用户名: 密码: 验证码:
北冰洋西部沉积物地球化学特征及环境指示意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国第一次(1999年)和第二次(2003年)的北极科学考察区——楚科奇海及其北部海域,是了解北冰洋现代和过去海洋环境变化的关键地带。本论文以楚科奇海及邻近北冰洋深水区的60个表层沉积物样品和M03岩心为研究对象,以元素和稳定碳/氮同位素为主要研究手段,结合颜色反射率分析、粒度分析和粘土矿物分析,重点探讨了研究区表层沉积物来源与现代沉积环境,以及楚科奇海北部边缘地带的古海洋学演变。
     通过对表层沉积物的研究,获得如下几点结论:(1)受水动力和海冰的双重制约,研究区沉积物总体较粗,分选较差,结构成熟度较低。(2)海底沉积物的化学成熟度低,带有明显的源区母岩信息;富K的伊利石,富Mg、Ca、Na、Zn的蒙皂石,以及富Mn、Fe的绿泥石等使得粘土矿物与粘土级组分的化学元素之间的耦合关系十分明显;常量元素Al、K、Mg、Fe、Ti和微量元素Li、V、Sc、La、Zn、Y、Cu、Ni等主要富集在细粒沉积物中,前者是粘土矿物伊利石、绿泥石、高岭石和蒙皂石的构成元素,后者多与粘土矿物等细粒物质的吸附或者结合有关。(3)陆源碎屑物质的分布受海区环流结构所制约:来自加拿大马更些河与阿拉斯加北部的物质富含高岭石和伊利石,富K、富Al,受顺时针方向流动的波弗特涡流影响,对研究区东北部和北部沉积物的影响大;来自阿拉斯加西北部河流和海岸带的物质富含绿泥石,高岭石含量变化大,SiO_2含量高,多富Zr,对阿拉斯加西北部近海沉积物影响明显;来自西伯利亚的物质富含绿泥石,富Na、Sr,富Zr,对研究区西部沉积物的影响较为明显;携带大量育空河物质的太平洋水自白令海峡进入研究区后,横穿楚科奇海陆架向北扩散,导致楚科奇海中部沉积物富含蒙皂石,富Na、Mg、Ca、Zn、Sr等。(4)稀土元素趋向于在细粒沉积物中富集,在粗粒沉积物中亏损,页岩标准化配分模式大部分较为平坦,说明楚科奇海表层沉积物主要来源于周边大陆,且陆源碎屑物质的化学风比作用较弱。(5)过渡金属:元素Mn、Co、Ni、Cu等共生,在氧化环境中富集,自生Mn和自生Ni的分布说明北冰洋深水区海水-沉积物界面为氧化环境,楚科奇海多表现为缺氧还原沉积环境;楚科奇海台前缘因太平洋水、大西洋水的活动,表层水生产力高,底层水含氧量高,有利于自生Mn的富集和微结核的形成。(6)沉积物中生物成因SiO_2的含量和有机质δ~(13)C和δ~(15)N值反映了海区生产力与陆源有机质的供应状况,并受控于海区环流结构和营养盐结构。太平洋水自白令海峡进入研
    
    究区后,分化成营养盐含量不同的三支分海流横穿楚科奇海陆架向北扩散,导致研
    究区水体的营养盐和生产力出现分异。研究区中西部海域受太平洋富营养盐海水的
    影响,海洋生产力高,6’3c和6’SN值的陆源信号较弱;在阿拉斯加西北部近海,海
    水的营养盐含量低,水体的生产力低,海岸带物质输入使陆源有机质信号增强。在
    研究区北部和东北部的楚科奇高地和加拿大海盆,海域冰封时间长,营养盐供应少,
    海洋生产力低,来自马更些河和阿拉斯加北部的陆源有机质增多,沉积物中生物成
    因510:含量小于5%,海源有机质比重小于40%。由于亚北极太平洋水通过研究区
    向北冰洋中央海盆输送,研究区营养盐池实际上可视为一个典型的开放系统,
    6’SN/Sio:比值说明研究区中西部海水的营养盐供应充足但利用率较低,东部和东北
    部海水营养盐含量低,利用率高,营养盐供应不足成为制约生产力的瓶颈。
     通过对楚科奇海北部边缘地带M03岩心的粒度、颜色反射率和元素地球化学分
    析,获得如下几点结论:(1)M03岩心沉积物颜色的韵律变化明显,大致可划分出7
    个褐色层(BI一B7)和7个灰色层(GI一G7);褐色层BI、BZ、B3、B4、BS、B6、B7
    的年龄分别与氧同位素l、3、5、7、9、11、13期相对应,GI、GZ、‘33、G4、GS、
    G6、G7的年龄大致与氧同位素2、4、6、8、10、12、14期相对应;]过03岩心底部
    年龄可能在530 ka BP左右,属中更新世沉积。(2)在氧同位素l、3、二;、7、9、11、
    13期,总的来说是沉积物粒度较粗,A12o3、FeZo3、TioZ、跳。、se、V、Li、Y含
    量低,沉积物呈褐色,富Mn,富C。,海底处于氧化环境。在氧同位素2、4、6、8、
    10、12、14期,总的来说是沉积物粒度较细,A12o3、FeZo3、TioZ、及。、sc、v、
    Li、Y含量高,沉积物呈灰色或浅黄灰色,贫Mn,贫CO,海底处于还原环境。冰
    筏碎屑含量在冰期(灰色层)低,在间冰期(褐色层)较高,在冰期和间冰期的转变阶段
    往往很高。在间冰期最盛期,气候温暖,大体与现代差不多,北冰洋大部分海区可
    能发育季节性海冰,陆源冰的输入少,冰体筏运的碎屑物质不多。在冰期的最盛期,
    海冰厚度大,覆盖度大,甚至可能形成巨厚的冰盖,冰的活动受到很大抑制,筏运
    的碎屑很少;同时,冰盛期气候干冷,河流的径流量小,输沙量降低,北冰洋深水
    区沉积作用以海水中细粒悬浮物质的缓慢沉降为特征,沉积速率低。在氧同位素1、
    3、5、7、9、11、13期,MgO、CaO的含量较高;在氧同位素2、4、〔、8、10、12、
    14期,Zr/AI比值较大;前者多与碳酸盐岩冰筏碎屑有关,反映间冰期波弗特涡流可
    能增强;后者多与硅酸盐冰筏碎屑有关,反映冰期来自西伯利亚及其陆架的物质
The Arctic Ocean plays an important role in the late Cenozoic evolution of the Earth's environmental s ystem, includin g modern climatic changes. The Chukchi Sea, together with its northern borderland, is the key area to understand modern and past oceanographic changes of the Arctic Ocean. 60 surface sediment samples and Core M03 were selected and analyzed major and minor elements, stable carbon and nitrogen isotopes, and other sedimentologic parameters, with the objectives for understanding sediment sources, spatial and temporal changes of sedimentary environments in the area.
    Based on numerous studies of surface sediments, several conclusions are summarized as follows: (1) Controlled by hydrodynamics and ice, surface sediments in the study area are relatively coarse and have bad sorting and low structure maturity. (2) Sediments also have relatively low chemical maturity and remain clear fingerprints of their sources. K-rich illite. Mg-, Ca-, Na-, Zn-rich smectite, Mn- and Fe-rich chlorite produce a clear coupling relationship between clay minerals and chemical compositions of clay fraction. Major elements Al, K, Mg, Fe, Ti and minor elements Li, V, Sc, La, Z,n, Y, Cu, Ni are enriched in fine-grained sediments, the former are main components to form clay minerals and the latter are generally related to adsorption and integration of fine-grained materials. (3) The dispersals of terrigenous components in the study area are controlled mainly by marine circulation. Kaolinite-, illite-, K- and Al-rich sediments in the northeast and the north of the study area are derived mainly from Ca
    nadian Mackenzie River due to the transport of i:he clockwise Beaufort Gyre. Sediments in the nearshore of Northwest Alaska enrich chlorite, and have variable kaolinite and high SiO2 contents, indicating a large fraction of sediments from the Northwest Alaskan coasts and riven;. Sediments off Wrangel Island in the west of the study area enrich chlorite, Na, Sr and Zr, indicating an elevated influences from Siberian continent and shelves. The Pacific waters entering from the Bering Strait entrain a large amount of the Yukon River materials; its northward dispersal possibly cause sediments in the central part of the Chukchi Sea to enrich smectite and elements Na, Mg, Ca, Zn, Sr etc. (4) REEs are relatively rich in fine-grained
    
    
    
    sediments and deplete in coarse-grained sediments, and exhibit flat shale- normalized REE
    pattern in the Chukchi Sea, indicating surface sediments are composed dominantly of
    terrigenous components with weak chemical weathering from Alaska and Siberia. (5)
    Transitional metals Mn, Co, Ni, Cu coexist and their enrichments denote oxidizing
    environments. The distributions of authigenic Mn and Ni indicate the northern deep sea
    has an oxidizing seabed environment while the Chukchi Sea has a reducing sedimentary
    environment. (6) Biogenic SiO2 contents, organic 513C and 515N values in surface
    sediments reflect surface water productivity and supply of terrigenous organic materials,
    which are controlled by marine circulation and seawater nutrient structure. After entering
    the study area, the Pacific waters disperse northward cross the Chukchi shelf as three
    branches with different nutrients, and cause differentiations in nutrient and surface water
    productivity in the study area. Due to the influence of the nutrient-rich waters, the
    midwest of the study area have high surface water productivity, and weak signals of
    terrigenous organic 513C and 515N; The nearshore of Northwest Alaska has the less
    nutrient-rich seawater, and so has decreasing surface water productivity and enhanced
    signals of terrigenous organic 6I3C and 615N. The Chukchi Plateau and the Canadian Basin
    in the northeast and the north of the study area have relatively long duration of ice cover
    and the least nutrient-rich seawater, so they have the lowest surface water productivity and
    the highest terrigenous organic component, the latter is derived mainly from Canadian
    Mackenzie River due to the transport of the clockwise Beaufort Gyre. For th
引文
蔡德陵,蔡爱智.黄河口区有机碳同位素地球化学研究.中国科学,B辑,1993,23(10):1105-1113.
    蔡德陵,毛兴华,韩贻兵.~(13)C/~(12)C比值在海洋生态系统营养关系研究中的应用—海洋植物的同位素组成及其影响因素的初步探讨.海洋与湖沼,1999,30(3):306-314.
    蔡德陵,孟凡,韩贻兵,高素兰.~(13)C/~(12)C比值作为海洋生态系统食物网示踪剂的研究—崂山湾水体生物食物网的营养关系.海洋与湖沼,1999,30(6):671-678.
    蔡德陵,洪旭光,毛兴华等.崂山湾潮间带食物网结构的碳稳定同位素初步研究.海洋学报,2001,23(4):41-47.
    陈波,何剑锋,蔡明红等.楚科奇海浮冰区夏季短期颗粒有机物通量及其主要组分,极地研究,2003,15(2):83-90.
    陈传平,梅博文.中国不同沉积环境的氮同位素特征.石油与天然气地质,2001,22(3):207-209.
    陈骏,王洪涛,鹿化煜.陕西洛川黄土沉积物中稀土元素及其它微量元素的化学淋滤研究,地质学报,1996,70(1):61-72.
    陈立奇.南极和北极地区在全球变化中的作用研究.地学前缘,2002,9(2):245-253.
    陈志华,石学法,韩贻兵等.北冰洋西部表层沉积物粘土矿物分布及环境指示意义.海洋科学进展,2004,22(3).(待刊)
    马英军,刘丛强.化学风化作用中的微量元素地球化学.科学通报,1999,44(22):2433-2437.
    陈敏,黄奕普,郭劳动等.北冰洋:生物生产力的“沙漠”?科学通报,2002,47:707-710.
    陈敏,黄奕普,金明明等.加拿大海盆上下跃层水形成机制的同位素示踪.中国科学D辑,2003,33(2):127-138.
    陈荣华,孟翊,华棣等.楚科奇海与白令海表层沉积物中的钙质和硅质微体化石研究.海洋地质与第四纪地质,2001,21(4):25-29.
    范德江,杨作升,毛登等.长江与黄河沉积物中粘土矿物及地化成分的组成.海洋地质与第四纪地质,2001,21(4):7-12.
    高爱国,刘焱光,孙海青.与全球变化有关的几个北极海洋地质问题.2002,9(3):201-207.
    高爱国,陈志华,刘焱光等.楚科奇海表层沉积物的稀士元素地球化学特征.中国科学,2003,33(2):148-154.
    高爱国,刘焱光,张道建等.楚科奇海与白令海表层沉积物中的碘的纬向分布.中国科学,2003,33(2):115-162.
    高郭平,董兆乾,侍茂崇.1999年夏季中国首次北极考察区水团特征.极地研究,2003,15(1):11-20.
    高众勇,陈立奇,王伟强.南北极海区碳循环与全球变化研究.2002,地学前缘,9(2):263-269.
    何春,何金海.冬季北极涛动和华北冬季气温变化关系.研究南京气象学院学报,2003,26(1):1-7.
    
    
    何良彪,刘秦玉.黄河与长江沉积物中粘土矿物的化学特征.科学通报,1997,42(7):730-734.
    霍文冕,曾宪章,田伟之.北极楚科奇海近代沉积物稀土元素地球化学特征初探.极地研究,2003,15(1):21-27.
    黄维,刘志飞,陈晓良等.寻求深海碳酸盐沉积含量的物理标志.地球科学——中国地质大学学报,2003,28:157-162.
    黄维,翦知缗,C Buhring.南海北部ODP 1144站颜色反射率揭示的千年尺度气候波动.海洋地质与第四纪地质,2003,23(3):5-10.
    金秉福,林振宏,季福武.海洋沉积环境和物源的元素地球化学记录释读.海洋科学进展,2003,21(1):99-106.
    李培基.北极海冰与全球气候变化.冰川冻土,1996,18(1):72-80.
    李建如,王汝建,李保华.南海南部12Ma以来的蛋白石堆积速率与古生产力变化.科学通报,2002,47(3):235-237.
    李荣冠,郑凤武,江锦祥.楚科奇海及白令海大型底栖生物初步研究.生物多样性,2003,11(3):204-215.
    李双林.东海陆架HY126 EA1孔沉积物稀土元素地球化学.海洋学报,2001,23(3):127-132.
    李雅娟,王起华.氮、磷、铁、硅营养盐对底栖硅藻生长速率的影响.大连水产学院学报,1998,13(4):7-14.
    林景宏,戴燕玉,张金标.夏季楚科奇海浮游动物的生态特征,极地研究,2001,13(2):107-116.
    刘丛强,吴佳红,于文辉.氢氧化铁胶体/水界面作用与地表水中稀土元素的分异—pH控制机理的实验研究.中国科学,2001,31:873-880.
    刘耕年.南极乔治王岛菲尔德斯半岛土壤的化学风化作用,南极研究,1991,3(1):22-29.
    刘英俊,曹励明.元素地球化学导论.北京:地质出版社,1987,57-80.
    卢冰,潘建明,王自磐等.北极沉积物中正构烷烃的组合特征及古沉积环境的研究.海洋学报,2002,24(6):34-48.
    孟翊,陈荣华,郑玉龙.白令海与楚科奇海表层沉积物中的有孔虫及其沉积环境.海洋学报,2001,23(6).
    潘兆橹.结晶学及矿物学(下册),北京:地质出版社,1985.
    浦一芬,王明星.海洋碳循环模式(Ⅰ)——一个包括海洋动力学环流、化学过程和生物过程的二维碳模式的建立.气候与环境研究,2000,5(2):129-140.
    任玲,杨军.海洋中氮营养盐循环及其模型研究.地球科学进展,2000,15(1):58-64.
    邵磊,李献华,韦刚健等.南海陆坡高速堆积体的物质来源.中国科学(D辑),2001,31(10):828-833.
    孙云明,宋金明.中国海洋碳循环生物地球化学过程研究的主要进展(1998-2002).海洋科学进展,2002,20(3):110-118.
    
    
    汤毓祥,焦玉田,邹娥梅.白令海与楚科奇海水文特征和水团结构的初步分析.极地研究,2001,13(1):57-68.
    王金土.黄海表层沉积物稀土元素地球化学特征.地球化学,1990,44-53.
    王昆山.黄海,东海沉积物颜色反射率分布及其地质意义.中国科学院研究生院博士学位论文,2003.
    王汝建,房殿勇,邵磊等.南海北部陆坡渐新世的蛋白石沉积.中国科学D辑,2001,31,867-872.
    王汝建,李建.南海ODP1143站第四纪高分辨率的蛋白石记录及其古生产力意义.科学通报,2003,48(1):74-77.
    王万春,吉利明.有机碳和有机分子碳同位素的地球化学意义.地球科学进展,1997,12(5):474-478.
    王文正,张经.欧洲罗纳河与中国几条主要河流悬浮物的矿物学组成分析.海洋与湖沼,1994,25(3):319-327.
    王中刚,于学元,赵振华.稀土元素地球化学.北京:科学出版社,1989,1-535.
    韦刚健,陈毓蔚,李献华等.NS93-5钻孔沉积物不活泼微量元素记录与陆源输入变化探讨.地球化学,2301,30(3):208-216.
    韦刚健,李献华,陈毓蔚.NS93-5钻孔沉积物高分辨率过渡金属元素变化及其古海洋记录.地球化学,30(5):2001,450-458.
    韦刚健,刘颖,邵磊.南海碎屑沉积物化学组成的气候记录.海洋地质与第四纪地质,2003,23(3):1-4.
    吴莹,张经.张再峰等.长江悬浮颗粒物中稳定碳,氮同位素的季节分布.淘洋与湖沼,2002,33(5).
    谢又予,关平等.南极中国长城站地区西湖沉积物的地球化学行为与环境.中国科学(B):1991..
    效存德,秦大河,姚檀栋.南,北极和现在青藏高原现代降水中Pb,Cd反映德全球大气污染.科学通报,1999,44(23):2558-2563.
    邢娜,陈敏,黄奕普等.北冰洋,白令海~(226)Ra的分布及其水文学意义.中国科学,2002,32,430-440.
    徐雁前,张同伟.沉积物中有机氮的研究.天然气地球科学,1996,7(4):34-41.
    杨清良,林更铭,林茂等.楚科奇海和白令海浮游植物的种类组成与分布,极地研究,2002,14(2):113-125.
    杨伟锋,陈敏,刘广山等.楚克奇海陆架沉积物中核素分布及其对沉积环境的示踪.自然科学进展,2002,12(5):515-518.
    杨惟理,毛雪瑛,戴雄新等.北极阿拉斯加巴罗Elson泻湖96-7-1岩芯中稀土元素的特征及其环境意义.极地研究,2001,13(2):91-106.
    杨作升.黄河,长江,珠江沉积物中粘土的矿物组合,化学特征及其与物源区气候环境的关系.
    
    海洋与湖沼,1988,19(4):336-346.
    姚子伟,江桂斌,蔡亚歧等.北极地区表层海水中持久性有机污染物和重金属污染得现状.科学通报,2002,47(15):1196-1200.
    叶曦雯,刘素美,张经.生物硅的测定及其生物地球化学意义.地球科学进展,2003,18(3):420-426.
    余素玉.南极长城站区燕窝湖岩芯中稀土元素特征.南极研究,1993,5(3):47-54.
    余素华,朱照宇,李炳元.23万年以来青藏高原甜水海湖岩心铁元素的气候记录刍议,海洋地质与第四纪地质,1998,18(3):63-69.
    俞旭,江超华.现代海洋沉积矿物及其X射线衍射研究.北京:科学出版社,1984,241-250.
    张德玉,陈穗田.东太平洋海盆中,西部多金属结核主要锰矿物区域变化规律的研究.北京:海洋出版社,1998.
    赵进平,朱大勇,史久新.楚科奇海海冰周年变化特征及其主要关联因素.海洋科学进展,2003,21(2):123-131.
    赵信,胡肇华.砂矿物各论.长春:长春地质学院出版社,1982.
    赵一阳,鄢明才.中国浅海沉积物地球化学.北京:科学出版社,1994,130-150.
    赵振华.花岗岩稀土元素四组分效应形成机理探讨.中国科学,1999,29:331-338.
    中国首次北极科学考察队编.中国首次北极科学考察报告.北京:海洋出版社,2000.
    中国第二次北极科学考察队编.中国第二次北极科学考察报告.北京:海洋出版社,2003.
    周晓静,高抒,贾建军.长江粘土矿物示踪标记稳定性的初步研究.海洋与湖沼,2003,34:683-692
    Aagaard, K., J. H. Swift and E. C. Carmack. Thermohaline circulation in the Arctic Mediterranean Seas. Journal of Geophysical Research, 1985, 90, 4833-4846.
    Aksu A. E. and P. J. Mudie. Magnrtostratigraphy and palynology demonstrate at least 4 million yeas of Arctic Ocean sedimentation. Nature, 1985, 318, 280-283.
    Alexander C. R. and H. L. Windom. Qualification of natural backgrounds and anthropogenic contaminants in a pristine Arctic environment: the Anadyr River basin, Chuko(?)ka Peninsula, Russia. Marine Pollution Bulletin, 1999, 38(4): 276-284.
    Baskaran M. and A. S. Naidu. ~(210)Pb-derived chronology and the fluxes of ~(210)Pb and ~(137)Cs isotopes into Continental shelf sediments, Eastern Chukchi Sea. Geochim. Cosmochim. Acta, 1995, 59: 4435-4448.
    Bauch, D., Carstens, J., Wefer, G. Oxygen isotope composition of living Neogloboquadrina pachyderma (sin.) in the Arctic Ocean. Eart Planet. Sci. Lett., 1997, 146: 47-58.
    Bauch, D., Carstens, J., Wefer, G., Thiede, J. The imprint of anthropogenic CO_2 in the Arctic Ocean: evidence from planktic δ~(13)C data from watercolumn and sediment surfaces. Deep-Sea Res. Ⅱ, 2000, 47: 1791-1808.
    
    
    Baueh, H. A., Muller-Lupp, T., Spielhagen, R. F., et al. Chronology of the Holocene transgression at the northern Siberian margin. Global and Planetary Change, 2001, 31: 1723-137.
    Belicka L. L., R. W. Macdonald and H. R. Harvey. Sources and transport of organic carbon to shelf, slope, and basin surface sediments of the Arctic Ocean. Deep Sea Research Part Ⅰ, 2002, 49(8): 1463- 1483.
    Biseaye, P.E.. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 1965, 76:803 - 832.
    Bischof, J. F.,Clark D. L.,Vincent, J.-S. Pleistocene paleoceanography of the central Arctic Ocean: The sources of ice rafted debris and the compressed sedimentary record. Paleoceanography, 1996, 11: 743-756.
    Bischof J. F., and D. A. Darby. Mid- to Late Pleistocene ice drift in the western Arctic Ocean: evidence for a different circulation in the past, Science, 1997, 277, 74-87.
    Bishop J. K. B. The barite-opal-organic carbon association in oceanic particulate matter. Nature, 1988, 332: 341-343.
    Boyle E. A. and Keigwin L. D. North Atlantic thermohaline circulation during the last 20,000 years linked to high-latitude surface temperature. Nature, 1987, 330: 35-40.
    Boyle E.A., L.D. Keigwin. Comparison of Atlantic and Pacific paleochernical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories, Earth Planet. Sci. Lett., 1986, 76: 135-150.
    Bostrom, K., Kraemer, T., Gartner, S. Provenance and accumulation rates of biogenic silica, Al, Ti, Fe, Mn, Cu, Ni, and Co in pacific pelagic sediment. Chemical Geology, 1973, 11: 123-148.
    Calvert S. and Pedersen T. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 1993, 113: 67-88.
    Chamley, H. Clay Sedimentology. Berlin: Springer, 1989, 1-623.
    Chester, R. Marine Geochemistry. Unwin Hyman, London, 1990, 461-464.
    Clark D. L. Origin, nature and world climate effect of Arctic Ocean ice-cover. Nature, 1982, 300: 321-325.
    Clough, L. M., Ambrose, W. G., Jr. Cochran et al. Infaunal density,biomass and bioturbation in the sediments of the Arctic Ocean. Deep-Sea Res. Ⅱ, 1997, 44: 1683-1704.
    Cronin,T.M.,Holtz, T.R.,Jr.,Whatley, R.C. Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda. Mar. Geol., 1994, 119:305-332.
    Cronin, T. M., Holtz, T, R., Stein, R., Spielhagen, et al. Late Quaternary paleoceanography of the Eurasian Basin. Arctic Ocean. Paleoceanogr., 1995, 10: 259-281.
    Cullers, R.L. The controls on the major- and trace element evolution of shales, siltstones and
    
    sandstones of Ordivician to Tertiary age in the wet mountains region, Colorado, USA. Chemical Geology, 1995, 123: 107-131.
    Curry W. B., Duplessy J. C., Labeyrie L. D., and Shackleton N. J. Changes in the distribution of δ~(13)C of deepwater CO_2 between the last glaciation and the Holocene. Paleoceanog., 1988, 3:317-342.
    Dai M. H., and J. M. Martin. First data on trace metal level and behavior in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia. Earth and Planetary Science Letters, 1995, 131: 127-141.
    Dansgaard W.J., S. J. Clausen, H. B. Dahl-Jensen et al. Evidence for general instability of the climate from a 250-kyr ice-core record. Nature, 1993, 218-220.
    Darby, D.A. Kaolinite and other clay minerals in Arctic Ocean sediments. Journal of Sedimentary Petrology, 1975, 45(1): 272 - 279.
    Darby, D. A., Bischof, J. F., Jones, G. A. Radiocarbon chronology of depositional regimes in the western Arctic Ocean. Deep-Sea Res. Ⅱ, 1997, 44, 1745-1757.
    Darby, D. A., Bischof, J. P., Spielhagen, R. F., Marshall, S. A., Herman, S. W. Arctic ice export events and their potential impact on global climate during the late Pleistocene. Paleoceanogr., 2002, 15-1 to 15-17.
    Darby, D. A. Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns. J. Geophys. Res., 2003, 108:13-1 to 13-10.
    Decker J., M. S. Robison, J. G. Clough et al. Geology and petroleum potential of Hope and Selawik basins, offshore northwestern Alaska. Marine Geology, 1989, 90: 1-18.
    Deming, D., Sass, J.H., Lachenbruch, A.H. Heat flow and subsurface temperature, North Slope of Alaska. US Geological Survey Bulletin, 1996, 21(2): 21-44.
    Dokken, T., Jansen, E. Rapid changes in the mechanism of ocean convection during the last glacial period. Nature, 1999, 401: 458-461.
    Duplessy, J. C. et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 1988, 3: 343-360.
    Dymond J., Lyle M., Finney B. et al. Ferromanganese nodules from MANOP sites: control of minerolgical and chemical compostion by multiple aceretionary processes. Geochim Cosmochim. Acta, 1984, 48:931-949.
    Eicken, H., Reimnitz, E., Alexandrov, V., Martin, T., Kassens, H., Viehoff, T., 1997. Sea-ice processes in the Laptev Sea and their importance for sediment export. Continental Shelf Research 17(2): 205-233.
    Ekwurzel, B., Schlosser, P., Mortlock, R.A., et al. River runoff, sea ice meltwater and Pacific water distribution and mean residence times in the Arctic Ocean. J. Geophys. Res., 2001, 106:
    
    9075-9092.
    Elias, S.A,, Short, S.K., Phillips, R.L. Paleoecology of late-glacial peats from the Bering Land Bridge, Quaternary Research, 1992, 38: 371-378.
    Elias, S. A., Short, S. K., Nelson, C. H., Birks, H. H. Life and times of the Bering Land Bridge. Nature, 1996, 382: 60-63.
    Evans,J.R., Kaminski, M.A. Pliocene and Pleistocene chronostratigraphy and paleoenvironment of the central Arctic Ocean,using deep water agglutinated foraminifera. Micropaleontology, 1998, 44: 109-130.
    Elliot M., L. Labeyrie, T. Dokken et al. Coherent patterns of ice-rafted debris deposits in the Nordic regions during the last glacial (10-60 ka). Earth and Planetary Science Letters, 2001, 194: 151-162.
    Fairbanks, R.G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 1989, 342: 367-642.
    Francois R. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet sediments, British Columbia, Canada. Marine Geology, 1988, 83: 285-308.
    Fry B, Sherr E B. Delta 13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci, 1984, 27: 13- 47.
    Fujita K., Stone, D. B., Layer P. W., et al. Cooperative program helps decipher tectonics of northeastern Russia. EOS, Transactions, American Geophysical Union, 1997, 78(24): 252-253.
    Galasso J. L, F. R. Siegel and J. H. Kravitz. Heavy metals in eight 1965 cores from the Novaya Zemlya Trough, Kara Sea, Russian Arctic. Marine Pollution Bulletin, 2000, 40(10): 839-852.
    Gofli M. A., M. B. Yunker, Robie W., et al. Macdonald Distribution and sources of organic biornarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. Marine Chemistry, 2000, 71(1-2): 23-51.
    Graham, I. J., G. P. Glasby and G. J. Churchman. Provenance of the detrital component of deep-sea sediments from the SW Pacific Ocean based mineralogy, geochemistry and Sr istopic composition. Marine Geology, 1997, 140: 75-96.
    Grantz, A., Johnson, L., Sweeney, J.F. The Geology of North America, the Arctic Ocean Region. Boulder, Geological Society of America, 1990, 567-592.
    Grosswald,M.G., Hughes,T.J. The case for an ice shelf in the Pleistocene Arctic Ocean. Polar Geogr., 1999, 23: 23-54.
    Guay C. K. and K. K. Falkner. A survey of dissolved barium in the estuaries of major Arctic rivers and adjacent seas. Continental Shelf Research, 1998, 18: 859-882.
    
    
    Gusarova, S., Sidorov, I.S. 18O abundance and dissolved silicate in the Lena Delta and Laptev Sea (Russia). Marine Chemistry, 1993, 43: 47-64.
    Hald M., T. Dokken and G. Mikalsen. Abrupt climatic change during the last interglacial-glacial cycle in the polar North Atlantic. Marine Geology, 2001, 176: 121-137.
    Hathon, E. G., and M. B. Underwood. Clay mineralogy and chemistry as indicators of hemipelagic sediment dispersal south of the Aleutian arc. Marine Geology, 1991, 97: 145-166.
    Hebbeln, D. &Wefer, G. Late Quaternary paleoceanography in the Frarn Strait. Paleoceanography, 1997, 12: 65-78.
    Henrich, R., Baumann, K. H., Huber et al. Carbonate preservation records of the past 3 Myr in the Norwegian-Greenland Sea and the northern North Atlantic: implications for the history of NADW production. Mar. Geol., 2002, 184: 17-39.
    Hequette A., M. Desrosiers, and P. W. Bernes. Sea ice scouring on the inner shelf of the southeastern Canadian Beaufort Sea. Marine Geology, 1995, 128:201-219.
    Herman Y. and D. M. Hopkins. Arctic Oceanic climate in Late Cenozoic time. Science, 1980, 209: 557-562.
    Hill P. R., Steve M. B. J. R. Harper et al. Sedimentation on the Canadian Beaufort shelf. Continental Shelf Research, 1991, 11(8-10): 821-842.
    Huh, C. A., Pisias, N.G., Kelley, J. M., et al. Natural radionuclides and plutonium in sediments from the western Arctic Ocean: sedimentation rates and pathways of radionuclides. Deep-Sea Research 11, 1997, 44: 1725-1744.
    Huh, Y., Panteleyev, G., Babich, D., et al. The fluvial geochemistry of the rivers of eas(?)ern Siberia:Ⅱ tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the ocllisional/ accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochimica et Cosmochimica Acta, 1998, 62 (12): 2053-2075.
    Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, et al., 1992. On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch forcing. Paleoceanography 7(6): 701-738.
    Ishman, S. E., Polyak, L., Poore, R.Z. An expanded record .of Pleistocene deep Arctic change: Canada Basin, western Arctic Ocean. Geology, 1996, 24: 139-142.
    Jakobsson, M. First high-resolution chirp sonar profiles from the central Arctic Ocean reveal erosion of Lomonosov Ridge sediments. Mar. Geol., 1999, 158:111-123.
    Jakobsson M., Lwvlie, R., Alhanbali, H., et al. Manganese/color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology, 2000, 28:23-26.
    Jakobsson M., Lwvlie, R., Arnold, E. Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean. Global Planet. Change, 2001, 32: 1-21.
    
    
    Galasso J. L., Siegel F. R. and Joseph H. K. Heavy Metals in Eight 1965 Cores from the Novaya Zemlya Trough, Kara Sea, Russian Arctic. Marine Pollution Bulletin, 2000, 40(10): 839-852.
    Jewett S. C. and A. S. Naidu. Assessment of Heavy Metals in Red King Crabs Following offshore Placer Gold Mining. Marine Pollution Bulletin, 2000, 40(6): 478-490.
    Jones, E. P., Anderson, L. G., Swlft, J. H. Distribution of Atlantic and Paciflc waters in the upper Arctic Ocean: implications for circulation. Geophys. Res. Lett., 1998, 25: 765-768.
    Jones R. L., Whatley R. C., Cronin T. M. et al. Reconstructing late Quaternary deep-water masses in the eastern Arctic Ocean using benthonic Ostracoda. Mar. Micropaleontol, 1999, 37:251-272.
    Johannesson K. H. and X. Zhou. Origin of middle rare earth element enrichments in acid waters of a Canadian High Arctic lake. Geochimica et Cosmochimica Acta, 1999, 63, 153-165.
    Khim B.K., D.E. Krantz, J. Brigham-Grette. Stable isotope profiles of Last Interglacial (Pelukian Transgression) mollusks and paleoclimate implications in the Bering Strait Region. Quaternary Scierce Reviews, 2001, 20: 463-483.
    Kos'ko M. K., B. G. Lopatin and V. G. Ganelin. Major geological features of the islands of the East Siberian and Chukchi seas and northeastern coast of Chukotka. Marine Geology, 1990, 93: 349-367.
    Labeyrie, L. D., Duplessy, J. C. & Blanc, P. L. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature, 1987, 327: 477-482.
    Lepland A., O. Sether and T. Thorsnes. Accumulation of barium in recent Skagerrak sediments: sources and distribution controls. Marine Geology, 2000, 163: 13-26.
    Li Y., Bischo J., Mathieu G. The migration of manganese in the Arctic Basin sediment. Earth and Planetazy Science Letters, 1969, 7: 265-270.
    Lindstrom, D. R. & Macayeal, D. R. Scandinavian, Siberian, and Arctic Ocean glaciation: effect of Holocene atmospheric CO_2 variations. Science, 1989, 245:628-631.
    Loring, D. H., Naes, K., Dahle, S., Matishov et al. Arsenic, trace metals, and organic micro contaminants in sediments from the Pechora Sea, Russia. Marine Geology, 1995, 128: 153-167.
    Loring D. H., Dahle S., Naes K., et al. Metal contaminants in circumpolar marine shelf sediments. The AMAP International Symposium on Environmental Pollution in the Arctic, Extended Abstracts. Norway: Tromso, 1997, 213-215.
    Loubere,P., Fariduddin, M. Quantitative estimation of global patterns of surface ocean biological productivity and its seasonal variation on timescales from centuries to millennia. Global Biogeochem, Cycles, 1999, 13:115-133.
    Louie M. J. & Andrey Y. G. Evidence for an early opening of the Bering Strait, Nature, 1999, 397: 149-151.
    
    
    Lubinski, D. A., Polyak, L., Forman, S. L. Deciphering the Latest Pleistocene and Holocene inflows of freshwater and Atlantic water to the deep northern Barehts and Kara seas: Foraminifera and stable isotopes. Quat: Sci. Rev., 2001, 20: 1851-1879.
    Magavern S., D. L. Clark and S. L. Clark. ~(87/86)Sr, phytoplankton, and the nature of the Late Cretaceous and early Cenozoic Arctic ,Ocean. Marine Geology, 1996, 133: 183-192.
    Maier-Reimer, E. & Mikolajewicz, U. Ocean general circulation model sensitivity experiment with an open Central American isthmus. Faleoceanography, 1990, 5:349-366.
    Marchitto T.M., W.B. Curry, D. W. Oppo. Millenial-scale changes in North Atlantic circulation since the last glaciation. Nature, 1998, 393: 557-560.
    Mariotti A. Lancelot C., and Billen G. et al. Natural isotopic compositions of nitrogen as a tracer of origin for suspended organic matter in the Scheldt estuary. Geochimca et Cosmochimica Acta, 1984, 48: 549-555.
    Mercer, J. H. A former ice sheet in the Arctic Ocean? Palaeogeogr. Palaeoclimatol. Palaeoecol., 1970, 8: 19-27.
    Millot R., J. Gaillardet, D. Bernard. Northern latitude chemical weathering rates: Clues from the Mackenzie River Basin, Canada. Geochimica et Cosmochimica Acta, 2003, 67(7): 1305-1329.
    Morford J. L. and Pergamon S. E. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 1999, 63(11-12): 1735-1750.
    Naidu A. S, J. S. Creager and T. C. Mowatt. Clay mineral dispersal patterns in the north Bering and Chukchi seas. Marine Geology, 1982, 47: 1-15.
    Naidu, A. S. and Mowatt, T. C. Sources and dispersal patterns of clay minerals in surface sediments from the western continental shelf areas of Alaska. Geol. Soc. Amer. Bull., 1983, 94:8,11-54.
    Naidu A. S., Scalan R. S., Feder H. M., et al. Stable carbon isotopes in sediments of north Bering -south Chukchi seas, Alaskan-Soviet Arctic shelf. Continental Shelf Research, 1993, 13:669-691.
    Naidu A. S., M. W. Han, and T. C. Mowatt et al. Clay minerals as indicators of sources of terrigenous sediments, their transportation and deposition: Bering Basin, Russian-Alaskan Arctic. Marine Geology, 1995, 127: 87-104.
    Naidu A. S, A. Blanchard, J. J. Kelly. Heavy metals in Chukchi Sea sediments as compared to selected circum-arctic shelves. Marine Pollution Bulletin, 1997, 35:260-269.
    Naidu A. S, L. W. Cooper. Organic carbon isotope ratios of Arctic Amerasian continental shelf sediments. Int. J. Earth Sciences, 2000, 522-532.
    Nameroff T. The Geochemistry of Redox-Sensitive Metals in Sediments of the Oxygen Minimum off Mexico. Ph.D. dissertation, Univ. Washington, 1996.
    Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during
    
    continental weathering. Geochim. Cosmochim. Acta, 1980, 44:1659-1666.
    Nowaczyk N. R., T. M. Frederichs, H. Kassens et al. Sedimentation rates in the Makarov Basin, central Arctic Ocean: a paleomagnetic and rock magnetic approach. Paleoceanography, 2001, 16(4): 368-389.
    Nurnberg D., Wollenburg I., Dethleff D. et al. Sediments in Arctic sea ice: implications for entrainment, transport and release. Marine Geology, 1994, 119:185-214.
    Nwrgaard-Pedersen N., Spielhagen R. F., Thiede J., Kassens H. Central Arctic surface ocean environment during the past 80,000 years. Paleoceanography, 1998, 13:193-204.
    Nwrgaard-Pedersen N., Spielhagen R. F., Erlenkeuser H., et al. The Arctic Ocean during the Last Glacial Maximum: Atlantic and Polar domains of surface water mass distribution and ice cover. Paleoceanography, 2003, 18: 8-1 to 8-19.
    Outridge P. M., R. D. Evans, R. Wagemann et al. Historical trends of heavy metals and stable lead isotopes in beluga (Delphinapterus leucas) and walrus (Odobenus rosmarus rosmarus) in the Canadian Arctic. The Science of the Total Environment, 1997, 203: 209-219.
    Overpeck, J., Hughen, K., Hardy, D., et al. Arctic Environmental Change of the Last Four Centuries. Science. 1997, 278: 1251-1256.
    Petchick, R., G. Kuhn and F. Gingele. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 1996, 130: 203-229.
    Peuraniemi V, Pulkkinen P. Preglacial weathering crust in Ostrobothnia, western Finland, with special reference to the Raudaskyla occurrence. Chemical Geology, 1993, 107:313-316.
    Pfirman S., Lange M. A., Wollenburg Ⅰ. et al. Sea ice characteristics and the role of sediment inclusions in deep-sea deposition. Geological History of the Polar Oceans, 1990, 187-211.
    Phillips, R. L. & Grantz, A. Quaternary history of sea ice and paleoclimate in the Amerasia basin, Arctic Ocean, as recorded in the cyclical strata of Northwind Ridge. Geol. Soc. Am. Bull., 1997, 109:1101-1115.
    Phillips R. L. and A. Grantz. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic. Marine Geology, 2001, 172:91-115.
    Polyak L., M. H. Edwards, B. J. Coakley and M. Jakobsson. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature, 2001, 410: 453-457.
    Polyak L., V. Stanovoy, D. J. Lubinski. Stable isotopes in benthic foraminiferal calcite from a rive-influenced Arctic marine environment, Kara and Pechora Seas. Paleoceanography, 2003, 18(1): 3-1-3-17.
    Polyak L., William B. Curry, Dennis A. Darby, et al. Contrasting glacial/interglacial regimes in the
    
    western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 20: 373-93.
    Poore, R. Z., Phillips, L., Rieck, H. J. Paleoclimate record for Northwind Ridge, western Arctic Ocean. Paleoceanography, 1993, 8: 149-159.
    Poore R. Z., Osterman L., Curry W. B., Phillips R. L. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean. Geology, 1999, 27: 759-762.
    Potter, P. E., Heling, D., Shimp, M. F. Clay mineralogy of modern alluvial muds of the Mississippi river basin. Bull. Ctr. Rech. Pau., 1975, 9: 353-89.
    Prithvirag, M., and T. N. Prakash. Distribution and geochemical association of clay minerals on the inner shelf of Central Kerala, India. Marine Geology, 1990, 92: 285-290.
    Rachold, V., Grigoriev, M.N., Are, F.E., et al. Coastal erosion vs riverine sediment discharge in the arctic shelf seas. International Journal of Earth Sciences, 2000, 89: 450-460.
    Raymo M.E., W.F, Ruddiman, N.J. Shackleton. Evolution of Atlantic-Pacific δ~(13)C gradients over the last 2.5 m.y,, Earth Planet. Sci. Lett., 1990, 97: 353-368.
    Raymo M. E., Ruddiman W. F., Shackleton N. J., et al. The evolution of Atlantic- Pacific δ~(13)C gradients over the last 2.5 Ma: Evidence of decoupling of deep water circulation and global ice volume changes. Earth Planet. Sci. Lett., 1990, 97: 353-368.
    Rau G. H., R. E. Sweeney and I. R. Kaplan. Plankton 13C:12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Research, 1982, 29:1035-1039.
    Reason, C. J. C. & Power, S. B. The influence of the. Bering Strait on the circulation in a coarse resolution global ocean model. Clim. Dyn., 1994, 9: 363-369.
    Reimnitz, E., Dethleff, D., Nurnberg, D. Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea. Marine Geology, 1994, 119:215-225.
    Robin E., C. Rabouille, G. Martinez, et al. Direct barite determination using SEM/EDS-ACC system: implication for constraining barium carriers and barite preservation in marine sediments. Marine Chemistry, 2003, 82: 289-306.
    Sackett W, Brooks G, Conkright M. Stable isotope compositions of sedimentary organic carbon in Tampa Bay, Florida, U. S. A,: implications for evaluating oil contamination. Applied Geochemistry, 1986, 1: 131-137.
    Schubert C. J., and R. Stein. Deposition of organic carbon in the Arctic Ocean sediments: terrigenious supply vs. marine productivity. Organic Chemistry, 1996, 24(4): 421-436.
    Schoster, F., Behrends, M., Muller, C., et al. Modem river discharge and pathways of supplied material in the Eurasian Arctic Ocean: evidence from mineral assemblages and major and minor element distribution. International Journal of Earth Sciences, 2000, 89: 486-495.
    
    
    Shaffer, G. & Bendtsen, J. Role of the Bering Strait in controlling North Atlantic Ocean circulation and climate. Nature, 1994, 367: 354-357.
    Sharma, M., Basu, A.R., Nesterenko, G.V. Temporal St-, Nd- and Pb-isotopic variations in the Siberian flood basalts: implications for the plume-source characteristics. Earth and Planetary Science Letters, 1992, 113: 365-381.
    Smethie, W. M., Jr., P. Schlosser, T.S. Hopkins, et al. Renewal and circulation of intermediate waters in the Canadian Basin observed on the SCICEX-96 cruise. Journal of Geophysical Research, 2000, 105:1105-1121.
    Smith B N, Epstein S. Two categories ,of 13C/12C ratio s for higher plants. Plant Physiol., 1971, 47: 380-384.
    Smith, L. M., Miller, G. H., Ottobliesner, B. Sensitivity of the Northern Hemisphere climate system to extreme changes in Holocene Arctic sea ice. Quat. Sci. Rev., 2002, 22: 645-658.
    Spielhagen, R. F., Erlenkeuser, H. Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments: reflection of the low salinity surface water layer. Mar. Geol., 1994, 119: 227-250.
    Spielhagen, R. F. et al. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets. Geology, 1997, 25: 783-786.
    Stein, R., Grobe, H., Wahsner, M. Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments. Marine Geology, 1994, 119: 269-285.
    Stein, R., Fahl, K. Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean): sources, pathways and sinks. Geo-Marine Letters, 2000, 20 (1): 27-36.
    Stevenson A. G. Metal concentrations in marine sediments around Scotland: a baseline for environmental Studies. Continental Shelf Research, 2001, 21: 879-897.
    Thomas, E.,Gooday,. A.J. Cenozoic deep-sea benthic foraminifera: tracers for changes in oceanic productivity? Geology, 1996, 24: 355-358.
    Viscosi-Shirley C., K. Mammone, N. Pisias. Clay mineralogy and multi-element chemistry of surface sediments on. the Siberian-Arctic shelf: implications for sediment provenance and grain size sorting. Continental Shelf Research, 2003, 23: 1175-1200.
    Volkmann,R., Mensch, M. Stable isotope composition of living planktic foraminifers in the outer Laptev Sea and the Fram Strait. Mar. Micropaleontol., 2001, 42:163-188.
    Weingartner, T. J., D. J. Cavalieri, K. Aagaard, et al. Circulation, dense water formation, and outflow on the northeast Chukchi shelf. J. Geophys. Res., 1998, 103: 7647-7661.
    Weingartner, T., et al. The webpage of www.ims.uaf.edu/chukchi/, 2001.
    Winter B. L., Johnson C. M., and Clark D. L. Strontium, neodymium, and lead isotope variations of
    
    authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: Implications for sediment provenance and the source of trace metals in Seawater, Geochimica et Cosmochimica Acta, 1997, 61(19): 4181-4200.
    Winter B. L., Johnson C. M., and Clark D. L. Geochemical constraints on the formation of Late Cenozoic ferromanganese micronodules from the central Arctic Ocean. Mar. Geol., 1997, 138: 149-169.
    Wollenburg,J.E., Mackensen, A. Living benthic foraminifers from the central Arctic Ocean: faunal composition, standing stock and diversity. Mar. Micropaleontol., 1998, 34: 153-185.
    Worsley T. R., and Y. Herman. Eposidic ice-free Arctic Ocean in Pliocene and Pleistocene time: calcareous nannofossil evidence. Science, 1980, 210: 323-325.
    Yablokov A. V. Radioactive waste disposal in seas adjacent to the territory of the Russia Federation. Marine Pollution Bulletin, 2001, 43: 8-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700