用户名: 密码: 验证码:
两种色型黄粉虫的选育及其主要性状的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫被誉为当今地球上尚未被充分利用的最大生物资源之一。我国昆虫种类繁多、资源丰富,合理开发利用我国的昆虫资源,无疑会带来良好的经济、社会和生态效益。黄粉虫作为我国传统的饲用和食用昆虫之一,其食物来源广泛、生活力强、易于人工饲养、世代周期短、饲养成本低、营养丰富,长期以来被广泛用作饲养畜禽和其它一些特种经济动物的饲料(或饵料),现已广泛应用于农业、畜牧业、食品和医疗保健方面,具有极高的开发利用价值和广阔的市场前景。近年来,我国黄粉虫养殖规模日益扩大,山东、河北等地已形成以黄粉虫养殖和综合开发利用为核心的产业链,而种虫质量退化已成为制约黄粉虫产业进一步持续健康发展的重要瓶颈。围绕这一严重制约黄粉虫产业发展的瓶颈问题,本文对黄粉虫的品系选育及2种不同品系黄粉虫的生长发育性状、繁殖能力、抗逆性、营养价值及主要逆境协迫相关同工酶进行了较为系统地研究,同时也对这2种品系黄粉虫主要逆境协迫相关基因的克隆与表达进行了初步研究。其主要研究结果及结论如下:
     1.经过连续12代的自然选育,获得了遗传性状稳定的黄、黑2种色型黄粉虫。
     2.黑色型黄粉虫比黄色型黄粉虫发育更快、更整齐。黑色型黄粉虫幼虫共历经12-15龄,黄色型黄粉虫幼虫共历经12-17龄,但这2种色型黄粉虫幼虫所历经的虫龄数均以14龄居多。黄、黑2色型黄粉虫幼虫虫龄数为14的比例分别为27%和53%;其中,黑色型黄粉虫幼虫历期明显短于黄色型幼虫,虫龄数按14计,黄、黑2色型黄粉虫的幼虫历期分别为154.3±7.9d和134.1±3.2d。此外,这2种色型黄粉虫卵和蛹的历期分别约为7d和10d;它们的孵化率、化蛹率分别约为83%和97%,羽化率均为81%以上。
     3. 2种色型黄粉虫同日龄幼虫的存活率、体重及体重增长率均差异不显著;但黄色型黄粉虫幼虫对饲料的平均利用效率明显高于同日龄黑色型幼虫。其中,黄色型黄粉虫幼虫的平均饲料消化率、转化率和利用率(%)分别为66.5±0.1、52.3±1.2和33.6±0.7,而黑色型黄粉虫幼虫的平均饲料消化率、转化率和利用率(%)则分别为62.1±0.2、47.8±0.2和29.1±0.2。
     4.常规饲养条件下,2种色型黄粉虫成虫的雌、雄性比无显著差异,但黄色型雌成虫的累积产卵量明显高于黑色型雌成虫。并且,相同试验条件下,2种色型黄粉虫雌成虫的初始产卵日龄、产卵历期和产卵量日变化规律也基本一致。常规饲养条件下,2种色型黄粉虫雌成虫的初始产卵日龄为4日龄,产卵高峰在羽化后的第14-44d;黄、黑2色型黄粉虫的累积产卵量分别为625.5±25.5粒/雌和529.9±17.4粒/雌。
     5. 2种色型黄粉虫的耐热、耐寒性差异明显。耐热性试验表明,黑色型黄粉虫幼虫、蛹及成虫对试验高温(45℃)的耐受性明显高于同日龄的黄色型幼虫、蛹和成虫;同时,耐寒性试验表明,黑色型黄粉虫幼虫和蛹对试验低温(-25℃)的耐受性也明显高于同日龄黄色型幼虫和蛹,但相同日龄的2种色型黄粉虫成虫对试验低温(-25℃)的耐受性差异不显著。
     6. 2种色型黄粉虫抗药性差异显著。本文以不同浓度梯度的苦参碱杀虫剂为供试药剂,对黄、黑2色型黄粉虫幼虫和成虫的抗药性进行了研究,结果表明,黑色型黄粉虫幼虫和成虫对苦参碱的耐受性明显高于同日龄的黄色型幼虫和成虫。在处理后72h,苦参碱对黄、黑2色型黄粉虫60日龄幼虫的毒杀中浓度(LC50)分别为107.63mg.ML-1和178.63mg.ML-1;对黄、黑2色型黄粉虫7日龄成虫的毒杀中浓度(LC50)分别为95.89mg.ML-1和162.54mg.ML-1.
     7. 2种色型黄粉虫的抗病性也差异明显。本文以脂多糖(LPS)作为供试致病因子,对黄、黑2色型黄粉虫的抗病性进行了初步研究,结果表明,注射5μL相同浓度(0.5-2.0mg·ML-1)的LPS溶液后,黑色型黄粉虫幼虫、蛹和成虫的存活率明显高于同日龄的黄色型幼虫、蛹和成虫。由此可见,黑色型黄粉虫对LPS的耐受性明显高于黄色型黄粉虫。
     8.营养成分分析表明,2种色型黄粉虫的营养成分丰富,具有极高的营养和开发利用价值。2种色型黄粉虫幼虫、蛹和成虫的蛋白质含量约为干重的48%-63%,其中含有18种氨基酸,必需氨基酸含量约占总氨基酸的48%-49%;同时,还富含油酸、亚油酸、亚麻酸等多种不饱和脂肪酸及K、Na、Ca、Mg、Fe、Cu、Mn、Zn、Se等多种矿物质和微量元素。此外,2种色型黄粉虫的营养组成还各具特点:黄色型黄粉虫幼虫和成虫的粗蛋白、总氨基酸及必需氨基酸含量明显高于黑色型幼虫和成虫,而黑色型黄粉虫幼虫、蛹和成虫的粗脂肪含量又明显高于黄色型幼虫、蛹和成虫。
     9. 2种色型黄粉虫主要逆境协迫相关同工酶电泳结果表明,黄、黑2色型黄粉虫同一发育阶段的同工酶酶谱具有相似相异性。除SOD同工酶外,这2种色型黄粉虫其余同工酶POD、EST、COD、MPO和DPO)的酶谱均存在差异,其中尤以它们的EST、POD和MPO同工酶酶谱差异最明显,可考虑作为黄粉虫种下分类的工具酶。
     10. 2种色型黄粉虫主要逆境协迫相关同工酶酶活检测表明,在常规饲养条件下,黑色型黄粉虫的多数供试同工酶活性均大于同日龄的黄色型黄粉虫;同时,在试验低温(-25℃)、高温(45℃)或杀虫剂(苦参碱)协迫下,2种色型黄粉虫的多数保护酶和解毒酶均被抑制,而它们的防御酶却被激活。此外,在上述逆境因子协迫下,相同日龄的黄、黑2色型黄粉虫,它们的同一种保护酶(或解毒酶)活性抑制率及同一种防御酶活性增长率均有所不同。
     11.黄、黑2色型黄粉虫逆境协迫相关基因核心片段克隆与序列分析表明,2种色型黄粉虫间,细胞色素氧化酶亚基Ⅰ(COI)、酚氧化酶原(PPO)和抗冻蛋白(AFP)基因的序列同源性都很高,但它们的这3个基因序列中仍存在一定的碱基差异。
     12.黄、黑2色型黄粉虫幼虫的热休克蛋白(HSP)基因和抗冻蛋白(AFP)基因表达研究表明,在试验低温(或高温)协迫下,黑色型黄粉虫幼虫的AFPmRNA(或HSPmRNA)表达量均显著提高,而同日龄的黄色型黄粉虫幼虫的AFPmRNA(或HSPmRNA)表达量却无显著增加;同时,与同日龄黄色型黄粉虫幼虫相比较,黑色型黄粉虫幼虫的AFP(或HSP)对试验低温(或试验高温)表现出更强的应答。
Insects are the largest biological resources today on the earth which haven't yet been fully utilized. Considering the fact that there are a great variety of insects and rich in natural resources of insects in China, it will undoubtedly produce good benefits on economy, society and ecology with a rational development and utilization of our country's insects resources. Tenebrio molitor is one of traditional feed and edibile insects in China. Not only there are large quantities of food sources to raise T. molitor, but also it has a short generation cycle and strong living ability. In addition, it is rich in nutritional ingredients, easy to raise and characterized by low feeding cost. It had been only used as feed stuff or bait for livestock, poultry and other special economic animals in the past, and nowadays it has been widely applied into agriculture, animal husbandry, food and medical care. So it has a high value for development and utilization and has a bright market future. Recently, the scale of the industry in breeding T. molitor has been increasing gradually and a new industry chain has emerged, in such provinces as Shangdong and Hebei, the core of which is raising and comprehensive utilization of T. molitor. However the quality of the varieties of T. molitor is degenerating, which has become the bottleneck restricting the further sustained and healthy development of the industry. Around the problem, the selection of varieties of T. molitor was studied. The growth and development traits, the reproductive capacity, the resistance to stress and the nutritional value of 2 kinds of color patterns of T. molitor were determined. The main stress-related isozymes of 2 kinds of color patterns of T. molitor were studied systematically. Furthermore, the preliminary researches on cloning and expression of the main stress-related genes of the 2 kinds of color patterns of T. molitor were carried out, too. The main results and conclusions were given as follows:
     1. The yellow and black color pattern of T. molitor with good genetic stability were obtained through natural selection of 12 continual generations.
     2. The black color pattern of T. molitor grew faster and more orderly than the the yellow color pattern. The black-color-pattern larvae of T. molitor went through 12-15 instars in all, while the yellow-color-pattern larvae went through 12-17 instars. But most of the yellow and black color pattern of larvae went through 14 instars. There were 27% larvae with 14 instars in the yellow-color-pattern and 53% in the black-color-patern. And the developmental duration of the black-color-pattern larvae was remarkably shorter than that of the yellow-color-pattern larvae. If taking the larvae with 14 instars into consideration, the developmental durations of the yellow and black color patterns of larvae were 154.3±7.9d and 134.1±3.2d respectively. In addition, the eggs and pupae developmental durations of the 2 kinds of color patterns of T. molitor were about 7d and 10d respectively. The hatching rate and pupation rate of the 2 kinds of color patterns of T. molitor were approximately 83% and 97%. The emergence rate of theirs were above 81%.
     3. There were no significant differences in each of the weight, growth rate and survival rate between the same days old larvae of 2 kinds of color patterns of T. molitor. But the yellow-color-pattern larvae had a significantly higher average food utilization efficiency than the black-color-pattern larvae of the same days. The average approximate digestibility, efficiency of converting digesting food and efficiency of converting ingested food(%) of the yellow-color-pattern larvae of T. molitor were 66.5±0.1,52.3±1.2 and 33.6±0.7 respectively, while those of the black-color-pattern larvae of the same days were 62.1±0.2,47.8±0.2 and 29.1±0.2 respectively.
     4. Under routine breeding conditions, the cumulative fecundity of the yellow-color-pattern female adults of T. molitor was obviously higher than that of the black-color-pattern female adults. But there was no significant difference in the sex ratio of the adults between the 2 kinds of color patterns of T. molitor. Under the same test conditions, the age at first egg, durations of oviposition and the daily variation of the fecundity of the yellow-color-pattern female adults were all basically the same as those of the black-color-pattern female adults. The statistical analyses showed that, under routine breeding conditions, the cumulative fecundity of the female adults of the yellow and black color pattern of T. molitor were 625.5±25.5eggs/female and 529.9±17.4eggs/female respectively. The female adults of the 2 kinds of color patterns were both 4 days after emergence when they were at first egg, and their oviposition peaks were both between the 14th and 44th day after emergence.
     5. There were significant differences both in heat resistance and cold resistance between the 2 kinds color patterns of T. molitor. The heat-resistance tests showed that the tolerance of the black-color-pattern larvae, pupae and adults to the high temperature (45℃) was stronger than that of the yellow-color-pattern larvae, pupae and adults of the same days. At the same time, the cold-resistance tests showed that the tolerance of the black-color-pattern larvae and pupae to the low temperature (-25℃) was stronger than that of the yellow-color-pattern larvae and pupae of the same days. But There was no significant difference between the tolerance of the adults of the 2 kinds of color patterns of T. molitor to the low temperature (-25℃).
     6. There was significant difference in the resistance to insecticides between the 2 kinds of color patterns of T. molitor. In the thesis, the Matrine pesticides of different concentration gradients were used to test the insecticides resistance of the larvae and adults of 2 kinds of color patterns of T. molitor. The results showed that the tolerance of the black-color-pattern larvae and adults to the Matrine pesticides was stronger than that of yellow-color-pattern larvae and adults of the same days. The LC50 values of Matrine insecticides against the 60-days-old larvae of the yellow and black color pattern were107.63mg·ML-1(72h) and 178.63 mg·ML-1(72h) respectively, while the LC50 values of Matrine pesticides against the 7-days-old adults of the yellow and black color pattern were 95.89 mg·ML-1(72h) and 162.54 mg·ML-1(72h) respectively.
     7. There was significant difference in the resistance to the pathogenic fator between the 2 kinds of color patterns of T. molitor, too. In this thesis, lipopolysaccharide (LPS) was used as the pathogenic fator to study the disease resistance of the 2 kinds of color patterns of T. molitor. The results showed that, after injecting 5μL LPS (0.5-2.0 mg·ML-1) solutions of the same concentrations, the survival rates of the black-color-pattern larvae, pupae and adults were significantly higher than those of the yellow-color-pattern larvae, pupae and adults of the same days. It was thus evident that the tolerance of black color pattern of T. molitor to LPS was stronger than that of the yellow-color-pattern.
     8. The analysis of nutritional components showed that the 2 kinds of color patterns of T. molitor have the high nutritional and utilization value since they are rich in nutrients. The protein contents of the larvae, pupae and adults of the 2 kinds of color patterns were about 48%-63% of their dry matter. They contained 18 kinds of amino acids, of which the essential amino acids occupied 48%-49%. Meanwhile, they are also rich in oleic acid, linoleic acid, linolenic acid and other unsaturated fatty acids and K, Na, Ca, Mg, Fe, Cu, Mn, Zn, Se and other minerals and trace elements. In addition, the nutritional composition of the 2 kinds of color patterns of T. molitor was characterized by that the yellow-color-pattern larvae and adults had the higher contents of crude protein, total amino acids and essential amino acids, whereas the black-color-pattern larvae, pupae and adults possesed a higher content of crude fat.
     9. The results of the main stress-related isozymes electrophoresis of the 2 kinds of color patterns of T. molitor showed that there were some similarities and differences in the isozymes zymograms between the yellow and black color pattern of T. molitor at the same developmental stages. Except there was no clear difference in the SOD isozyme zymograms between the 2 kinds of color patterns of T. molitor, there were obvious differeces in all the other isozymes zymograms,inciuding POD, EST, COD, MPO and DPO, between the yellow and black color pattern of T. molitor. Especially, there were so significant differences in each of EST, POD and MPO isozymes zymograms between the 2 kinds of color patterns of T. molitor that they might be considered as tool enzymes to classify the different varieties of the species.
     10. The determination of the main stress-related isozymes activities of the 2 kinds of color patterns of T. molitor of the same days showed that the activities of the most tested isozymes of the black color pattern were higher than those of the yellow color pattern under the routine rearing conditions. At the same time, Under each stress of the cold (-25℃), heat (45℃) and insecticides (Matrine), the protective enzymes and detoxification enzymes were mostly inhibited, whereas the defensive enzymes were activated. In addition, there were some differences both in the inhibition ratios of the same kind of protective and detoxification enzymes activities between the yellow and black color pattern of T. molitor under the above stress. And there were some differences in the growth rates of the same kind of defensive enzymes between the 2 kinds of color patterns of T. molitor under the above stress, too.
     11. The cloning and sequence analysis of the core fragments of some stress-related genes of the 2 kinds of color patterns of T. molitor showed that there was a high nucleotide sequence homology in each of the cytochrome oxidase subunit I(COI) cDNA, prophenoloxidase (PPO) cDNA and antifreeze protein(AFP) cDNA between the 2 kinds of color patterns of T. molitor. But there were still a few different nucleotides in each of the above core fragments between the yellow and black color pattern of T. molitor.
     12. The studies on the expression of HSP and AFP genes of the 2 kinds of color patterns of T. molitor larvae showed that, under the cold stress, the AFPmRNA expression of the black-color-pattern larvae had a significant up-regulation, whereas there was no visible increase in the AFPmRNA production of the-yellow-color-pattern larvae. At the same time, under the heat stress, the HSPmRNA expression of the black-color-pattern larvae had a significant up-regulation, whereas there was no visible increase in the HSPmRNA production of the yellow-color-pattern larvae. In addition, the response of the black-color-pattern larvae AFP to the testing cold-stress was significantly higher than that of the yellow-color-pattern larvae of the same days, and the response of the black-color-pattern larvae HSP to the testing heat-stress was obviously higher than that of the yellow-color-pattern larvae, too.
引文
[l]刘高强,魏美才.昆虫资源开发与利用的新进展[J].西北林学院学报2008,23(6):142-146.
    [2]杨冠煌.中国昆虫资源利用和产业化[M].北京:中国农业出版社199813-21.
    [3]朴美花,方志刚.我国昆虫资源开发利用概况[J].中国计量学院学报2003,14(4):300-303.
    [4]金传玲.资源昆虫的利用[J].中国林副特产2004, (1):54-55.
    [5]刘玉升.黄粉虫工厂化规模生产及产业化开发[J].山东省虫业协会通讯2000,10:1-15.
    [6]吉志新.两种色型黄粉虫Tenebrio molitor Linne杂交性状及产品开发利用的研究[D].西北农林科技大学2007届在职攻读硕士学位研究生学位论文
    [7]彭中健,黄秉资.黄粉虫的研究[J].昆虫知识1993,30(2):111-115.
    [8]刘光华,曾玲,甘咏红.黄粉虫龄期及生活习性的观察[J].仲恺农业技术学院学报,2002,15(3):18-21.
    [9]周文宗,孙玉传,白宇.黄粉虫自相残杀特性研究[J].特产研究2002,(4):27-28.
    [10]陈根富,刘团举.黄粉虫的生物学特性及养殖技术的研究[J].福建师范大学学报(自然科学版)1992,8(1):66-74.
    [11]林志伟,穆允良,贾锡云.黄粉虫生物学特性的研究[J]黑龙江八一农垦大学学报2002,14(2):21-23.
    [12]高红莉,周文宗,张硌,李洪涛.饲料种类和饲养密度对黄粉虫幼虫生长发育的影响[J].生态学报2006,26(10)3258-3264.
    [13]刘光华,曾玲,陶方玲,梁广文.黄粉虫人工饲料优化配方的研究[J].仲恺农业技术学院学报,1999,12(4):25-31.
    [14]张森泉,刘光华.黄粉虫实用人工饲料配方研究[J]江西植保2005,28(4):154-157.
    [15]吴福中.黄粉虫幼虫饲养条件的优化和几丁质含量的研究[D].安徽农业大学2007年硕士学位论文
    [16]张丽.黄粉虫肠道细菌及饲料成分选择的研究[D].山东农业大学2007年硕士学位论文
    [17]施忠辉.利用酒糟养殖黄粉虫[J].农家之友1999,(12):22.
    [18]郝波.生物饲料在21世纪中的应用前景[J].云南畜牧兽医2000,(2):22.
    [19]张日俊,李军.生物饲料的研究应用现状与绿色食品生产[J].中国微生态学杂志2001,13(3):168-176.
    [20]刘玉升主编.黄粉虫[M].北京:中国农业出版社2002年1-50.
    [21]崔俊霞.黄粉虫生物饲料及品种选育的初步研究[D].山东农业大学2003年硕士学位论文
    [22]黄粉虫新品种选育、繁育、工厂化生产及产业化开发.山东农业大学1999年科技成果
    [23]赵万勇.稀土氧化镧对黄粉虫生长繁殖的影响[D].福建师范大学2004年硕士学位论文
    [24]赵万勇,杨兆芬,强承魁,李凤玉.稀土氧化镧对黄粉虫生长发育和繁殖的影响[J].昆虫知识2005,42(4):444-449.
    [25]李北方平.黄粉虫不同生长阶段的饲养管理[J].河南农业1998,(10):19.
    [26]杨兆芬,曾兆华,曹长华,饶小珍.黄粉虫成虫繁殖力的研究[J].华东昆虫学报1999,8(1):103-106.
    [27]张传溪,李宝娟,赵进.温度对黄粉虫成虫繁殖的影响[J].华东昆虫学报1995,4(1):31-34.
    [28]郑建平.黄粉虫的饲养技术[J].饲料博览1991,(4):25-27.
    [29]张洪喜.蜂王浆对黄粉甲生殖力的影响[J].河北农业技术师范学院学报1987,1(3):85-86.
    [30]王立新,杜娟,张树杰,高道金,孙文杰.饲喂胡萝卜和蜂王浆对黄粉虫繁殖力的影响[J].昆虫知识2005,42(4):434-437.
    [31]肖银波,周祖基,杨伟,杜开书.饲养条件对黄粉虫幼虫生长及存活的影响[J].生态学报2003,23(4):673-680.
    [32]Weavere D.K., McFzrlane.The effect of larval density on growth and development of Tenebrio molitor[J]. Journal of Insect Physiology 1990,36(7):531-536.
    [33]杨兆芬,倪明,黄敏,耿宝荣.黄粉虫成虫繁殖力及影响幼虫发育的因素[J].昆虫知识1999,36(1):24-27
    [34]柴培春,张润杰.饲养密度对黄粉虫幼虫生长发育的影响[J].昆虫知识2001,38(6):452-455
    [35]刘光华,甘泳红,陆永跃,曾玲.不同食料条件下密度因子对黄粉虫高龄幼虫生长发育的影响[J].仲恺农业技术学院学报,2004,17(2):19-22.
    [36]张丹,周玉书,李庆辉.不同饲料对黄粉虫幼虫生长发育的影响[J].江苏农业科学2008,(3):274-276.
    [37]华红霞,杨长举,余纯,胡建芳.饲养条件对黄粉虫幼虫生长的影响[J].华中农业大学学报2001,20(4):337-339.
    [38]周文宗,张硌,高红莉,李洪涛.温度和光线对黄粉虫蛹发育的影响[J].现代农业科技2006,(10):124-125.
    [39]顾学玲金永来.黄粉虫病害的防治[J].农村实用科技信息2001,(3):34.
    [40]葛盛芳,程义稳,李步青.黄粉虫三个生长期生化成分分析[J].安徽大学学报(自然科学版)1991,(3):86-87.
    [41]谢保令.黄粉虫营养成分的分析研究[J].昆虫知识1994,31(3):175-176.
    [42]叶兴乾, 苏平,胡萃.黄粉虫主要营养成分的分析和评价[J].浙江大学学报(农业与生命科学版)1997,23(1):35-38.
    [43]Ye Xingqian, Hu Cui, Wang Xiang. Chemical evaluation of the nutritive value of 7 species of coleopteran larvae[J].浙江大学学报(农业与生命科学版)1998,24(1):101-106.
    [44]陈彤,王克.黄粉虫等昆虫的营养价值与食用性研究[J].西北农业大学学报1997,25(4):78-82.
    [45]杨兆芬,林跃鑫,陈寅山,吴小楠.黄粉虫幼虫营养成分分析和保健功能的实验研究[J].昆虫知识1999,36(2):97-100.
    [46]刘伟强,罗来凌,黄炳南,王晓容.黄粉虫幼虫营养成分分析[J].广州食品工业科技1999,15(1):56-57.
    [47]黄琼,周祖基,周定刚,胡杰,杨伟,杨春平.黄粉虫蛹的营养成分分析[J].四川动物2006,25(4):809-813.
    [48]黄琼,周祖基,周定刚,胡杰,杨伟,杨春平.七种昆虫的营养成分分析[J].营养学报2007,29(1):94-96.
    [49]冯彦博.黄粉虫中无机元素和维生素的测定与研究[J].食品研究与开发2002,23(2): 57-59.
    [50]王晓容,黄小丹,古芳芳,林栋柱,沈宜昌,郑伟洁.黄粉虫(Tenebrio molitor L.)幼虫体中微量元素的测定[J].仲恺农业技术学院学报1996,9(2):98-100.
    [51]杨明禄,杨伟,周祖基.黄粉虫幼虫对硒的耐受性及富集能力[J].塔里木大学学报2005,17(3):5-7.
    [52]高红莉,周文宗,张硌,李洪涛.黄粉虫幼虫对硒的生物积累[J].昆虫知识2007,44(6):886-890.
    [53]黄琼,周祖基,杨伟,胡杰,杨春平.繁育川硬皮肿腿蜂替代寄主的筛选[J].昆虫学报2005,48(3):375-379.
    [54]田慎鹏,徐志强.不同温度条件对利用黄粉甲繁育管氏肿腿蜂的影响[J].昆虫知识2003,40(4):356-359.
    [55]张卫光,尹淑艳,李波,郭光智,孙绪艮.管氏硬皮肿腿蜂的寄生特性[J].中国生物防治2005,21(3):151-154.
    [56]陈倩,梁洪柱,侯峥嵘,胡雅君.黄粉虫蛹不同处理对繁育管氏肿腿蜂的影响[J].中国森林病虫2006,25(1):39-41.
    [57]陈倩,梁洪柱,张秋双.低温贮存黄粉虫蛹对管氏硬皮肿腿蜂繁育的影响[J].中国生物防治2006,22(1):30-32.
    [58]武辉,王小艺,李孟楼,杨忠岐,曾繁喜,王红艳,白玲,刘松君,孙进.白蜡吉丁肿腿蜂的生物学和生态学特性及繁殖技术研究[J].昆虫学报2008,51(1):46-54.
    [59]Zanuncio JC, Zanuncio JV, Guedes RNC et al. Effect of feeding on three Eucalyptus species on the development of Brontocoris tabidus(Heteroptera:Pentatomidae)fed with Tenebrio motitor(Coleoptera:Tenebrionidae) [J].Biocontrol science and Technology.2000,10(4):443-450.
    [60]Vinha ZanuncioT, etal. Suputius cincticeps stal(Hemiptera:Pentatomidae)and Musca domestica (Diptera:Muscidae) [J]. Revista Brasileira de Entomologia.1995,39(1):183-187.
    [61]贾春生,由士江,高文韬.利用黄粉虫分离土壤昆虫病原真菌[J].昆虫知识2006,43(2):260-261.
    [62]刘怀如,杨兆芬,檀东飞,吴政声.黄粉虫虫粪的肥效研究[J].泉州师范学院学报(自然科学)2003,21(4):68-71.
    [63]王久兴,董爱花,张慎好,尚玉锋,闫立英,冯志红,宋士清.黄粉虫粪在黄瓜育苗中的应用[J].河北职业技术师范学院学报2003,17(1):20-22.
    [64]叶榕村.黄粉虫粪代替麦麸栽培香菇试验[J].浙江食用菌2008,16(4):34-35.
    [65]谢秋贤.面包虫喂鸡[J].饲料研究1986,9(11):19-20.
    [66]王应昌,陈云堂,李兴瑞,夏俊明,杜勤生,支长安.黄粉虫幼虫饲养及其加工利用效果研究[J]河南农业大学学报1996 30(3):288-292.
    [67]申红,潘晓亮,王俊刚.黄粉虫对肉仔鸡生长性能及体内蛋白质沉积率的影响[J].四川畜牧兽医2006,(7):27-28.
    [68]李玉霞,刘玉升.异军突起的昆虫源动物饲料蛋白[J].饲料研究,2001,(7):14-16.
    [69]申红,潘晓亮.高蛋白黄粉虫的饲养及其利用[J].草食家畜2004,(2):47-50.
    [70]陈德祥.蜘蛛的人工养殖新技术[J].黑龙江畜牧兽医1999,(6):32.
    [71]郑延平.蚂蚁的用途及其人工养殖技术[J].农业科技通讯1998(9):25-26.
    [72]王文亮,孙守义,王守经,李海雷,张奇志.中国黄粉虫食品研究开发现状及发展前景[J].世界农业2007(9):50-52.
    [73]杨兆芬,刘怀如,张素华,彭玉玲黄粉虫防卫物质苯醌的测定及其去除[J].昆虫知识2004,41(3):248-251.
    [74]张潜龙.一种应用广泛的生物资源黄粉虫[J].农村发展论丛(养殖业)1998,(9):23-24.
    [75]吴福中,林华峰,刘志红,胡萃.中国黄粉虫产品开发利用的现状及其对策[J].中国农学通报2005,21(8):72-75.
    [76]王文亮,孙爱东.黄粉虫食品研究开发现状及发展前景[J].中国食物与营养 2005,(6):18-20.
    [77]王文亮,孙守义,王守经,孙宏春.黄粉虫罐头的加工工艺[J].中国食物与营养2008,(2):17-18.
    [78]霍建聪.黄粉虫罐头的加工工艺[J].农产品加工2007,(4):17.
    [79]王振林,周明琪,陈彤,陈旭仓.汉虾粉的营养价值研究[J].西安医科大学学报1994,15(4):344-345.
    [80]崔蕊静,林学岷.利用黄粉虫生产酱油的技术[J].中国调味品1997,(5):10.
    [81]赵大军,吕长鑫,马勇,白凤翎.黄粉虫蛋白酸奶的工艺研究[J].食品科学2004,25(7):210-213.
    [82]崔蕊静,林学岷,许高升.黄粉虫营养食品[J].安徽科技1996,(9):43.
    [83]宋立,马勇,赵大军,曹雪慧.黄粉虫蛋白营养饼干的工艺研究[J].粮油加工与食品机械2005,(5):75-76.
    [84]马勇,赵大军,宋立.黄粉虫无水清蛋糕的研制[J].食品工业2003,(6):31.
    [85]王青春.黄粉虫的开发利用[J].农牧产品开发 2000,(12):25-26.
    [86]刘世民,宋立,马勇,赵大军.黄粉虫蛋白面条加工技术探讨[J].粮油加工与食品机械2004,(1):51-52.
    [87]王文亮,孙爱东.黄粉虫在食品加工中的开发利用[J].食品与发酵工业2005,31(5):87-89.
    [88]杨兆芬,林跃鑫,张东弛,陈寅山.黄粉虫复合氨基酸的提取及氨基酸虫酒的制作[J].昆虫知识1998,35(5):290-292.
    [89]王文亮,刘学锋,邬元娟,李海雷,孙宏春,张奇志.黄粉虫氨基酸保健口服液脱色、脱臭工艺研究[J].中国食物与营养2007,(10):42-43.
    [90]王文亮,孙爱东,杜方岭.黄粉虫氨基酸水解液制取工艺条件的优化[J].中国食物与营养2008,(9):45-47.
    [91]万本屹,蓝海洲,刘传富.黄粉虫油脂精炼工艺研究[J].粮油与油脂2001,(10):30-31.
    [92]赵大军,马勇,吕长鑫,宋立,孙建华.黄粉虫系列食品的开发应用研究[J].食品工业科技 2006,27(9):167-170.
    [93]陈杰林,白卫东,李伟敏.黄粉虫蛋白分析及酶解工艺研究[J].农牧产品开发1999,(1):24-25.
    [94]冀宪领,盖英萍.黄粉虫蛋白提取工艺的研究[J].食品科技2000,(5):24-25.
    [95]崔蕊静,林学屺,周丽艳.黄粉虫蛹水解蛋白发酵营养液的研制[J].食品科学1999,(1):42-44.
    [96]刘怀如,杨兆芬,谭东飞,吴政声.黄粉虫有效物质的综合提取及提取方法的比较[J].昆虫知识2003,40(4):362-365.
    [97]刘高强,王晓玲.昆虫壳聚糖在食品工业中的开发应用[J].食品科技2004,(3):92-94.
    [98]刘高强, 刘卫星, 魏美才,孙虹.虫类甲壳素/壳聚糖的研究及其开发前景[J].西北林 学院学报2005,20(4):143-146.
    [99]高妍,刘全国.黄粉虫在医疗保健及特种养殖中的应用与开发前景[J].养殖与饲料2007,(12):68-69.
    [100]王文亮,孙爱东,王守经,祝清俊,邓鹏.木瓜蛋白酶水解黄粉虫蛋白质工艺条件的优化[J].食品与药品2007,9(8A):5-7.
    [101]崔蕊静,吉志新,周丽艳.黄粉虫酶解液饮料的研制[J].河北职业技术师范学院学报2003,17(2):13-17.
    [102]冯彦博,赵大军.天然调味料—黄粉虫蛋白的开发与利用[J].中国调味品2002,(12):9-11.
    [103]李汉臣,吉志新,安丽红,赵婉,李小青.黄粉虫的营养保健作用初报[J].河北职业技术师范学院学报2002,16(1):26-28.
    [104]李汉臣,吉志新,高素红,刘绍军.黄粉虫的营养保健作用[J].河北科技师范学院学报2007,21(3):17-21.
    [105]陆骏,周庆堂,委友民,许宝孝,刘士煦.黄粉虫对血清总胆固醇及甘油二醋的作用[J].上海师范大学学报(自然科学版)1995,24(3):83-86.
    [106]俞巍蔚,李世敏,刘冬,余若黔.黄粉虫幼虫粉对高血脂大鼠血脂水平的影响[J].华南理工大学学报(自然科学版)2005,33(1):92-94.
    [107]杨明禄,周祖基,杨伟.黄粉虫幼虫生物富集锌和硒初探[J].微量元素与健康研究2008,25(6):64-66.
    [108]吴蕾,陈庆森,刘晋生.黄粉虫中提取纯化超氧化歧化酶的工艺研究[J].食品科学2007,28,(9):281-283.
    [109]强承魁.黄粉虫防御器官、防御物质及其功能的研究[D].福建师范大学2005年硕士学位论文
    [110]Walter R.Tschinkel. A comparative study of the chemical defensive system of Tenebrionid Beetles:Morphology of the glands[J]. J. Morph 1974,145:355-370.
    [111]Schildknecht. H., K.H.Weis. Unber die Tenebrioniden-chinone bei lebendem undtotem untersuchungsmaterial[J].Z. Naturf.,1960,15b:757-758.
    [112]Walter R.Tschinkel. A comparative study of the chemical defensive system of Tenebrionid Beetles:chemistry of the secertions[J]. J. Insect physiol.,1975,21:753-783.
    [113]强承魁,杨兆芬,张绍雨.黄粉虫防御性分泌物化学成分的GC/MS分析[J].昆虫知识2006,43(3):385-389.
    [114]Rolff J., Siva-Jothy M. T. Copulation corrupts immunity:A mechanism of a cost of mating in insects[J]. Proc. Natl. Acad. Sci. USA 2002,99 (15):9916-9918.
    [115]BlnakesPoor CL, Pappas PW, EisnerT. Impairment of the chemical defence of the beetle, Tenebrio molitor, by metacestodes (cysticeroids) of the tapeworm Hymenolepis diminuta [J].Parasitology,1997:115 (1):105-110.
    [116]强承魁,杨兆芬,杜予州,檀东飞,郑福山.黄粉虫防御性分泌物抑菌活性的研究[J].生物技术2006,16(1):22-24.
    [117]Lengerke H, von. Vorstulpbare stinkapparateder imago von Tenebrio molitor L.[J]. Biol. Zentr albl.,1925,45:365-369.
    [118]Walter R.Tschinkel. A comparative study of the chemical defensive system of Tenebrionid beetles:defensive behavior and ancillary features[J]. Annals of the entomological society of American,1975,68(3):339-453.
    [119]王荫长主编.昆虫生物化学[M].北京:中国农业出版社2001年240-268.
    [120]Mi Young Cho, Hye Won Choi, Ga Young Moon, Mi Hee Kim, Tae Hyuk Kwon, Ko-ichi Homma, Shunji Natori, Bok Luel Lee. An 86 kDa diapause protein 1-like protein is a component of early-staged encapsulation-relating proteins in coleopteran insect, Tenebrio molitor larvae[J]. FEBS Letters,1999,(451):303-307.
    [121]Theopold U, Schmidt O, Derhall KS, Dushay MS, Coagulation in arthropods:defence, wound closure and healing[J]. Trends in Immunology,2004,25(6):289-294.
    [122]Ashida M, Brey PT, Role of the integument in insect defense:prophenoloxidase cascade in the cuticular matrix[J]. Proc. Natl. Acad. Sci. USA,1995, (92):10698-1070.
    [123]Brown GD, Gordon S. Immune recognition of fungal β-glucans[J]. Cellular Microbiology 2005,7(4):471-479.
    [124]Hyun Seong Lee, Mi Young Cho, Kwang Moon Lee, Tae Hyuk Kwon, Ko-ichi Homma, Shunji Natori, Bok Luel Lee. The prophenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions[J]. FEBS Letters 1999,(444)255-259.
    [125]Sun Woo Lee, Hyun Seong Lee, Eun-Jun Kim, Mi Ae Yoo, Bok Luel Lee. Activated Phenoloxidase Interacts with a Novel Glycine-rich Protein on the Yeast Two-hybrid System [J]. Journal of Biochemistry and Molecular Biology,2001,34(1):15-20.
    [126]Kwang Moon Lee, Kum Young Lee, Hye Won Choi, Mi Young Cho, Tae Hyuk Kwon, Shun-ichiro Kawabata, Bok Luel Lee. Activated phenoloxidase from Tenebrio molitor larvae enhances the synthesis of melanin by using a vitellogenin-like protein in the presence of dopamine[J]. Eur. J. Biochem.2000, (267):3695-3703.
    [127]Kum Young Lee, Rong Zhang, Moon Suk Kim, Ji Won Park, Ho Young Park, Shun-ichiro Kawabata, Bok Luel Lee. A zymogen form of masquerade-like serine proteinase homologue is cleaved during pro-phenoloxidase activation by Ca2+ in coleopteran and Tenebrio molitor larvae[J]. Eur. J. Biochem.2002, (269):4375-4383.
    [128]Rong Zhang, Hae Yun Cho, Hyun Sic Kim, Young Gerl Ma, Tsukasa Osaki, Shun-ichiro Kawabata, Kenneth Soderhall, Bok Luel Lee. Characterization and Properties of a 1,3-β-D-Glucan Pattern Recognition Protein of Tenebrio molitor Larvae That Is Specifically Degraded by Serine Protease during Prophenoloxidase Activation[J]. The Journal OF Biological Chemistry 2003, 278(43):42072-42079.
    [129]Mingyi Zhao, Irene Soderhall, Ji Won Park, Young Gerl Ma, Tsukusa Osaki, Nam-Chul Ha, Chun Fu Wu, Kenneth Soderhall, Bok Luel Lee. A Novel 43-kDa Protein as a Negative Regulatory Component of Phenoloxidase-induced Melanin Synthesis[J]. The Journal of Biological Chemistry 2005,280(26):24744-24751.
    [130]Kan, Hongnan Kim, Chan-Hee Kwon, Hyun-Mi Park, Ji-Won Roh, Kyung-Baeg Lee, Hanna Park, Bum-Joon Zhang, Rong Zhang, Jinghai ScederhcTll, Kenneth Ha, Nam-Chul Lee, Bok Luel. Molecular Control of Phenoloxidase-induced Melanin Synthesis in an Insect[J]. Journal of biological chemistry.2008,283(37):25316-25323.
    [131]赵明沂,吴春福,李福律.大黄粉虫幼虫体内黑色素合成相关蛋白的鉴定[J].沈阳药科大学学报2006,23(9):602-606.
    [132]Miehael J. Lee, Joph H. Anstee. Phenoloxidase and its zymogen from the haemolymph of larvae of the lepidopteran Spodoptera littoralis(LepidoPtera:Noctuidae)[J]. Comp.Biochem.Physiol.1995,110(2):379-384.
    [133]李志强.棉铃虫血淋巴酚氧化酶的初步研究[D]华中师范大学2004年硕士学位论文
    [134]Mi Hee Kim, Chang Hun Joo, Mi Young Cho, Tae Hyuk Kwon, Kwang Moon Lee, Shunji Natori, Tae Ho Lee, Bok Luel Lee. Bacterial-injection-induced syntheses of N-b-alanyldopamine and Dopa decarboxylase in the hemolymph of coleopteran insect, Tenebrio molitor larvae[J]. Eur. J. Biochem.2000, (267):2599-2608.
    [135]Julieta Schachter, Martin M. Perez, Luis A. Quesada-Allue. The role of N-b-alanyldopamine synthase in the innate immune response of two insects[J]. Journal of Insect Physiology 2007, (53) 1 188-1197.
    [136]王树栋小菜蛾酚氧化酶及其抑制剂的研究[D] 山东农业大学2005年硕士学位论文
    [137]Kubo I., Kinst-Hori I., et al. Tyrosinase inhibitors from Anacardium occidentale fruits [J]. Nat.Prod.1994, (57):545-551.
    [138]Kubo I., Kinst-Hori I., et al. Tyrosinase inhibitors from Bolivian medicinal plants [J]. Nat.Prod.1995, (58):739-743.
    [139]Lee M.J., Anstee J.H. Phenoloxidase and its zymogen from the haemolymph of larvae of the lepidopteran Spodoptera littoralis Lepidoptera:Noctuidae) [J]. Comp. Biochem. Physiol.,1995, 110B:379-384.
    [140]Liu D.Y.,Lei H.Q. Inhibitory Effects of Myricetin and Ampelopsin on Tyrosinase[J]. Chin Biochem.,1996,12(5):618-620.
    [141 He B.F., Chen Q.H. Inhibitory effect of anthraaquinone derivatives on tyrosinase [J].Chin Biochem,1989,5(2):154-158.
    [142]王树栋,罗万春,高兴祥,丁琦.曲酸对小菜蛾酚氧化酶抑制作用的研究[J].中国农业科学2004,37(9):1316-1321.
    [143]刘守柱,肖婷,薛超彬,罗万春.槲皮素对黄粉虫血淋巴酚氧化酶的生理效应[J].昆虫学报2007,50(12):1201-1206.
    [144]Ma CC, Kanost MR, A β-1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade[J]. Journal of Biological Chemistry,2000,275 (11):7505-7514.
    [145]Ochiai M, Ashida M. A pattern-recognition protein for β-1,3-glucan:the binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm, Bombyx mori[J]. Journal of Biological Chemistry,2000,275(5):4995-5002.
    [146]周义文.家蝇抗菌肽分离纯化、抗菌活性及分子结构研究[D]重庆医科大学2004年博士学位论文
    [147]刘建涛,苏志坚,王方海,李广宏,宋少云.昆虫抗菌肽的研究进展[J].昆虫天敌2006,28(1):36-43.
    [148]Chan-Hee Kim, Su-Jin Kim, Hongnan Kan, Hyun-Mi Kwon, Kyung-Baeg Roh, Rui Jiang, Yu Yang, Ji-Won Park,Hyeon-Hwa Lee, Nam-Chul Ha, Hee Jung Kang, Masaru Nonaka, Kenneth Soderhall, Bok Luel Lee. A Three-step Proteolytic Cascade Mediates the Activation of the Peptidoglycan-induced Toll Pathway in an Insect[J]. Journal of Biological Chemistry 2008,283(12): 7599-7607.
    [149]Jon-Paul S Powers, Robert E W, Hancock. The relationship between peptide structure and antibacterial activity [J]. Peptides,2003 (24):1681-1691
    [150]Kim A. Brogden Antimicrobial Peptides:Pore Formers or Metabolic Inhibitors in Bacteria[J] Nature 2005,3:238-250.
    [151]Destenfro-Beltan L. Plant gene research molecular approaches to crop improvement [M]. New York:Spring-verlay Wine,1991,17-23.
    [152]Osusky M, Zhou G Q, Osuska L, et al.Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens[J]. Nature Biotech 2000,(18):1162-1166.
    [153]Sharma A., Sharama R., Imamura M., et al. Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice[J]. FEBS Lett,2000(484):7-11.
    [154]Reed W. A., Elzer P.H., Enright F.W. Interleukin2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus[J].Transgenic Researh,1998,6(5):337-347.
    [155]Yaus S., Rosen J.M., Kmacik S., et al. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice[J].Proc.Natl.Acad. Sci. USA 1996,(93):14118-14121.
    [156]Sarmasik A, Chen T. T. Bactericidal activity of cecropin B and cecropin PI expressed in fish cells (CHSE-214):application in controlling fish bacterial pathogens[J]. Aquaculture,2003(200): 183-194.
    [157]Parker M. S., Ourth D. D. Specific binding of human interferongamma to particulates from hemolymph and protocerebrum of tobacco hornworm (Manduca Sexta)larvae[J]. Comp Biochem Physiol B Biochem Mol Biol,1999,122(2):155-163.
    [158]Diaz-Achirica P., Ubach J., Guinea A. The plasma membrane of Leishmania donovni promastigotes is the main target for CA (1-8) M(1-18), a synthetic cecropin A-melittin hybrid peptide[J]. Biochemical Journal 1998,330(1):453-460.
    [159]Wachinger M.,Kleinschmidt A.,Winder D. Antimicrobral peptides melittin and cecropin inhibit replication of human imunodeficiency virus I by suppressing viral gene expression[J]. Journal of General Virology 1998,79(41):731-740.
    [160]赵东红,戴祝英,周开亚.昆虫抗菌肽的功能作用机理与分子生物学研究最新进展[J].生物工程进展1999,16(3):14-17.
    [161]胡云龙.天然抗菌肽分离、纯化及其抑制肿瘤细胞的作用[C].选自贾士荣,屈贤铭.马铃薯抗菌肽基因工程.北京:中国农业科技出版社,1996,89-97.
    [162]许玉澄,张双全,戴祝英.家蚕抗菌肽的抗癌作用[J].动物学研究1998,19(4):263-26.
    [163]赵喜红,何小维,罗志刚.抗菌肽的生物活性、作用机制及应用研究进展[J].中国酿造2007, (4):1-5.
    [164]顾莉娟,吴健伟,苏晓庆,成昌根.抗菌肽的研究进展[J].中国生化药物杂志2006,27(6):383-386.
    [165]郭新竹,宁样.天然肽类防腐剂研究进展[J].食品与发酵工业2000,27(2):72-75.
    [166]宋宏霞,曾名勇,刘尊英,董士远,李夏.抗菌肽的生物活性及其作用机理[J].食品工业科技2006,27(9):185-188.
    [167]Moon, H. J., Lee, S. Y., Kurata, S., Natori, S., Lee, B. L. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor[J], Journal of Biochemistry 1994,116(1):53-58.
    [168]Keun Hyeung Lee, Sung Yu Hong, Jong Eun Oh. Synthesis and structure-function study about tenecin 1, an antibacterial protein from larvae of Tenebrio molitor[J]. FEBS Letters.1998,439 (1/2):41-45.
    [169]Keun Hyeung LEE, Sung Yu HONG, Jong Eun OH, Mi yun KWON, Jeong Hyeok YOON, Ji hye LEE, Bok Luel LEE, Hong Mo MOON. Identification and characterization of the antimicrobial peptide corresponding to C-terminal β-sheet domain of tenecin 1, an antibacterial protein of larvae of Tenebrio molitor[J]. Biochem. J.1998,334(1):99-105.
    [170]韩润林,孙庆林,额尔敦夫,李立民.黄粉虫幼虫中抗菌肽的诱导及其抗菌活性的初步 研究[J].内蒙古农牧学院学报1998,19(3):114-117.
    [171]王小平,徐冠军,刘毅琳.黄粉虫幼虫抗菌物质的抑菌作用研究[J].华中农业大学学报1998,17(6):534-536.
    [172]WANG Xiaoping, XUGuanjun, WANG Zhongxin. The kinetic of inducible antibacterial substance from Yellow Mealworm(Tenebrio molitor L)[J]. Journal of Huazhoug Agricultural University 2000,19(3):223-226.
    [173]王小平徐冠军.黄粉虫幼虫免疫血淋巴最佳制样条件的确定[J].华中农业大学学报1998,17(5):442-445.
    [174]李典谟主编.走向21世纪的中国昆虫学[C].中国昆虫学会2000年学术年会论文集北京:中国科学技术出版社 2000年274-276.
    [175]黄文,王芙蓉,刘彬,王佳璐,周兴苗,雷朝亮.黄粉甲幼虫抗菌物质的诱导及其抗茵活性[J].昆虫学报 2005,48(1):7-12.
    [176]刘春艳,夏朝晖.害虫的抗药性机制[J].农药2004,43(4):149-152.
    [177]唐振华.我国昆虫抗药性研究的现状及展望[J].昆虫知识2000,37(2):97-103.
    [178]LIU Nan-Nan, ZHU Fang, XU Qiang, Julia W. PRIDGEON, GAO Xi-Wu. Behavioral change, physiological modification, and metabolic detoxification:mechanisms of insecticide resistance[J]. Acta Entomologica Sinica 2006,49(4):671-679.
    [179]张红英,赤国彤,张金林.昆虫解毒酶系与抗药性研究进展[J].河北农业大学学报2002,25(增刊):193-195.
    [180]赵善欢.植物化学保护[M].北京:中国农业出版社,2001年241-245.
    [181]Rene Feyreisen. Insect P450 enzymes[J].Annual Review Entomology 1999,44:507-533.
    [182]周斌芬,唐振华,高菊芳.昆虫代谢抗性的研究进展[J].农药2008,47(5):313-315.
    [183]曲明静,许新军,韩召军,陈茂华.酯酶基因扩增及突变与昆虫抗药性[J].昆虫知识2007,44(1):29-31.
    [184]赵万勇,杨兆芬,黄勇,李凤玉,朱世威.黄粉虫不同发育期酯酶同工酶比较研究[J].福建林学院学报2003,23(4):368-370.
    [185]吉志新,刘永军,王长青,刘艳芳,李娜.黄色型黄粉虫不同发育时期酯酶和过氧化物酶同工酶的比较[J].河北科技师范学院学报2005,19(3):47-50.
    [186]吕敏,刘惠霞,吴文君.谷胱甘肽S-转移酶与昆虫抗药性的关系[J].昆虫知识2003,40(3):204-207.
    [187]施明安,袁建忠,庄佩君,唐振华.植物农药与药剂毒理学研究进展[M].北京:中国农业科技出版社,2002年231.
    [188]豆威,王进军.昆虫谷胱甘肽S-转移酶研究进展[C].2005年农业生物灾害预防与控制研究学术会议论文集426-431.
    [189]Iason KostaropoulosI, Anastasia E. Mantzari, Athanasios I. Papadopoulos Alterations of Some Glutathione Characteristics During the Tenebrio molitor (Insecta:S-Transferase Development of Coleoptera) [J]. Insect Biochem. Molec Biol,1996,26(8/9):963-969
    [190]Iason Kostaropoulos, Athanasios I. Papadopoulos Glutathione S-transferase isoenzymes expressed in the three developmental stages of the insect Tenebrio molitor[J]. Insect Biochem. Molec Biol,1998,28:901-909.
    [191]A. I. Papadopoulos, E. I. Stamkou, I. Kostaropoulos, E. Papadopoulou-Mourkidou. Effect of Organophosphate and Pyrethroid Insecticides on the Expression of GSTs from Tenebrio molitor Larvae[J]. Pesticide Biochemistry and Physiology 1999,63:26-33.
    [192]Iason Kostaropoulos, Athanasios I Papadopoulos, Athanasios Metaxakis, Evridiki Boukouvala, Euphemia Papadopoulou-Mourkidou. The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm Tenebrio molitor (Coleoptera:Tenebrionidae) [J]. Pest Manag Sci 2001,57:501-508.
    [193]Lea R E Jr. Insect cold hardiness:to freeze or not to freeze[J]. Bioscience 1989,39:308-313.
    [194]景晓红,康乐.昆虫耐寒性研究[J].生态学报,2002,22(12):2202-2207.
    [195]王小姣.不同地理纬度蝇类耐寒耐热性研究[D]浙江大学2008年硕士学位论文
    [196]Salt R W. Principles of insect cold-hardiness[J]. Annual Review of Entomology 1961,6:55-74.
    [197]魏令波,江勇,舒念红,高素琴,费云标.沙冬青叶片热稳定抗冻蛋白特性分析[J].植物学报1999,41(8):837-841.
    [198]王芸.拟步甲科几种昆虫的抗冻蛋白基因克隆及其原核表达[D].新疆大学2005年硕士学位论文
    [199]强承魁,杨兆芬,崔亚东.黄粉虫的生理生化研究进展[J].海南师范学院学报(自然科学版)2005,18(3):269-273.
    [200]景晓红,郝树广,康乐. 昆虫对低温的适应—抗冻蛋白研究进展[J].昆虫学报2002,45(5):679-683.
    [201]刘忠渊,王芸,吕国栋,王贤磊,张富春,马纪.Tenebrio molitor抗冻蛋白基因家族cDNA片段的克隆、序列分析及原核表达[J].遗传2006,28(12):1532-1540.
    [202]GRIMSTONE AV, MUNLLINGER AM, RAMSAY J A. Further studies on the rectal complex of the mealworm, Tenebrio molitor[J]. Phil Trans R Soc London B 1968,253:343-382.
    [203]Graether S. P., Sykes B. D. Cold survival in freeze-intolerant insects:the structure and function of beta-helical antifreeze proteins[J]. European Journal of Biochemistry 2004,271(16):3285-3 296.
    [204]GRAHAM L A, WALKER V K, DAVIES P L. Developmental and environmental regulation of antifreeze proteins in the mealworm beetle Tenebrio molitor[J]. Eur J Biochem 2000,267(21):6 452-6458.
    [205]Sindre A. Pedersen, Erlend Kristiansen, Bjφrn H. Hansen, Rolf A. Andersen, Karl E. Zachariassen. Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor[J]. Journal of Insect Physiology 2006,52:846-853.
    [206]Wen sheng Qin, Virginia K. Walker. Tenebrio molitor antifreeze protein gene identification and regulation[J]. Gene 2006,367:142-149.
    [207]Hoffmann K H. Metabolic and enzyme adaptation to temperature[C] IN Hoffmann K H. ed. Environmental Physiology and Biochemistry of Insects Berlin, Heidelberg.NewYork and Tokyo: Springer Verlag,1985,1-2.
    [208]Domingo I, Heong K L. Evaluating high temperature to tolerance in the brown Plant thopper [J] IRRN,1992,17(3):22.
    [209]杜尧,马春森,赵清华,马罡,杨和平.高温对昆虫影响的生理生化作用机理研究进展[J].生态学报2007,27(4):1565-1572.
    [210]谷文萍.热休克蛋白70研究进展[J].国外医学神经病学神经外科学分册1999,26(2):57-59.
    [211]王海鸿,雷仲仁.昆虫热休克蛋白的研究进展[J].中国农业科学2005,38(10):2023-2034.
    [212]Carper S W, Duffy J J, Gerner E W. Heat shock proteins in thermotolerance and other cellular physiological processes[J]. Cancer Research 1987,47(5):5249-5255.
    [213]肖春霞,杜予州,强承魁.昆虫热休克蛋白研究概况[J]广东农业科学2006,(5):110-112.
    [214]Beckmann R P, Mizzen L A, Welch W J. Interaction of HSP70 with newly synthesized proteins: Implications for protein folding and assembly[J]. Science 1990,248:850-654.
    [215]Gething M J, Sambrook J. Protein folding in the cell[J]. Nature 1992,355(6355):33-45.
    [216]Rassow J, Voos W, Pfanner N. Partner proteins determine multiple functions of Hsp70[J].Trends in Cell Biology,1995,5(5):207-212.
    [217]Moseley P L. Heat shock proteins and heat adaptation of the whole organism[J]. Journal of Applied Physiology,1997,83:1413-1417.
    [218]Parsell D A, Lindquist S. Heat shock proteins and stress tolerance[C]. In:Morimoto R I, Tissieres A, Georgopoulous C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. New York:Cold Spring Harbor Laboratory Press,1994:457-494.
    [219]Dahlgaard J, Loeschcke V P, Michalak J. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster[J]. Functional Ecology,1998, 12:786-793.
    [220]Ungermann C, NeupertW, Cyr D M. The role of hsp70 in conferring unidirectionality on protein translocation into mitochondria[J]. Science,1994,266:1250-1253.
    [221]Pelham H R.A regulatory upstream promoter element in the Drosophila HSP70 heat shock protein[J].Cell,1982,30:517.
    [222]Wu C. Heat shock transcription factors:structure and regulation[J]. Annual Review of Cell and Developmental Biology,1995,11:441-469.
    [223]Kroeger P E, Sarge K D, Morimoto R I. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element[J]. Molecular and Cellular Biology,1993,13(6):3370-3383.
    [224]Price B D, Calderwood S K. Ca2+ is essential for multistep activation of the heat shock factor in permeabilized cells[J]. Molecular and Cellular Biology,1992,11(6):3365-3368.
    [225 Lis J, Wu C, Heat shock factor[C]. In:McKnight S L, Yamamoto K R. Transcriptional Regulation. New York:Cold Spring Harbor Laboratory,1992:907-930.
    [226]Westwood J T, Clos J, Wu C. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor[J]. Nature,1991,353(6347):822-827.
    [227]Wu C, Wilson B, Walker 1, Dawid T, Paisley T, Zimarino V, Ueda H. Purification and properties of Drosophila heat shock activator protein[J]. Science,1987,238(4831):1247-1253.
    [228]Thomas J, McGarry. The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader[J]. Cell,1985,42(3):903-911.
    [229]张永强,王进军,丁伟,赵志模.昆虫热休克蛋白的研究概况[J].昆虫知识2004,40(1):16-19.
    [230]杨丹彤.棉铃虫Hacaspase-1和Ha Hsc70基因克隆及表达研究[D]山东大学2007年博士学位论文
    [231]王宪辉,陈兵,康乐.飞蝗热休克蛋白70cDNA片段的克隆和序列分析[J].动物学研究2003,24(5):349-354
    [232]殷珍仙.滞育中红侧沟茧蜂hsp70和hsp90的克隆与表达[D].扬州大学2007年硕士学位论文
    [233]王海鸿.B型烟粉虱热休克蛋白基因的克隆和表达及其与协迫耐受性关系的研究[D]中国农业科学院2005年博士学位论文
    [234]史彩华.温度协迫对不同体色棉蚜的影响及体色与HSP的关系[D]西北农林科技大学2007年硕士学位论文
    [235]杜桂林.红色麦长管蚜生态学及热激蛋白70表达量的研究[D]中国农业科学研究院2007年硕士学位论文
    [236]Rizana Mahroof, Kun Yan Zhu, Lisa Neven, Bhadriraju, Subramanyam, Jianfa Bai Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera:Tenebrionidae) [J]. Comparative Biochemistry and Physiology,2005, Part A 141:247-256.
    [237]陈亮,张富春,黄萍,马纪.光滑鳖甲热休克蛋白70基因的克隆及表达[J]昆虫学报2007,50(9):883-888.
    [238]Barnes AI, Siva-Jothy MT. Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. Coleoptera:Tenebrionidae):cuticular melanization is an indicator of investment in immunity[J]. Proc R Soc Lond B Biol Sci 2000,267:1-6.
    [239]Thompson JJW, Armitage SAO, Siva-Jothy MT. Cuticular melanisation is time-constrained: blacker beetles darken faster[J]. Physiol Entomol 2002,27:136-141.
    [240]RolffJ, Siva-Jothy M. Invertebrate ecological immunology[J]. Science 2003,301:472-475.
    [241]SAO Armitage, MT Siva-Jothy. Immune function responds to selection for cuticular colour in Tenebrio molitor[J]. Heredity 2005,94:650-656.
    [242]吉志新,高素红,郑辉,赵泽新.黄粉虫种内杂交初步研究[J].河北林果研究2005,20(3):280-283.
    [243]南京农业大学主编.昆虫生理生化实验[M].北京:中国农业出版社 1993年162.
    [244]张飞萍,钟景辉,江宝福,李少尉,缪福清.沿海拔高度松突圆蚧热耐受性的变化[J].昆虫学报2010,53(1):68-75.
    [245]崔旭红.B型烟粉虱和温室粉虱热协迫适应及其分子生态机制研究[D].中国农业科学院2007年博士学位论文6-9.
    [246]陈兵,康乐.昆虫对环境温度胁迫的适应与种群分化[J].自然科学进展2005,15(3):265-271.
    [247]Overgaard J, Scprensen JG. Rapid thermal adaptation during field temperature variations in Drosophila melanogaster[J]. Cryobiology 2008,56(2):159-162.
    [248]Terblanchea JS, Sinclaira BJ, Klok CJ, McFarlaneb ML, Chown SL The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera(Coleoptera:Chrysomelidae) [J] Journal of Insect Physiology 2005,51 (9):1013-1 023.
    [249]Sejerkilde M, Sφprensen JG, Loeschcke V. Effects of cold-and heat-hardening on thermal resistance in Drosophila melanogaster[J]. Journal of Insect Physiology 2003,49(8):719-726.
    [250]Gaston KJ, Chown SL. Elevation and climatic tolerance:a test using dung beetles[J]. Oikos 1999,86(3):584-590.
    [251]Addo-Bediako A, Chown SL, Gaston KJ.Thermal tolerance, climatic variability and latitude[J]. Proceedings of the Royal Society B:Biological Sciences 2000,267(1445):739-745.
    [252]Hoffmann AA, Anderson A, Hal las R. Opposing clines for high and low temperature resistance in Drosophila melanogaster[J]. Ecology Letters 2002,5(5):614-618.
    [253]Hoffmann AA, Shirriffs J, Scott M. Relative importance of plastic vs. genetic factors in adaptive differentiation:Geographical variation for stress resistance in Drosophila melanogaster from Eastern Australia[J]. Functional Ecology 2005,9(2):222-227.
    [254]Hoffmann AA, Sφrensen JG, Loeschcke V. Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches[J]. Journal of Thermal Biology 2003,28 (3):175-216.
    [255]孙绪艮,王兴华,李恕廷.昆虫的耐寒机制及其研究进展[J].山东农业大学学报(自然科学版)2001,32(3):393-396.
    [256]杨月欣,王光亚.实用食物营养成分分析手册[M].北京:中国轻工业出版社,2002.36-39,81-87,162-170.
    [257]杨凤.动物营养学第二版[M].北京:中国农业出版社,2004.49-53.
    [258]刘云,谢锦忠,屈明华,张玮.湿法消解—原子荧光法测定竹笋中的微量硒[J].竹子研究汇刊2007,26(3):12-15.
    [259]刘宏坤,常晓歌.氢化物原子吸收测定富硒鸡蛋中的硒[J].预防医学文献信息2003,9(4):428-428,430.
    [260]叶兴乾,胡萃,王向.六种鳞翅目昆虫的食用营养成分分析[J].营养学报,1998,20:224-228.
    [261]中国营养学会.中国居民膳食营养素参考摄入量[M].北京:中国轻工业出版社,2000.129-252.
    [262]杨月欣,王光亚,潘光昌.中国食物成分表[M].北京:北京大学医学出版社,2002.105-154,322.
    [263]沈同,王镜岩主编.生物化学(第二版)[M]北京:高等教育出版社1990年319-321.
    [264]van Asperen K. A study of housefly esterase by means of a sensitive colormetric method [J]. Journal of Insect Physiology 1962.8:401-406.
    [265]尹丽红,王琛柱,钦俊德.棉铃虫血淋巴酚氧化酶活性的微量测定[J].昆虫知识2001,38(2):119-122.
    [266]雷质文,黄捷,杨冰,张立敬,俞开康.96孔酶标板法测定中国对虾血淋巴上清液抗菌活力和酚氧化酶活性的初步研究[J].海洋湖沼通报2001(4):33-37.
    [267]郭晓霞,郑哲民.菜粉蝶不同发育期酯酶同工酶的比较研究[J].昆虫学报2002,45(3):401-403.
    [268]胡能书,万国贤编.同工酶技术及其应用[M].长沙:湖南科技出版社,1985.1-17.
    [269]于平.超氧化物歧化酶研究进展[J].生物学通报2006,41(1):4-6.
    [270]谢爱林,徐萍莉,姚世鸿.7种负蝗醋酶同工酶的比较[J].山地农业生物学报2005,24(6):527-530.
    [271]耿星河,邓明文.黑腹果蝇几种不同品系的酯酶同工酶比较研究[J].内蒙古师范大学学报(自然科学(汉文)版)2004,33(4):424-427.
    [272]吴三桥,丁锐.5种家蚕不同龄期酯酶同工酶的比较研究[J].安徽农业科学2006,34(21):5570-5571.
    [273]孙鲁娟,高希武,郑炳宗.棉蚜抗氧化乐果品系及敏感品系羧酸酯酶性质的比较[J].昆虫学报2002,45(6):24-727.
    [274]吉志新,王长青,史凤玉,刘艳丽.两种色型黄粉虫杂交后代过氧化物酶同工酶及超氧化物歧化酶活性的比较[J].河北科技师范学院学报2008,22(2):18-22.
    [275]宋春满,邓建华,吴兴富,雷朝亮.云南主要烟区烟蚜种群解毒酶活力比较[J].昆虫天敌2006,28(2):55-60.
    [276]朱毅菲,熊传喜,王良.温度、pH对克氏原螯虾血清酚氧化酶活力及稳定性的影响[J].淡水渔业2006,36(5):16-19.
    [277]景福涛,潘鲁青,胡发文.凡纳滨对虾对温度变化的免疫响应[J].中国海洋大学学报 2006,36(Sup.):40-44.
    [278]尹显慧,吴青君,李学锋,张友军,徐宝云.多杀菌素亚致死浓度对小菜蛾解毒酶系活力的影响[J].农药学学报2008,10(1):28-34.
    [279]马志卿,李广泽,冯俊涛,张兴.脱氧鬼臼毒素对粘虫几种代谢酶系的影响[J].昆虫学报2007,50(2):186-190.
    [280]王波.基于COI基因的蜻科种类分子系统学研究[D]陕西师范大学2007年硕士学位论文
    [281]Jazzmin Arrivillaga, John-Paul Mutebi, Hermes Pin Ang, DouglasNorris, Bruce Alexander, M. Dora Felieiangeli, AND Gregory C. Lanzaro. The Taxonomie Status of Genetically Divergent Populations of Lutzomyia longiPalPis(Diptera:Psychodidae)Based on the Distribution of Mitochondrial and Isozyme Variation[J]. Med. Entomol.200340(5):615-627.
    [282]Brower AVZ. Rapid morphological radiation and convergence among races of the buttefly Heliconius erato inferred from Patterns of mitochondrial DNA evolution. Proe[J]. Natl. Acad. Sci. 1994,91:6491-6495.
    [283]Thomas Artiis, TedR.Schultz, DanA.Polhemus, Chris Simo. Molecular PhylogeneticAnalysis of the Dragonfly Genera Libellula, Udona, and Plathemis (odonata:Libellulidae)Based on Mitochondrial Cytochrome Oxidase I and16s rRNA Sequence Data[J]. Molecular Phylogeneties and Evolution 2001,18(3):348-361.
    [284]Mason HS. Comparative biochemistry of the phenolase complex[J]. Adv.Enzymol.1955,16: 105-184.
    [285]Mason HS. Oxidases. Ann.Rev.Biochem.1965.34:595-634.
    [286]Andersen SO, Peter MG, Roepstorff P. Cuticular sclerotization in insects[J]. Comp.Biol.Chem.Physiol.1996,113:689-705.
    [287]Ashida M. Purification and characterization of prophenoloxidase from hemolymph of the silkworm Bombyx mor i [J]. Arch.Biochem.Biophy.1971,144:749-762.
    [288]Ashida M, Brey PT. Role of the integument in insect defense:prophenoloxidase cascade in the cuticular matrix[J]. Proc.Natl.Acad.Sci.USA.1995,92:10698-10702.
    [289]Lai-Fook J. The repair of wounds in the integument of insects[J]. J. Insect Physiol.1966,12: 195-226.
    [290]马纪,王芸,刘忠渊,张富春.洛氏脊漠甲抗冻蛋白基因的克隆、表达和功能检测[J].昆虫学报2008,51(5):480-485.
    [291]Horwath KL, Easton CM, Poggioli TJ. Tracking the profile of a specific antifreeze protein and its contribution to the thermal hysteresis activity in cold hardy insects[J]. Eur.J.Entomol.1996,93: 419-433.
    [292]Barrett J. Thermal hysteresis proteins[J]. Int. J. Biochem.Cell Biol.2001,33(2):105-117.
    [293]Strom CS, Liu XY, Jia Z. Antifreeze protein-induced morphological modification mechanisms linked to ice binding surface[J].J.Biol.Chem.2004,279(31):32407-32417.
    [294]Tisseres A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of Drosophila melanogaster, relation to chromosome puffs[J]. J. Mol. Biol.1974, (84):389-398.
    [295]唐婷,柳峰松,任国栋.谢氏宽漠王HSP70基因cDNA片段的克隆及热激条件下的表达[J].昆虫学报2008,51(4):365-371.
    [296]Schlesinger MJ. Heat shock Proteins[J]. J. Biol.Chem.1990,265:12111-12114.
    [297]Worklnan P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone[J]. Cancer Lett.2004,4:149-157.
    [298]Catherine T, Florence D and Annie B. Moleculareloning, and developmental expression of mitochondrial chaperone HSP60 in Toxoplasma gondii[J]. Mol. Biochem. Parasitology.2000, 111:319-332.
    [299]Dunlap DY and Matsumura E. Development of broad spectrum antibodies to heat shock Protein 70s as biomarkers for detect of multiple stress by pollutants and environmental factors[J]. Ecotoxicol. Environ. Saf 1997,37:238-244.
    [300]Plowman JE, Bryson WG and Jordan TV. Application of proteomics for determining Protein markers for wool quality traits[J]. Electrophoresis.2000,21:1899-1906.
    [301]DeJong L, Moreau X, Jean S, Scher O and Thiery A. Expression of the heat shock Protein Hsp70 in chloride target cells of mayfly larvae from motorway retention pond:A biomarker of osmotic shock. [J]. Sci.Total Environ.2006,366:164-173.
    [302]Rinehart JP, Hayward SAL, Elnitsky MA, Sandra LH, Lee RE and Denlinger DL. Continuous up-regulation of heat shock proteins in larvae, but not adults,of a polar insect[J]. Proc. Natl. Acad.Sci. USA 2006,103:14223-14227.
    [303]樊永胜,朱道弘.昆虫体色多型及其调控机理[J].中南林业科技大学学报2009,29(1):84-88.
    [304]程茂高,乔卿梅,原国辉.昆虫体色分化研究进展[J].昆虫知识2005,42(5):502-505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700