用户名: 密码: 验证码:
施肥模式对稻麦产量、养分吸收及土壤生物学性状的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化肥使用过量而造成的土壤肥力下降、农田土壤污染及水体污染的现象屡见不鲜。化肥施用导致的环境问题在国内外普遍存在,严重制约了农业和社会的可持续发展。本研究通过大田试验,研究了稻麦轮作条件下氮肥、缓释氮肥和磷肥等三种施肥模式对稻麦产量、养分吸收及土壤的酶活性、微生物种群和微生物多样性等的影响;通过土壤盆栽试验,研究了磷肥模式对水稻土壤磷的形态及植酸酶活性的影响;同时,通过野外调查,测定了以梁子湖、月湖及周边为代表的农田生态系统土壤和沉积物的植酸酶活性和分布。研究的目的一方面是明确当前氮磷化肥的产量效益、肥料利用效率及土壤生物学效应,建立稻麦轮作体系传统施肥模式的数据库,另一方面为提出合理减量施肥模式提供理论依据。主要研究结果如下:
     (1)在大田小麦-水稻轮作条件下,研究了不同氮肥施用模式(农民传统施肥模式,20%氮肥减施模式,20%氮肥减施加有机氮肥替代模式)下作物产量、养分吸收、土壤酶活性和微生物数量以及微生物多样性的变化。研究结果表明,与传统施肥量相比,减施20%氮肥后,作物产量与氮素养分吸收量及土壤酶活性和土壤中微生物(细菌,放线菌,真菌)数量并没有出现明显变化。减少N肥20%条件下,采用50%有机肥替代施用不影响作物产量和养分吸收,但分别提高土壤蔗糖酶46%-62%,蛋白酶27%-89%,脲酶33%-46%,和中性磷酸酶活性35%-74%;提高土壤细菌数量36%-150%,放线菌数量11%-153%,真菌数量43%-56%。另外,有机肥替代处理微生物的多样性指数(Shannon's diversity index(H))为2.18,显著高于其他各施肥模式。试验结果表明,该地区减施20%氮肥、同时实行有机氮肥替代可有效降低生产成本,并改善土壤肥力和生物学性质。
     (2)在稻麦轮作大田条件下,研究了不同缓释氮肥模式(普通尿素模式,Urea;缓释氮肥模式,SR-Urea;缓释氮肥与尿素配合模式,SR-Urea/Urea;缓释氮肥、尿素、有机氮肥配合模式,SR-Urea/Urea/Org.N)对稻麦产量、养分吸收及土壤酶活性和土壤微生物等土壤生物学性质的影响。结果表明,与不施肥的对照相比,Urea、 SR-Urea、SR-Urea/Urea和SR-Urea/Urea/Org.N等四种施肥模式可以提高土壤酶活性和微生物数量,其中以蔗糖酶(11%-73%,14%-85%,10%-98%,10%-136%)和细菌(28%-36%,29%-38%,31%-40%,60%-68%)表现最为明显。与施纯氮肥的Urea模式相比,三种缓释肥模式(SR-Urea, SR-Urea/Urea, SR-Urea/Urea/Org.N)均提高土壤酶活性和微生物数量,其中SR-Urea/Urea/Org.N配合模式的提高幅度最大。在该施肥模式下相比施纯氮肥的Urea模式,四种土壤酶活性有了不同程度的提高(5%-38%,4%-15%,2%-5%,8%-76%),同时也提高了三种土壤微生物的数量(9%-27%,3%-14%,13%-28%)。而在本试验中,SR-Urea/Urea/Org.N配合模式的小麦、水稻的吸氮量以及土壤微生物多样性指标以及也分别高于其他模式(13%-26%,10%-16%,15%-103%)。结果说明,施用缓释肥并配合普通尿素和有机肥更有利于改善土壤生物学性质,提高土壤肥力。
     (3)在大田小麦-水稻轮作条件下,以当地农民传统施肥量为对照,设计了几种磷肥减施模式(20%磷肥减量模式,20%磷肥减量并有机磷肥替代模式)下作物产量、养分吸收、土壤酶活性和微生物数量以及微生物多样性的变化。研究结果表明,与传统施肥量相比,减施20%磷肥后,作物产量与养分吸收量没有下降,土壤酶活性没有降低,而土壤中微生物(细菌,放线菌,真菌)数量也没有明显减少。在减少20%磷肥施用量的基础上,进一步采用20%有机磷肥替代施用没有造成作物减产和养分吸收的减少,但能有效地提高土壤中性磷酸酶、蔗糖酶、蛋白酶和脲酶活性(3%-41%,5%-24%,1%-20%,5%-6%),同时对土壤中微生物数量的增加也有一定程度的促进作用。另外,20%有机磷肥替代处理微生物的多样性指数为2.58,显著高于其他各施肥模式。结果表明,在磷肥施用过量的稻麦轮作地区,减施20%化学磷肥,并进行适当的有机磷肥替代可有效的降低生产成本,改善土壤肥力和生物学性质。
     (4)通过土壤盆栽试验,研究了不同磷肥模式对水稻土壤磷形态及土壤植酸酶活性的影响。结果表明,相比施用过磷酸钙,施用有机磷与植酸钙均能提高水稻产量(9%-18%,15%-32%),同时,植酸钙的添加增加水稻土壤植酸酶活性(16%-20%)。在植酸钙处理的水稻土壤中,磷的存在形态改变很大,相比于过磷酸钙处理,其土壤活性有机磷含量显著增加(73%-117%),稳定态的缓效无机磷含量也有所增加(15%-46%)。结果表明,有机磷和植酸钙能提高土壤植酸酶活性,有利于植物对土壤磷素的吸收利用。
     (5)在湖北梁子湖、月湖以及周边代表性农田土壤进行分层采样,研究了土壤植酸酶活性及分布。结果表明,湖底沉积物的植酸酶活性随取样深度的加深而降低,在湖底2m深处的土壤植酸酶活性与湖底表面沉积淤泥相比,分别减少了74%(梁子湖)与66%(月湖)。在梁子湖入水口,较深层的沉积物植酸酶活性比浅层的植酸酶活性增加了73%-108%,反映了入水口水流流速对植酸酶活性的影响。湖北省农科院附近农田土壤植酸酶在0.5m处最高271.4U/g,然后随取样深度的加深逐步下降,在2.0m深处达到最低127.6U/g。贺胜桥附近农田土壤植酸酶活性在0.2m处,土壤植酸酶活性最高,为373.6U/g,同时也随取样深度的加深而降低,趋势明显。武汉东西湖区附近农田土壤植酸酶活性在0-1.0m,1.0-1.9m,2-2.5m分别呈现三个较明显的统一下降趋势。反映了表层农田土壤植酸酶活性高于深层土壤植酸酶活性的现状。
Excess application of chemical fertilizers has resulted in widespread environmental problems, such as degeneration of soil fertility and pollution of soils and waters, which restrict seriously the sustainable development of agricuture and society. In this study, field experiments were carried out to investigate the effects of different fertilizer application modes on crop yield, nutrient uptake, soil enzyme activity, number of microbes (bacteria, actinomycetes and fungi), and diversity of microbes in rice(Oryza sativa L.)-wheat (Triticum aestivum L.) rotation system. Furthermore, soil pot experiments were employed to investigate the effects of different P fertilizer resources on soil P forms and phytase activity. In addition, the phytase activity and its distribution in the sediments of Liangzhi Lake and Yue Lake and in the soils around were investigated. The main results were summaried as follows:
     (1) The effects of N fertilization modes on crop yield, nutrient uptake, soil enzyme activity, and number of microbes as well as diversity of microbes were studied under a2-year field experiment of rice-wheat rotation. The result showed that20%reduction of local farmer's traditional N fertilizer did not change significantly crop yield, N uptake, soil enzyme activity and number of microbes (bacteria, actinomycetes and fungi). On the basis of20%reducing N fertilizer,50%replacement of N fertilizer by organic manure increased the activity of sucrose, protease, urease and phosphatase by46%-62%,27%-89%,33%-46%, and35%-74%respectively, and the number of microbes, i.e. bacteria, actinomycetes and fungi by36%-150%,11%-153%and43%-56%respectively. Additionally, organic fertilizer replacement had a Shannon's diversity index (H) of2.18, which was higher than that of other modes of single N fertilizer application. The result suggested that reducing N fertilizer by20%and applying organic manure in the experimental areas could effectively lower the production costs and improve significantly soil fertility and biological properties.
     (2) The effects of different Slow-Released (SR) fertilizer application modes on soil enzyme activity and soil microbes as well as the microbial diversity were investigated in rice-wheat cropping system. The results showed that, in comparison with no N control group, four SR N fertilizer application modes increased the soil enzyme activity and the number of soil microbes significantly in both wheat and rice soils. Compared to pure Urea application mode, the soil enzyme activity was higher and the number of soil microbes was greater in other three SRF modes (SR-Urea, SR-Urea/Urea, SR-Urea/Urea/Org.N). Particularly in SR-Urea/Urea/Org.N mode, the activity of sucrase, protease, and urease were increased by5%-38%,4%-15%, and2%-5%respectively, and the number of soil bacteria, actinomycetes, fungi were increased by9%-27%,3%-14%,13%-28%respectively. In addition, compared with Urea control group, nutrient uptake of wheat and rice, microbial diversity index (Shannon's diversity index) of SR-Urea/Urea/Org.N mode was increased by13%-26%,10%-16%,15%-103%respectively. The results indicated that combined application of SRF and organic manures was a good precaution to improve the soil biological properties and soil fertility in rice-wheat cropping system.
     (3) Different P fertilizer application modes were studied for the effects on crop yield, nutrient uptake, soil enzyme activity, number of microbes, and diversity of microbes under the rice-wheat rotation system. The result showed that20%reduction of traditional application amount of P fertilizer did not decrease crop yield, amount of nutrient uptake, soil enzyme activity, and the number of soil microbes. However,20%reduction the P applied and mixed application of organic manure and chemical P fertilizer increased not only the activity of phosphatase, sucrase, protease and urease, but also the number of soil microbes, as well as the Shannon's microbial diversity index (H), although it had no impacts on crop yield and nutrient uptake. The results indicated that A20%reduction of P fertilizer could be a possible agricultural measure for reducing farmland pollution, and the combined application of organic manure and chemical P fertilizer could be recommended for improving soil fertility in the study areas.
     (4) Soil pot experiments were carried out to investigate the effects of different P fertilizer resources on soil P forms and phytase activity. The result showed that, compared with superphosphate, the application of organic manure and calcium phytate increased rice yield by9%-18%and15%-32%respectively. Application of calcium phytate increased the phytase activity by16%-20%, the ratio of labile organic phosphorus by73%-117%, and the ratio of Al-P, and Fe-P by15%-46%.
     (5) The ecological effects of soil phytase activity and the input history of phosphorus in soil sediment were investigated around the areas of Liangzhihu Lake. The results indicated that phytase activity in the lake sediments decreased with the sampling depth, with the reduced percentages at2m of the sediment profile being74%for Liangzi Lake, and66%for Yue Lake respectively. However, opposite situation was found in water inlet of lake, ie, phytase activity in the lower sediment was73%-108%higher than the surface sediment. In farmland of Hubei Academy of Agricultural Sciences(NKY), phytase activity of soil reached the crest value at0.5m depth(271.4U/g), and then decreased with the sampling depth, phytase activity was lowest in the soil with2.0m depth(127.6U/g). The same result was found in farmland of Heshengqiao district in Hubei Province(HSQ), phytase activity of soil reached the highest bracket at0.2m depth(373.6U/g), was lowest in the soil with2.0m depth(127.6U/g). Phytase activity of soil in East-West-Lake district in Wuhan City(DXH) was decreased with the sampling depth in (0-1.0m,1.0-1.9m,2-2.5m), respectively. The results indicated that, compared with submerged soil, phytase activity in the rhizosphere soil was higher.
引文
1. 白东清,乔秀亭,魏东等.植酸酶对鲤钙磷等营养物质利用率的影响.天津农学院学报,2003,10:6-10
    2. 蔡述明,周新宇.人类活动对长江中游湿地生态系统的冲击.地理科学,1996,16(2):129-136
    3.曹翠玉.有机肥料对黄潮土有效磷库的影响.土壤,1998,5:1-4
    4.曹靖,胡恒觉.不同肥料组合对冬小麦水分供需状况的研究.应用生态学报,2000,11(5):713-717
    5. 曹利平.农业非点源污染控制管理的经济政策体系研究.北京:首都师范大学硕士学位论文.2004
    6. 曹志平,胡诚,叶钟年等.不同土壤培肥措施对华北高产农田土壤微生物生物量碳的影响.生态学报,2006,26(5):1486-1493
    7. 陈防,鲁剑巍.长期施钾对作物增产及土壤钟素含量及形态的影响.土壤学报,2000,37(2):233-241
    8. 陈惠哲,朱德峰.全球水稻生产与稻作生态系统概况.杂交水稻,2003,18(5):1-4
    9. 丁强,杨培龙,黄火清等,植酸酶发展现状和研究趋势.中国农业科技导报,2010,12(3):27-33
    10.范明生,江荣风,张福锁等.水旱轮作系统作物养分管理策略.应用生态学报,2008,19(2):424-432
    11.费槐林.水稻良种高产高效栽培.金盾出版社.2001.
    12.高菊生,徐明岗,王伯仁等.长期有机无机肥配施对土壤肥力及水稻产量的影响.中国农学通报,2005,21(8):211-214
    13.葛继稳,蔡庆华,刘建康等.梁子湖湿地植物多样性现状与评价.中国环境科学,2003,23(5):451-456
    14.巩前文,张俊彪,李瑾.农户施肥量决策的影响因素实证分析-基于湖北省调查数据的分析.农业经济问题,2008,10:63-68
    15.关连珠,张伯泉,颜丽等.有机肥料配施化肥对土壤有机质组分及生物活性影响的研究.土壤通报,1990,21(4):180-184
    16.关松荫.1986.土壤酶及其研究法.北京:农业出版社
    17.郭天财,宋晓等.施氮水平对2种穗型冬小麦品种产量及氮素吸收利用的影响. 西北植物学报,2008,28(3):554-558
    18.韩晓日,马玲玲,王晔青等.长期定位施肥对棕壤无机磷形态及剖面分布的影响.水土保持学报,2007,21(4):51-55,144
    19.贺纪正,葛源.土壤微生物生物地理学研究进展.生态学报,2008,28(11):5571-5582
    20.侯晓杰,汪景宽,李世朋.不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响.生态学报,2007,27(2):655-661
    21.胡诚,曹志平,叶钟年等.不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响.生态学报,2006,26(3):808-814
    22.胡亚林,汪思龙,颜绍馗.影响土壤微生物活性与群落结构因素研究进展.土壤通报,2006,37(1):170-176
    23.湖北农业科学研究所土壤肥料系整理.1974年钾肥肥效试验总结摘要.武汉:湖北农业科学研究所.1974
    24.黄世宽,熊汉锋.湖北省湿地生态环境现状分析及对策.鄂州大学学报,2008,15(5):38-41
    25.霍中洋,葛鑫等.施氮方式对不同专用小麦氮素吸收及氮肥利用率的影响.作物学报,2004,30(5):449-454
    26.焦艳平,陈阜,唐衡等.我国主要农作区粮食产量贡献率分析.作物杂志,2006,1:16-20
    27.蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究.中国农业科学,1989,22(3):58-66
    28.蒋柏藩,顾益初,鲁如坤,风化对土壤粒级中磷素形态转化及有效性的影响.土壤学报,1984,21(2):134-143
    29.介晓磊.不同肥力和土壤质地条件下麦田氮肥利用率的研究.作物学报,1998,24(6):884-888
    30.金刚.梁子湖、生山湖和保安湖沉水植被资源现状.水生生物学报,1999,23(1):87-89
    31.金继运.我国肥料资源利用中存在的问题及对策建议.中国农技推广,2005,11:4-6
    32.寇长林,张福锁.小麦和花生利用磷形态差异的研究.土壤通报,1999, 30(4):181-184
    33.李佳,刘钟滨.耐热植酸酶基因phyA的克隆及新型表达载体的构建.同济大学学报(医学版),2004,25(6):461-468
    34.李恋卿,郑金伟,潘根兴等.太湖地区不同土地利用影响下水稻土重金属有效性库变化.环境科学,2003,24(3):101-104
    35.李萍,徐雅梅.不同培肥措施对藏东南土壤酶活性的影响.土壤肥料,2002,5:33-41
    36.李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题.江西:江西科学技术出版社.1998,3-5
    37.李庆逵.中国水稻土.北京:科学出版社.1992
    38.李士敏,张书华.尿素深施对作物产量及氮素利用率影响效果浅析.耕作与栽培,1999,5:52-53,62
    39.李孝良,于群英,陈如梅.土壤有机磷形态的生物有效性研究.土壤通报,2003,34(2):98-101
    40.李忠佩,焦坤,林心雄等.施肥条件下瘠薄红壤的生物化学性状变化.土壤,2003,35(4):304-310
    41.廖玉萍,何华.稻麦轮作有机肥与化肥配施效果定位试验.湖北农业科学,1992,8:19-21
    42.廖育林,郑圣先,黄建余等.施钾对湖南主要双季稻区钾肥效应及钾素平衡的影响.湖南农业大学学报(自然科学版),2007,33(6):754-759
    43.林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进.生态学杂志,1999,18(2):63-66
    44.刘春莲,杨建林,白雁等.珠江三角洲全新统横栏组淤泥沉积中的有机碳、总氮和碳氮比值记录.中山大学学报(自然科学版),2003,42(1):127-129
    45.刘凯,杨华球,蒋爱凤等.有机-无机肥料配合施用对土壤酶活性的影响.中国土壤酶学研究文集.沈阳:辽宁科学技术出版社.1988,130-135
    46.刘建康,黄祥飞.东湖生态学研究概况.环境科学,1997,18(1):51-53
    47.刘建玲,张福锁,杨奋翩.北方耕地和蔬菜保护地上壤磷素状况研究.植物营养与肥料学报,2000,6(2):179-186
    48.刘荣乐,金继运,吴荣贵等.我国北方土壤作物系统内钾素平衡及钾肥肥效研究. 土壤肥料,2000,1:9-11
    49.刘小虎,许艳华,杨劲峰等.不同施肥处理对棕壤几个肥力指标的影响.土壤通报,2005,36(4):474-478
    50.鲁如坤,刘鸿翔,闻大中等.全国典型地区农业生态系统养分循环和平衡研究全国和典型地区养分循环和平衡现状.土壤通报,1996,27(5):193-196
    51.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社.1999
    52.鲁艳红,廖育林,黄铁平等.湖南稻-油、稻-稻-油轮作制施肥现状调查研究.湖南农业科学,2010,(17):57-59,63
    53.马玲玲,韩晓日,刘骏等.长期定位施肥对棕壤有机磷形态及转化的影响.安徽农业科学,2007,35(18):5487-5489
    54.马星竹,武志杰,陈利军等.长期施肥对黑土、棕壤微生物量的影响.土壤通报,2011,42(1):60-64
    55.苗艳芳,张会民,史国安等.不同供钾能力的土壤施用钾素对冬小麦的增产效应.麦类作物,1999,19(3):58-60
    56.闵绍楷.水稻.科学出版社.1986
    57.莫淑勋.有机肥料中磷及其与土壤磷素肥力的关系.土壤学进展,1992,20(3):1-9
    58.庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响.植物营养与肥料学报,2000,6(4):476-480
    59.彭进平,逢勇,李一平等.水动力过程后湖泊水体磷素变化及其对富营养化的贡献.生态环境,2004,13(4):503-505
    60.彭佩钦,吴金水,黄道友等.洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响.生态学报,2006,26(7):2261-2267
    61.申建波,张福锁.水稻养分资源管理理论与实践.北京:中国农业出版社.2006,2-5
    62.沈善敏.中国土壤肥力.北京:中国农业出版社.1998
    63.沈乒松,张鼎华.酸性土壤无机磷研究进展.福建林业科技,2005,32(1):75-78
    64.石丽红,纪雄辉,李洪顺等.湖南双季稻田不同氮磷施用量的径流损失.中国农业气象,2010,31(4):551-557
    65.史瑞和,鲍士旦,秦怀英等.江苏省主要土类钾素供应状况和棉花钾肥试验.南京农学院学报,1980,1:127-136
    66.宋丹.外源植酸酶提高土壤磷素有效性的研究.农业科技与装备,2009,184:37-39
    67.宋歌,孙波.县域尺度稻麦轮作农田土壤无机氮的时空变化.农业环境科学学报,2008,28(2):636-642
    68.孙瑞莲,赵秉强,朱鲁生等.长期定位施肥田土壤酶活性的动态变化特征.生态环境,2008,17(5):2059-2063
    69.唐拴虎,杨少海,陈建生等.水稻一次性施用控释肥料增产机理探讨.中国农业科学,2006,39(12):2511-2520
    70.王飞,林诚,何春梅等.不同有机肥对花生营养吸收、土壤酶活性及速效养分的影响.中国土壤与肥料,2011,2:57-60
    71.王贵寅,张兰松,宋加杰.有机肥对提高旱地作物利用土壤水分的作用机理研究.河北农业科学,2002,6(2):26-28
    72.王晶,解宏图,张旭东等.施肥对黑土土壤微生物生物量碳的作用研究.中国生态农业学报,2004,12(2):118-120
    73.王平,马忠明,包兴国等.长期不同施肥方式对小麦/玉米间作土壤蔗糖酶活性的影响.农业现代化研究,2009,30(5):611-614
    74.王苏民,窦鸿身.中国湖泊志.北京:科学出版社.1998,1-5
    75.王卫民,杨干荣,樊启学等.梁子湖水生植被.华中农业大学学报,1994,13(3):281-290
    76.文菀玉,王凯荣,谢小立.红壤稻田不同施肥制度对土壤钾平衡和水稻产量的影响.中国生态农业学报,2007,15(3):41-44
    77.吴金水,林启美,黄巧云等.土壤微生物生物量测定方法及其应用.北京:气象出版社.2006,121
    78.吴景贵,王明辉,任成礼等.非腐解有机物培肥对水田土壤水解酶活性动态变化的影响.土壤通报,1998,29(6):253-256
    79.辛刚,关连珠,汪景宽.不同开垦年限黑土磷素的形态与数量变化.土壤通报,2002,33(6):425-428
    80.夏雪,谷洁,高华等.施氮水平对土壤水解酶活性和作物产:量的影响.自然资源学报,2010,25(5):756-764
    81.肖荣英,李传保,李文西.鄂东南区水稻-油菜轮作制中钾肥效应及钾素平衡研究. 湖北农业科学,2011,50(11):2190-2193
    82.谢坚,郑圣先,廖育林等.缺磷型稻田土壤施磷增产效应及土壤磷素肥力状况的研究.中国农学通报,2009,25(3):147-154
    83.谢晓梅,廖敏,黄昌勇等.除草剂苄嘧磺隆对稻田土壤微生物活性和生物化学特性的影响.中国水稻科学,2004,18(1):67-72
    84.熊毅,李庆逵.中国土壤.北京:科学出版社.1990,492-495
    85.熊汉锋,黄世宽,陈治平等.梁子湖湿地植物的氮磷积累特征.生态学杂志,2007,26(4):466-470
    86.熊汉锋,王运华,谭启玲等.梁子湖表层水氮的季节变化与沉积物氮释放初步研究.华中农业大学学报,2005,24(5):500-503
    87.徐福利,梁银丽,张成娥等.施肥对日光温室黄瓜生长和土壤生物学特性的影响.应用生态学报,2004,15(7):1227-1230
    88.徐玲,张杨珠,曾希柏等.不同施肥结构对稻田土壤肥力质量的影响.湖南农业大学学报(自然科学版),2006,32(4):362-367
    89.徐明岗,邹长明,秦道珠.有机无机肥配合施用下的稻田氮素转化与平衡.土壤学报,2002,6:147-156
    90.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):892-896
    91.晏维金,尹澄清,孙濮等.磷氮在水田湿地中迁移转化及径流流失过程.应用生态学报,1999,10(3):312-316
    92.羊向东,王苏民,沈吉等.近0.3 ka来龙感湖流域人类活动于湖泊沉积中的响应.中国科学(D辑),2001,31(12):1031-1038
    93.杨汉东,蔡述明.江汉平原湖泊沉积物的化学特征及其与人类活动的关系.地理科学,1997,17(4):323-328
    94.杨劲峰,韩晓日,阴红彬等.不同施肥条件对玉米生长季耕层土壤微生物量碳的影响.中国农学通报,2006,24(1):173-175
    95.杨劲松,陈德明,刘广明等.江苏省牲畜养殖养分循环与环境效应.中国环境科学,2001,21(5):468-471
    96.杨仁朋,王德科,刘长庆等.冬小麦夏玉米轮作体系优化施氮对土壤硝态氮的影响. 中国农学通报,2006,22(12):369-372
    97.易琼,张秀芝,何萍等.氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响.植物营养与肥料学报,2010,16(5):1069-1077
    98.尹逊霄,华珞,张振贤等.土壤中磷素的有效性及其循环转化机制研究.首都师范大学学报(自然科学版),2005,25(3):95-101
    99.于群英.土壤磷酸酶活性及其影响因素研究.安徽技术师范学院学报,2001,15(4):5-8
    100.于树,汪景宽,高艳梅.地膜覆盖及不同施肥处理对土壤微生物量碳和氮的影响.沈阳农业大学学报,2006,37(4):602-606
    101.俞慎,李振高.熏蒸提取法测定土壤微生物量研究进展.土壤学进展,1994,22(6):42-49
    102.袁玲,杨邦俊,郑兰君等.长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学报,1997,3(4):300-306
    103.张保军,蒋纪芸.施氮时期对不同小麦籽粒蛋白质品质的影响.西北农业大学学报,1996,24(1):33-35
    104.张福锁,王激清,张卫峰等.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45(5):915-924
    105.张玉兰,王俊宇,马星竹等.提高磷肥有效性的活化技术研究进展.土壤通报,2009,40(1):194-202
    106.张绍林,朱兆良,徐银华等.关于太湖地区稻麦上氮肥的适宜用量.土壤,1988,42(1):5-9
    107.张卫峰,马文奇,王雁峰等.中国农户小麦施肥水平和效应的评价.土壤通报,2008,39(5):1049-1055
    108.张维理,冀宏杰,Kolbeh等.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制.中国农业科学,2004,37(7):1018-1025
    109.张扬珠,刘学军,李法云等.耕型红壤和红壤性水稻土铜的化学形态及其有效性.土壤通报,2000,31(5):210-212
    110.张玉铭.毛任钊.胡春胜等.华北太行山前平原土壤肥力状况与玉米产量相关关系的通径分析.干旱地区农业研究,2004,22(3):51-55
    111.张振克,吴瑞金,朱育新等.云南洱海流域人类活动的湖泊沉积记录分析.地理学 报,2000,55(1):66-74
    112.章永松,林咸永,罗安程等.有机肥(物)对土壤中磷的活化作用及机理研究Ⅰ.有机肥(物)对土壤不同形态无机磷的活化作用.植物营养与肥料学报,1998,4(2):145-152
    113.浙江农业大学作物栽培教研组,慈溪县棉花研究所,海盐县城郊公社东风八队.棉花钾肥施用量和施用时期试验总结.杭州:淅江农业大学.1974
    114.曾玲玲,张兴梅,洪音.长期施肥与耕作方式对土壤酶活性的影响.中国土壤与肥料,2008,2:27-30
    115.郑洪元,张德生.土壤蛋白酶活性的测定及其性质.土壤通报,1981,3:32-34
    116.周礼恺.土壤酶活性总体在评价土壤肥力水平中的作用.土壤学报,1983,20(4):413-417
    117.周启星.健康土壤学-土壤健康质量与农产品安全.北京:科学出版社.2005,190
    118.周卫军,王凯荣.不同施肥制度对红壤性水稻土有机质含量及品质的影响.土壤通报,1998,29(5):201-202
    119.朱兆良,文启孝.中国土壤氮素.江苏:江苏科技出版社.1992,228-231
    120.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6
    121.Arnebrandt K. Changes in micro-fungal community structure after fertilization of Scots pine forest soil with ammonium nitrate or urea. Biology and Fertility of Soils, 1990,22(3):309-312
    122.Benjamin L T, Ian D M, Philip M H. Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biology and Biochemistry,2002, 34(1):27-35
    123.Bhattacharya T, Banerjee D K, Gopal B. Heavy metal uptake by Scirpus littoralis Schrad from fly ash dosed and metal spiked soils. Environmental Monitoring and Assessment,2006,121:363-380
    124.Bockmand O C, Olfs H W. Fertilizer Agronomy and N2O. Nutrition and Cycling of agroecosyst,1998,52(2):165-170
    125.Bolland M D A,Weatherley A J,Gilkes R J. The long-time residual value of rockhosphate and superphosphate fertilizers for various plant species under field conditions. Fertilizer Research,1989,20(2):89-100
    126.Bowman R A, Cole C V. An Exploratory Method for Fractionation of Organic Phosphorus From Grassland Soils. Soil Science,1978,125:95-101
    127.Brerman R F, Bolland M D A. Soil and tissue tests to Prediet the Phosphorus requirements of canola in SouthwesternAustralia. Journal of Plant Nutrition,2007, 30:1767-1777
    128.Broadent F E. Mineralization of organic nitrogen in paddy soils. Nitrogen and Rice, 1987, New York press,105-115
    129.Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen, a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol.Biochem,1985,17:837-842
    130.Brookes P C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils,1995,19:269-279
    131.Bruce K D, Hiorns W D, Hobman J L, et al., Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol,1992,58(10):3413-3416
    132.Burns R G. Enzyme activity in soil:Location and a possible role in microbial ecology. Soil Biology and Biochemistry,1982,14(5):423-427
    133.Bymes B H, Freney J R. Recent development on the use of urease inhibitors in the tropics. Fertilizer research,1995,42(1):251-259
    134.Carreres R, Sendra J, Ballesteros R, et al. Assessment of slow release fertilizers and nitrificationinhibitors in flooded rice. Biol. Fertil. Soils,2003,39:80-87
    135.Cartagena M C, Vallejo A, Diez J A, et al. Effect of the type of fertilizer and source of irrigation water on N use in a maize crop. Field Crop Resarch,1995,44:33-39
    136.Castellano S D, Dick R P. Influence of cropping and sulfur fertilization on transformations of sulfur in soils. Soil Sci Soc Am J,1991,55:283-285
    137.Chen L D,Zhang S R,Qiu J, et al. A comparative study on nitrogen concentration dynamics in surfacewater in a heterogeneous landscape. Environmental Geology, 2002,42:424-432
    138.Chen C R, Condron L M, Davis M R, et al. Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. Forest Ecology and Management,2003,177(1-3):539-557
    139.Chen Z X, Ma S W, Liu L. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresource echnology, 2008,9(14):6702-6707
    140.Chu H Y, Hosen Y, Yagi K, et al. Soil Microbial biomass and activities in a Janpanese Andisol as affected by controlled release and application depth of urea. Biol Fertil Soils,2005,42(2):89-96
    141.Cogun H Y, Yuzereroglu T A, Firat O. Metal concentrations in fish species from the Northeast Mediterranean Sea. Environmental Monitoring and Assessment,2006, 121:431-438
    142.Corona M E, Vander K I, Verhoeven J T. Availability of organic and inorganic phosphorus compounds as phosphorus sources for Carex species. New Phytol,1996, 133:225-231
    143.Jenkinson D S. Chemical tests for potentially available nitrogen in soil. Journal of the Science of Food and Agriculture,1968,19(3):160-168
    144.Damiani P, Gobbetti M, Cossignani L, et al. The Sourdough Micro flora. Characterization of Hetero and Homofermentative Lactic Acid Bacteria, Yeasts and Their Interactions on the Basis of the Volatile Compounds Produced. Lebensmittel-Wissenschaft und-Technologie,1996,29(1-2):63-70
    145.Degens B P. Microbial functional diversity can be influenced by the addition of simple organic substrates to soil. Soil Biology and Biochemistry,1998,30(14): 1981-1988
    146.Dick R P. Soil enzyme activities as integrative indicators of soil health. New York: CAB International,1997
    147.Dick R P, Deng S. Multivariate factor analysis of sulfur oxidation and rhodanese activity in soils. Biogeochemistry,1991,12:87-101
    148.Dick W A, Juma N G, Tabatabai M A. Effects of soils on acid phosphatase and inorganic pyrophosphatase of corn roots. Soil Sci,1983,136:19-25
    149.Dumont M G, Murrell J C. Stable isotopeprobing:Linking microbial identity to function. Nature Reviews Microbiology,2005,3(6):499-504
    150.Elfstrand S, Hedlund K, Martensson A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Applied Soil Ecology,2007,35(3):610-621
    151.Elrashidi M A, Alva A K, Huang Y F. Accumulation and downward transport of phosphorus in Florida soils and relationship to water quality. Communications in Soil Science and Plant Analysis,2001,32(19/20):3099-3119
    152.Enzymes. New York:Academic Press,1978
    153.FAO.1994. FAO-UNESCO Soil Map of the World. Revised legend with corrections. World Resources Report 60 (1990), reprinted as Technical Paper 20,ISRIC, Wageningen,140 pp
    154.FAO. FAOSTAT (http://www.fao.org/eorp/statisties/en),2010
    155.Findenegg G R, Nelemans J A. The effect of phytase on the availability of P from myo-inositol hexaphosphate (phytate) for maize roots. Plant and Soil,1993,154: 189-196
    156.Fischer S G, Lerman L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory. Proc Natl Acad Sci USA,1983,80:1579-1583
    157.Fox T R, Comerford N B. Rhizosphere phosphatase activity andphosphatase hydrolyzable organic phosphorus in two forested spodosols. Soil Biol Biochem,1992, 24(6):579-583
    158.Garia C, Vollejo A, Diez J A. Nitrogen use efficiency with the application of controlled-release fertilizers coated with Kraft pine lignin. Soil Science and Plant Nutrition,1997,43:443-449
    159.Ge G F, Li Z J, Zhang J, et al. Geographical and climatic differences in long-term effect of organic and inorganic amendments on soil enzymatic activities and respiration in field experimental stations of China. Ecological Complexity,2009, 6(4):421-431
    160.Geisseler D, Horwath W R. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biology and Biochemistry,2008,40(12):3040-3048
    161.Guan G, Tu S X, Yang J C, et al. Effects of nitrogen fertilizer application modes on nutrient uptake, crop yield and soil biological properties in rice-wheat rotation system. Agricultural Sciences in China,2011,10(8):1254-1261
    162.Guan S Y. Soil Enzymes and Research Methods. China Agricultural Science Press, Beijing, China (in Chinese).1986
    163.Gu Y F, Yun X, Zhang X P, et al. Effect of Different Fertilizer Treatments on Quantity of Soil Microbes and Structure of Ammonium Oxidizing Bacterial Community in a Calcareous Purple Paddy Soil. Agricultural Sciences in China,2008,7(12): 1481-1489
    164.Harrison A F. Soil organic phosphorus. A review of world literature. Oxford:CAB International.1987
    165.Hart S, Stark J.1994. Methods of soil analysis, part 2. Microbiological and biochemical properties. In Soil Science Society of America, eds. R. Weaver, P. Bottomly, and S. Angle,985-1017. Madison, Wisconsin, USA
    166.Hayano K, Watanabe K, Asakawa S. Activity of protease extracted from rice-rhizosphere soils under double cropping of rice and wheat. Soil Science Plant Nutrition,1995,41:597-603
    167.Hayes J E, Simpson R J, Richardson A E. The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant and Soil,2000,220:165-174
    168.He Z L. Soil microbial soil carbon and significance in nutrient cycling and environmental quality evaluation. Soil,1997,29(2):61-691
    169.Hesketh N, Brookes P C. Development of an indicator for risk of phosphorus leaching. J. Environ. Qual,2000,29:105-110
    170.Hesse P R. Textbook of Soil Chemical Analysis. John Murray, London:Chemical Pub. Co. Press.1971
    171.Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorous fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc. Am,1982,46:970-976
    172.Jangid K, Williams M A, Franzluebbers A J, et al. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry,2008,40(2):2843-2853
    173.Janpen P, Kiwamu M, Kamonluck T, et al. The communities of endophytic diazotrophic bacteria in cultivated rice. Applied Soil Ecology,2009,42:141-149
    174.Jawson M D, Elliott L F, Papendick R I, et al. The decomposition of 14C-labelled wheat straw and 15N-labelled microbial material. Soil Biology and Biochemistry, 1989,21:417-422
    175.Jenkinson D S, Powlson D S. The effects of biocidal treatments on metabolism in soil. A method for measuring soil biomass. Soil Biol.& Biochem,1976,8:189-202
    176.Ji X H, Zheng S X, Lu Y H, et al. Study of Dynamics of Floodwater Nitrogen and Regulation of Its Runoff Loss in Paddy Field-Based Two-Cropping Rice with Urea and Controlled Release Nitrogen Fertilizer Application. Agricultural Sciences in China,2007,6:189-199
    177.Jimenez S, Cartagena M C, Vallejo A. Kinetic Properties of urea coated with resin and tricalcic Phosphate. Agric Med,1993,123:47-54
    178.Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environmental Pollution,2007,45(2):497-506
    179.Kamimura Y, Hayano K. Properties of protease extracted from tea-field soil. Biology and Fertility of Soils,2000,30:351-355
    180.Kalter H. Teratology in the 20th century:Environmental causes of congenital malformations in humans and how they were established. Neurotoxicology and Teratology,2003,25(2):131-282
    181.Kandeler E. Protease activity. In Methods in Soil Biology.1996, Eds. F. Schinner, R. Olinger, E. Kandeler, and R. Margesin,165-168, Berlin/Heidelberg/NewYork: Springer
    182.Kellogg L E, Bridgham S D. Phosphorus retention and movement across an ombrotrophic-minerotrophie peatland gradient. Biogeochemistry,2003,63:299-315
    183.Kiss I. The invertase activity of earthworm casts and soils from anthills. Agrokem Talajtan,1957,6:65-85
    184.Kong L, Wang Y B, Zhao L N, et al. Enzyme and root activities in surface-flow constructed wetlands. Chemosphere,2009,76:601-608
    185.Kozlov K A. The role of soil fauna in the enrichment of soil with enzymes. Pedobiologia,1965,5:140-145
    186.Krajewska B. Ureases I. Functional, catalytic and kinetic properties:A review Journal of Molecular Catalysis B. Enzymatic,2009,59(1-3):9-21
    187.Krajewska B. Ureases Ⅱ. Properties and their customizing by enzyme immobilizations:A review Journal of Molecular Catalysis B. Enzymatic,2009,59 (1-3):22-40
    188.Kreader C A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol,1996,62:1102-1106
    189.Lane D J, Field K J, Olsen G J, et al. Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis. Methods in Enzymology,1998,167:138-144
    190.Lei X G, Porres J M, Mullaney E J, et al. Phytase:source, structure and application. In:Polaina J, MacCabe A P. Industrial Enzymes:Structure, Function and Applications. Springer,2007
    191.Lerman L S, Fischer S G, Hurley I, et al. Sequence-determined DNA separations. Annu Rev Biophys Bioeng,1984,13:399-423
    192.Li D P, Wu Z J, Chen L J, et al. Dynamics of microbial biomass Cinablack soil under long-term fertilization and related affecting factors. Chinese Journal of Applied Ecology,2004,14(8):1334-1338
    193.Li S X, Wang Z H, Stewart B A. Differences of Some Leguminous and Nonleguminous Crops in Utilization of Soil Phosphorus and Responses to Phosphate Fertilizers. Advances in Agronomy,2011,110:125-249
    194.Li Z J, Xua J M, Tang C X, et al. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemosphere,2006,62(8):1374-1380
    195.Liang J, Li Z, Tsuji K, et al. Milling characteristics and distribution of phytic acid and zinc in long-, medium-and short-grain rice. Journal of Cereal Science,2008, 48:83-91
    196.Liu X J, Wang J C, Lu S H, et al. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Research,2003,83:297-311
    197.Lombi E, Stevens D P, McLaughlin M J. Effect of water treatment residuals on soil phosphorus, copper and aluminium availability and toxicity. Environmental Pollution, 2010,158(6):2110-2116
    198.Lu H J, Ye Z Q, Zhang X L, et al. Growth and yield responses of crops and macronutrient balance influenced by commercial organic manure used as a partial substitute for chemical fertilizers in an intensive vegetable cropping system. Physics and Chemistry of the Earth.2010, Parts A/B/C
    199.Luo A C, Sun X, Zhang Y S. Speciesof inorganic phosphate solubilizing bacteria in red soil and the mechanism of solubilization. Pedosohere,1993,3(3):285-288
    200.Marchal S, Girvan H M, Antonius C, et al. Formation of Transient Oxygen Complexes of Cytochrome P450 BM3 and Nitric Oxide Synthase under High Pressure. Biophysical Journal,2003,85(5):3303-3309
    201.Marschner H. Mineral nutrition of higher plants, second edition.889pp.1995. London:Academic Press
    202.Matus E J, Rodriguez J A. simple model for estimating the contribution of nitrogen mineralization to the nitrogen supply of crops from a stabilized pool of soil organic matter and recent organic input. Plant and soil, 1994, 162:259-271
    203.Mengel K,Header H E. Effect of potassium supply on the rate of phloem sape xudation and the composition of phloe m sap of Rizinos Commuinis. Plant Physiol, 1997, 59:282-284
    204.Mohamed M E F, Fawzi A F A. Higher and better yields with less environmental pollution in Egypt through balanced fertilizer use. Fertilizer Research, 1996, 43:1-4
    205.Muyzer C; Waal E C D, Uitterlinden A G Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993, 59:695-700
    206.Myers R M, Fischer S C} Lerman L S, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res, 1985, 13:3131-3145
    207.Myers R M, Fischer S C} Maniatis T, et al. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res, 1985, 13:3111-3129
    208.Myrold D D, Posavatz N R. Potential importance of bacteria and fungi in nitrate assimilation in soil. Soil Biology and Biochemistry, 2007, 39(7):1737-1743
    209.Naidja A, Huang P M, Bollag J M. Enzyme-clayinteractionsand their impact on transformations of natural and anthropogenic organic compounds in soil. Journal of Environmental Quality, 2000, 29:677-691
    210.Nannipieri P, Muccini L, Ciardi C. Microbial biomass and enzyme aeon transformations of sulfur in soils. Soil Sci Soc Am J, 1991, 55:676-685
    211.Nannipieri P, Muccini L, Ciardi C. Microbial biomass and enzyme activities: Production and persistence. Soil Biol Biochem, 1983, 15:676-685
    212.Ndayeyamiye A, Cote D. Effect of long-term Pig slurry and solid cattle manure application on soil chemical and biological properties. Canadian Joumal of Soil Science, 1989, 69(1):39-47
    213.Nie J, Zheng S X, Dai P A. Physiological basis of Photosymthetic function and senescence of rice leaves as regulated by controlled-release fertilizer. Rice Science, 2005, 12:275-282
    214.Nikitishen V 1, Lichko V 1, Kurganova E V. Phosphorus in agroecosystems on gray forest soils in the opolie regions of Central Russia. Eurasian Soil Science, 2008, 41(8):869-881
    215.Nsabimana D, Haynes R J, Wallis F M. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Applied Soil Ecology,2004,26:81-92
    216.Oberson A, Fardeau J C, Besson J M, et al. Soil phosphorus dynamics in cropping systemsmanaged according to conventional and biological agricultural methods. Biol. Fert. Soils,1993,16:111-117
    217.Ocio J A, Brookes P C, Jenkinson D S. Field incoropration of straw and its effects on soilmicobial biomass and soil inorganic N. Soil Bio. Biochem,1991,23(2):171-176
    218.Ohnishi M, Horie T, Homma K, et al. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand. Field Crops Research, 1999,64:109-120
    219.Olsen S R, Cole C V, Watanabe F S, et al. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circ,1954,939:1-19
    220.Page A L, Miller R H, Keeney D R(Eds.), Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties,2nd edn. (Agronomy series no.9) ASA, SSSA, Madison, Wis,1982
    221.Palma R M, Arrigo N M, Saubidet M I, et al. Chemical and biochemical properties as potential indicators of disturbances. Biology and Fertility of Soils,2000,32:381-384
    222.Park S C, Smith T J, Bisesi M S. Activities of phospho monoesterase from Lumbricus terrestris. Soil Biol Biochem,1992,24:873-876
    223.Quiquampoix H, Mousain D.2004. Enzymatic hydrolysis of organic phosphorus. In: Turner B L, Frossard E., Baldwin D. (Eds.), Organic Phosphorus in the Environment. CABI Publishing, Wallingford (in press-a)
    224.Pratt P F. Potassium removal from Iowa soils by green-house and laboratory procedures. Soil Sci,1951,72:107-118
    225.Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen effieiency of winter oil seed rape(Brassica nopus L.):A review. Agnculture Ecosystems and Environment,2006, 117:80-108
    226.Ren T Z, Grego S. Soil bioindicators insustainable agriculture. Scientia Agricultura Sinica,2000,33(1):68-75
    227.Riaudo M O, Heimlich R, Claassen R, et al. Analysis least-cost management of nonpoint source pollution:source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin. Ecological Economics,2001, 37:183-197
    228.Saigusa M, Yoshida K, Koshino M, et al. Tohoku Branch of Japanese Society of Soil Science and Plant Nutrition. Growth characteristics of the representative crops and the use of controlled availability fertilizer(the present and future situations)-the way to the labor saving and high yield cultivation with special reference to environmental problems. Japanese Journal of Soil Science and Plant Nutrition,1997,68(2):209-216
    229.Sait M, Davis K E R, Janssen P H. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Applied and Environmental Microbiology,2006,72(3):1852-1857
    230.Sato T, Shibuya K, Saigusa M, et al. Single basal application of total nitrogen fertilizer with controlled-release coated urea on non-tilled rice culture. Japanese Journal of Crop Science,1993,62:408-413
    231.Schjonning P, Elmholt S, Munkholm L J, et al. Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management. Agric. Ecosyst. Environ.,2002,88:195-214
    232.Shannon C E, Weaver W. The mathematical theory of eommunication. Champaign, 1949, Illinois:University of Illinois Press
    233.Sharon G H. Studies on slow release fertilizers:Ⅱ A method for evaluation of nutrient release rate from slow releasing fertilizers. Soil Science,1990,150:446-450
    234.Shaviv A, Mikkelsen R L. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation. A review. Fertilizer Research, 1993,35:1-12
    235.Sheehy J E, Mitchellb P L, Guy J D, et al. Can smarter nitrogen fertilizers be designed? Matching nitrogen supply to crop requirements at high yields using a simple model. Field Crops Research,2005,94:54-66
    236.Shen W S, Lin X G, Shi W M, et al. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant and Soil,2010,337(1):137-150
    237.Shoji S, Gandeza A T, Kimum K. Simulation of response to polylephin-coated urea: Ⅱ Nitrogen uptake by corn. Soil Sci Soc,1991,55(5):1468-1473
    238.Singh M, Singh V P, Damodar R D. Potassium balance and release kinetics under continuous rice-wheat cropping system in Vertisol. Field Crops Research,2002, 77(2-3):81-91
    239.Soil Enzymes. New York:Academic Press,1978
    240.Soltanpour P N, GharousM E, AzzaouiA, et al. A soil test based N recommendation model for dryland wheat.Commun. Soil Sci. Plant Anal.,1989,20:1053-1068
    241.Song R, Wu C S, Mou J M. Effects of maize stubble remaining in field on dynamics of soil mirobiol biomass C and soil enzyme activities. Chin J Appl Ecol.,2002, 13(3):303-306
    242.Spedding T A, Hamel C, Mehuys G R, et al. Soil microbiol dynamicsinmaize growing soil under different tillage and residue management systems. Soil Biology & Biochemistry,2004,36:499-512
    243.Speir T W, Lee R,Pansier E A, et al. A comparison of sulphatase, utease and protease activities in planted and fallow soils. Soil Biol Biochem,1980,12:281-291
    244.Speir T W, RossD J. Soil phosphatase and sulphatase. In:BurnsR.G. (ed). Soil Enzymes. New York:Academic Press,1978,198-250
    245.Stevens C J, Quinton J N, Bailey A P, et al. The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss. Soil & Tillage Research,2009,106(1):145-151
    246.Syers J K, Sharpley A N, Keeney D R. Cycling of nitrogen by surface-casting earthworms in a pasture ecosystem. Soil Biol Biochem,1979,11:181-185
    247.Tabatabai M A. Soil enzymes. In:Weaver et al., Ed, Methods of Soils Analysis. Part 2. Microbiological and Biochemical Properties. Soil Sci. Soc. Am, Madison,1994. WI, pp.778-833
    248.Tabatabai M A. Soil enzymes. In:Weaver, et al. (ed.) Methods of Soils Analysis. Part 2. Microbiological and Biochemical Properties. Soil Sci. Soc. Am.,Madison, WI.1994
    249.Tabatabai M A. Soil enzymes. In:R.W. Weaver, J. S. Augle, P.S. Bottomley (Ed.). Methods of soil analysis. Part 2.Microbiological and biochemical properties. SSSA book series no.5.SSSA Madison Wis,1994,775-883
    250.Takeda M, Nakamoto T, Miyazawa K, et al. Phosphorus availability and soil biological activity in an Andosol under compost application and winter cover cropping. Applied Soil Ecology,2009,42(2):86-95
    251.Tao J, Griffiths B, Zhang S J, et al. Effects of earthworms on soil enzyme activity in an organic residue amended rice-wheat rotation agro-ecosystem. Applied Soil Ecology,2009,42(3):221-226
    252.Timsina J, Connor D J. Productivity and management of rice-wheat cropping systems:issues and challenges. Field Crops Research,2001,69(2):93-132
    253.Tkachuck R. Nitrogen-to-protein conversion fackctors for cereals and oilseed meals. Cereal Chem,1969,46(4):419-423
    254.Tlustos P, Blamer A M. Release of nitrogen from urea form fractions as influenced by soil pH. Soil Science,1992,56(6):1807-1810
    255.Tomaszewska M, Jarosiewiez A. Use of Polysulfone in controlled-release NPK fertilizer formulations. Journal of Agricultural and Food Chemistry,2002,50 (16):4634-4639
    256.Torsvik V, Goksoyr J, Daae F L. High diversity of DNA of soil bacreia. APPI Environ Microb,1990,56:782-787
    257.Turner B L, Paphazy M J, Haygarth P M, et al. Inositol phosphates in the environment. Philosophical Transactions of the Royal Society. London Series B 357. 2002,449-469
    258.Turner B L, Weckstrom K. Phytate as a novel phosphorus-specific paleo-indicator in aquatic sediments. J. Paleolimnol,2009,42:391-400
    259.Ullah A H J, Phillippy B Q. Substrate selectivity in Aspergillus ficuum phytase and acid phosphatases using myoinositol phosphatases. J Agric Food Chem,1994, 42:423-425
    260.Veado M A R V, Arantes I A, Oliveira A H. Metal pollution in the environment of Minas Gerais State, Brazil. Environmental Monitoring and Assessment,2006,117: 157-172
    261.Walkley A J, Black C A. An estimation of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid tritration method. Soil Sci,1934,37:29-38
    262. Walter M, Westhead E K, Pizarro C, et al. Recycling of manure nutrients:use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technology,2005,96(4):451-458
    263.Wang Q K, Wang S L, Liu Y X. Responses to N and P fertilization in a young Eucalyptus dunnii plantation:Microbial properties, enzyme activities and dissolved organic matter. Applied Soil Ecology,2008,40(3):484-490
    264. Wang J H, Liu J S, Yu J B, et al. Effect of fertilizing NandPon soil microbial biomass carbon and nitrogen of black soil cornagroe cosystem. Journal of Soil and Water Conversation,2004,18(1):35-38
    265. Wang Z H, Dong H F, Tong J M, et al. Waste vinegar residue as substrates for phytase production by Aspergillus ficuum. Waste Management and Research,2011, 29(12):1262-1270
    266.Ward D M, Santegoeds C M, Nold S C, et al. Biodiversity within hot spring microbial mat communities:molecular monitoring of enrichment cultures. Antonie Van Leeuwenhoek,1997,71(1):43-50
    267.Witter E, Mortensson A M, Garcia F V. Size of the soil microbial biomass in a long-term field Experiment as affected by different N-fertilizers and organic manures. Soil Biology and Biochemistry,1993,25:659-669
    268. Wu J, Brookes P C, Jenkinson D S. Formation and destructi on of microbial biomass during the decompositi on of glucose and ryegrass in soil. Soil Biol. Biochem,1993, 25(10):1435-1441
    269.Xiao C Y, Ruan H H, Tu L B. Biological characteristics of different forest soil in Nanjing-Zhenjiang mountain area.Chin JAppl Ecol,2002,13(9):1077-1080
    270.Xu G H, Zheng H Y. Analytical Handbook of Soil Microbes.1986. Beijing, China: China Agriculture Press
    271.Xu M G, Li D C, Li J M, et al. Effects of Organic Manure Application with Chemical Fertilizers on Nutrient Absorption and Yield of Rice in Hunan of Southern China. Agricultural Sciences in China,2008,7(10):1245-1252
    272.Xu Y C, Shen Q R, Ran W. Effects of zero tillage and application of manure on soil microbial biomass C, N and P after sixteen years of cropping. Acta Pedologica Sinica, 2002,39(1):89-96
    273.Yadav R L, Dwivedi B S, Pandey P K. Rice-wheat cropping systems:assessment of sustain ability under green manuring and chemical fertilizer inputs. Field Crop Res, 2000,65:15-30
    274.Yao H Y, He Z L, Wilson M J, et al. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol,2000, 40(3):223-237
    275.Yearbook C.2008. Beijing, China:China Statistics Press
    276.Yearbook C.2009. Beijing, China:China Statistics Press
    211.Yu S, Li Y, Wang H, et al. Study on the soil microbial biomass as a bioindicator of soil quality in the red earth ecosystem. Acta Pedologica Sinica,1999,36(3):413-421
    278.Zhang M K, Xu J M. Restoration of surface soil fertility of an eroded red soil in southern China. Soil and Tillage Research,2005,80(1-2):13-21
    279.Zhang Y S, Werner W, Scherer H W, et al. Effect of organic manure on organic phosphorus fractions in two paddy soils. Biology and fertility of soil,1994,17:64-68
    280.Zhang H, Zhang G L. Microbial biomass carbon and total organic carbon of soils as affected by rubber cultivation. Pedosphere,2003,13(4):353-357
    281.Zhao Y C, Wang P, Li J L, et al. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. Europ J Agronomy,2009,31:36-42
    282.Zhou J Z, Bruns M A, Tiedjie J M. DNA recovery from soil of diverse composition. Appl Environ Microbiol,1996,62(2):316-322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700