1988,5:308-312
    161.Tarafdar JC, Jungk A. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Bio Fer Soils,1987,3:199-204
    162.Tate K. The biological transformation of P in soil. Plant Soil,1984,76:245-256
    163.Taylor GJ. Current views of the aluminum stress response:the physiological basis of tolerance. Curr Top Plant Biochem Physiol,1991,10:57-93
    164.Tesfaye M, Temple SJ, Allan DL, et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol,2001,127:1836-1844
    165.Theodorou ME, Plaxton WC. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol,1993,101:339-344
    166.Tian J, Liao H, Wang X, Yan X. Phosphorus starvation-induced expression of leaf acid phosphatase isoforms in soybean. Acta Botanica Sinica,2003,45:1037-1042.
    167.Tu SI, Cananaugh JR, Boswell RT. Phosphate uptake by excised maize root tips studied by in vivo 31P nuclear magnetic resonance spectroscopy. Plant Physiol,1990, 93:778-84
    168.Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Micro,2005,7:396-404
    169.Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource. New Phytol,2003,157: 423-447
    170.Verwoerd TC, Van Paridon PA, Van Ooyen AJJ, Van Lent JWM, Hoekema A, Pen J. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol,1995,109:1199-1205
    171.Vincent JB, Crowder MW, Averill BA. Hydrolysis of phosphate monoesters:a biological problem with multiple chemical solutions. Trends Biochem Sci,1992,17: 105-110
    172. von Uexkull HR, Muter E. Global extent, development and economic impact of acid soils. Plant Soil,1995,171:1-15
    173.Wang L, Li Z, Qian W, Guo W, Gao X, Huang L, Wang H, Zhu H, Wu J-W, Wang D. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiol,2011,157:1283-1299
    174.Wang X, Wang Y, Tian J, et al. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol,2009,151:233-240
    175.Watt M, Evans JR. Proteoid roots:physiology and development. Plant Physiol,1999, 121:317-327
    176.Westerman RL. Soil testing and plant analysis,3rd edn. Soil Science Society of America, Madison, WI,1990
    177.Wodzinski RJ, Ullah AHJ. Phytase advances in applied microbiology. Academic Press, pp 263-302,1996
    178.Wyss M, Pasamontes L, Friedlein A, et al. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases):molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol,1999,65:359-366
    179.Xiao K, Harrison MJ, Wang ZY. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta,2005,222:27-36
    180.Yang XY, Yang JL, Zhou Y, Pineros MA, Kochian LV, Li GX, Zheng SJ. A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant Cell Environ,2011,34:2138-2148
    181. Yang YY, Jung JY, Song WY, Suh HS, Lee Y. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol,2000,124:1019-1026.
    182. Yang ZM, Sivaguru M, Horst WJ, Matsumoto H. Aluminum tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol Plant,2001, 110:72-74
    183.Yi Z, Kornegay ET, Ravindran V, Denbow DM. Improving phytate phosphorus availability in corn and soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase. Poult Sci,1996,75: 240-249
    184.Yokosho K, Yamaji N, Ma JF. Isolation and characterisation of two MATE genes in rye. Funct Plant Biol,2010,37:296-303
    185.Yokosho K, Yamaji N, Ma JF. An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J,2011,68:1061-1069
    186.Zhang FS, Ma J, Cao YP. Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish(Raghanus satiuvs L.) and rape(Brassica napus L.) plants. Plant Soil,1997,196:261-264
    187.Zhang HW, Huang Y, Ye XS, Xu FS. Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions. Sci China Life Sci,2010,53:709-717
    188.Zhang HW, Huang Y, Ye XS, Shi L, Xu FS. Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant Soil,2009,320:91-102
    189.Zhao XJ, Sucoff E, Stadelmann EJ. Al3+ and Ca2+ alteration of membrane permeability of Quereus rubra root cortex cells. Plant Physiol,1987,83:159-162.
    190.Zhao ZQ, Ma JF, Sato K, Takeda K. Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta,2003,217:794-800
    191.Zheng SJ, Ma JF, Matsumoto H. Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress. Physiol Plant,1998,103:209-14
    192.Zimmermann P, Zardi G, Lehmann M, Zeder C, Amrhein N, Frossard E, Bucher M. Engineering the root-soil interface via targeted expression of a synthetic phytase gene in trichoblasts. Plant Biotech J,2003,1:353-360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700