用户名: 密码: 验证码:
南京市近郊典型森林群落结构特征与恢复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究调查分析了栖霞山和幕府山两个风景区现有典型森林群落种类组成与结构特征,采用实验方法分析了樟树、女贞和海桐等乡土树种抗铝胁迫能力差异以及大叶樟、阔瓣含笑、桂南木莲和金叶含笑等不同引进树种抗重金属胁迫能力的差异,为两个典型地段森林植被恢复选择适宜绿化树种提供理论依据,并提出相应的植被恢复途径与方法。主要结果表明:
     (1)南京栖霞山森林群落类型可分为针叶林、落叶阔叶林、针阔混交林和灌木林等。其中针叶林包括杉木林、马尾松林;落叶阔叶林包括光叶糯米椴林、枫香林、水冬瓜林、栓皮栎林及青桐林等;针阔混交林主要为马尾松+黄连木+枫香林;灌木林包括篌竹灌丛和短穗竹灌丛等。
     (2)根据栖霞山植物群落组成结构、受干扰程度与恢复目标,其植被恢复的途径主要包括自然更新、人工辅助更新和人工种植等三种方式。
     (3)幕府山次生林组成树种单一,更新速度较慢,林木径阶偏小。在垂直结构上,构树、槐树等主要乔木树种的数量从上而下明显递增,中幼龄构树占主要部分,表明群落具有良好的演替能力。人为干扰和环境污染导致构树的优势度增加,树种多样性下降,从而影响林分的生态功能。
     (4)在水培试验的Al胁迫下,海桐、女贞和樟树三种植物的死亡率均显著增加。其中,海桐耐铝胁迫能力最弱。处理浓度≥2mmol/L时,海桐根部生物量显著比对照和低浓度处理降低;而海桐茎部生物量在处理与对照之间以及不同处理之间差异不显著。处理浓度≥4mmol/L时,海桐叶部生物量比对照和低浓度处理时均显著降低。处理浓度>2mmol/L时,女贞根部生物量比对照和低浓度处理显著降低。处理浓度≥8mmol/L时,女贞茎部生物量明显比对照和低浓度处理时降低。处理浓度≥2mmol/L时,女贞叶部生物量明显比对照和低浓度处理显著降低。处理浓度≥1mmol/L时,樟树的根部生物量比对照和低浓度处理显著下降。在浓度处理≥1mmol/L的浓度处理下,樟树茎部生物量比对照显著降低。当处理浓度≥8mmol/L时,樟树叶部生物量比对照显著降低。处理浓度≥4mmol/L时,三种植物根生物量与茎叶生物量的比值均比对照显著下降。这表明浓度≥4mmol/L时,培养液中Al对三种植物根生长的抑制作用均大于对地上茎叶生长的抑制作用。
     (5)在不同测定期间,各处理植株根、茎、叶中的Al浓度均大于对照值,且呈随处理浓度增大而上升的明显趋势;随着处理时间的延长,三种植物各处理植株各部位的Al浓度有增大的趋势。在不同测定时间及不同浓度处理下,女贞植株根部和叶部Al浓度均高于海桐和樟树,茎部Al浓度均高于樟树。因此,女贞抗Al胁迫能力强于海桐和樟树。Al胁迫处理9周后,植株各部位Al元素含量增加,表现为随处理浓度的增大而增加的趋势;且根部>茎部>叶部。在相同处理下,植株体内Al含量的大小顺序为樟树>女贞>海桐。处理9周后,海桐根部和茎部Al浓度之间呈显著指数相关关系,而女贞和樟树则呈显著线性正相关关系。三种植物根部Al浓度和叶部Al浓度之间均表现出显著线性正相关关系,相关系数均大于0.89。
     (6)在Al胁迫下,三种植物根部、茎部、叶部的Ca/Al比值及Mg/Al比值均显著低于对照,并随处理浓度的增大而降低,但表现出器官之间的差异。研究结果表明,三种植物对Ca、Mg元素的吸收由于Al的毒害作用受到了影响。
     (7)Al胁迫下,海桐和女贞在0.5mmol/L浓度处理下的叶绿素含量均比对照值高,其它浓度处理均比对照值低;樟树在各浓度处理下其叶绿素含量均比对照有所降低。三种植物叶绿素含量对Al胁迫的反应的敏感性为樟树>海桐>女贞。Al胁迫下,三种植物叶绿素含量与叶片Al浓度、Ca/Al及Mg/Al比率均表现出显著线性相关。不同浓度Al胁迫下,三种植物叶片膜透性均显著高于对照,且随处理浓度的增大,膜透性增加。海桐和樟树的叶片膜透性比女贞更易受Al胁迫影响。Al胁迫下,三种植物的叶片膜透性均与叶部Al浓度呈显著线性正相关关系。
     (8)通过测定电导率、叶绿素含量等指标,并进行综合评判,得出4个树种的抗铅胁迫能力强弱顺序为:大叶樟>阔瓣含笑>桂南木莲>金叶含笑;而4个树种的抗镉胁迫能力强弱顺序为:大叶樟>阔瓣含笑>金叶含笑>桂南木莲。
     (9)在幕府山坡度小于25度的废弃矿区进行植被恢复时,桤木+海桐、枫杨+桂花、杨树+金丝桃、柳树等人工栽植群落恢复效果较好;栾树+火棘、枫香+石楠、杏树、水杉等群落恢复效果一般;雪松在该地区生长较差。
In this paper, the author has investigated species composition and structurecharacteristics of present typical forest communities both in Qixia and Mufu ScenicAreas of Nanjing city. Meanwhile, the resistance of Cinnamomum, Ligustrumlucidum Air., Pittosporum tobria to Al~(3+) stress and the resistance of Cinnamomumlongepaniculatum, Michelia platypetala, Manglietia chingii, Michelia foveolata toheavy metals, such as Pb and Cd have also been studied by means of experimentalmethodology. Some suggestions were given about the selection of appropriate treespecies for the purpose of vegetation restoration and about ways and techniquesfittable for forest restoration in these two areas. Main research results andconclusions were described as follows:
     (1)Forest communities could be classified into four types, including coniferforest, deciduous broadleaved forest, conifer and broadleaved mixed forest andshrub forest. There exist two main types of conifer forest such as Chinese-fir andforest and Masson pine forest. Deciduous and broadleaved forest include Tiliahenryana forest,Water wax gourd forest, Quercus veriabilis forest, Firmiana simplexforest and Liquidamber formosana forest;the typical conifer and broadleaved forestwas Masson pine+ Pistasia chinensis+L.formosana forest, there were two main kindsof shrub forest like Phyllostachys nidularia forest and Brachystachyum densiflorumforest.
     (2)According to the composition, disturbance grade and restoration objectivesfof different types of plant communities in Qixia Mount Scenic Area, the authorsuggested three ways for the vegetation restoration, including natural regeneration,artificially-promoting regeneration and tree-planting respectively.
     (3)The results indicated that the secondary forests in Mufu mount scenic areawas composed of less tree species with small DBH and lower regeneration process.In vertical structure, the number of trees of main species like Broussonetiapapyrifera and Robinia pseudoacacia increased definitely from lower canopy layerto higher layer. This presented nice succession abilities of such plant communities.Human disturbance and environmental pollution could cause the increase of thedominance Broussonetia papyrifera and decrease of species diversity and theninfluenced the ecological function of forest stands.
     (4)The mortality rates of three species like Cinnamomum, Ligustrum lucidum Ait.,Pittosporum tobria all increased with the increase of Al concentration. Among them,P. tobria presented the lowest resistance ability to Al stress. The root biomass of Pittosporum tobria decreased definitely when the concentration of Al≥2mmol/L,but there existed no significant variation of stem biomass among various Alconcentrations. The leaf biomass significantly decreased when the concentration ofAl was≥4mmol/L compared with lower Al concentration and CK. Both root andleaf biomass of Ligustrum lucidum Ait. decreased rapidly when Al concentration was≥2mmol/L while the stem biomass significantly decreased when the concentrationof Al was≥8mmol/L compared with those of lower concentration and CK.
     (5)Both the root and stem biomass of Cinnamomum decreased denfintely whenthe concentration of Al was≥1mmol/L while the leaf biomass significantlydecreased when the concentration of Al was≥8mmol/L compared with lowerconcentration and CK.The root/stem ratio and leaf biomass of the three tree speciessignificantly decreased when the concentration of Al was≥4mmol/L comparedwith lower concentration and CK. It was suggested that the stress of Al~(3+) to belowground was greater than aboveground when the concentration of Al~(3+) was≥4mmol/L.
     (6)The concentrations of Al~(3+) in all Al~(3+) treatments were greater than that of CKin terms of root, stem and leaf at different periods; The concentration of alltreatments of three species increased with the time extended. The concentrations ofAl~(3+) in the root and leaf of Ligustrum lucidum were higher than that of theCinnamomum and Pittosporum tobria and the stem concentration were higher thanthat of the Cinnamomum. It was concluded that the ability of resistance of Al~(3+) ofLigustrum lucidum Ait. was greater than those of Cinnamomum and Pittosporumtobria.The concentrations of Al~(3+) in root, stem and leaf increased with the increasingof the Al~(3+) stress, the concentrations could be ranked as root>stem>leaf. Theconcentration of the three species could be ranked as: Cinnamomum>Ligustrumlucidum Air.>Pittosporum tobria after 9 months treatment. There was existedexponential relationship between the concentration of root and stem in Pittosporumtobria was while that of the Cinnamomum and Ligustrum lucidum and significantlypositive linear relationship. The Al concentrations in roots and leaves of all threespecies showed significantly positive linear relationship.The values of Ca/Al andMg/Al in root, stem and leaf increased with the increase of Al concentrations.
     (7)The contents of chlorophyll in Ligustrum lucidum Ait. and Pittosporum tobriawere lower than those of the CK value under the stress of Al except for the0.5mmol/L treatment while the contents of chlorophyll in Cinnamomum was lowerthan those of the CK. The susceptivity of the chlorophyll to Al could be ranked asCinnamomum>Pittosporum tobria>Ligustrum lucidum Ait.. The contents of thechlorophyll in three species presented significant linear relationship with theconcentrations of Al in leaves, Ca/Al and Mg/Al ratios under the stress of Al.The cell membrane permeability of the three species increased with the increasing of theAl concentrations and showed significant linear relationship with the concentrationof Al in leaves.The cell membrane permeabilities of Cinnamomum and Pittosporumtobria were more frangible than those of Ligustrum lucidum Ait..
     (8)Based on the integrated assessment of electric conductivity and chlorophyllcontent and so forth, the resistance capacity of of four tree species to Pb stress couldbe in order: Cinnamomum longepaniculatum>Michelia platypetala>Manglietiachingii>Michelia foveolata;Meanwhile, the resistance capacity of four tree speciesto Cd stress could be in order:Cinnamomum longepaniculatum>Micheliaplatypetala>Michelia foveolata>Manglietia chingii.
     (9)Among various types of vegetation restoration in the Mufu mount scenic area,Alnus eremastogyne+Pittosporum tobira plantation presented better ecologicalresults than other plantations.
引文
1.陈昌笃,鲍世行.中国城市化及其发展趋势.生态学报,1994,4(1):84~90
    2.陈桂珠,殷敏,陈志良.花园城市的生态建设规划.城市环境与城市生态,2003,1:19~21
    3.陈玮等.建设城市森林的原则与途径.生态学杂志,2003,22(6):169~172
    4.陈遐林.森林经营和森林结构调整的生态经济方法.中南林业院学报,1998,(1):62-68
    5.从日春等.试论城市林业在我国城市发展中的地位.北京林业大学学报,1997,(2):131-137
    6.池庭飞.美国城市林业的经营管理.世界林业研究,1992,3(2):31~37
    7.邓自民,杨明德主编.水城盆地水资源研究.贵阳:贵州人民出版社,1998
    8.方精云,刘国华,徐崇岭.我国森林植被的生物量和净生产量.生态学报,1996,16(5):497~508
    9.高兆蔚.森林系统的整体性与复杂性问题的研究.华东森林经理,2002,16(1):1~4
    10.何兴元,宁祝华.城市森林生态研究进展.北京:中国林业出版社,2002
    11.关百均.林业发展战略.世界林业发展道路,北京:中国林业出版社,1992,57
    12.桂来庭.城市森林的结构及生态作用.中南林业调查规划,1995,53(3):49~51
    13.胡序威.加强对区域和城市发展间规划与调控.中国城市规划学会成立大会论文,1993
    14.蒋有绪.城市林业的发展趋势与特点.世界科技研究与进展,2003,22(5):16~18
    15.蒋有绪.城市森林是现代化健全的城市生态系统的基础.中国城市林业,2004,2(2):4~7
    16.江源,刘硕.城市土地利用下的植物种源资源特征分析.自然资源学报,1999。14(4):359~362
    17.江泽慧.加快城市森林建设、走生态化城市发展道路.中国城市林业,2003,1(1):4~11
    18.郎奎建,李长胜等.林业生态工程10种森林生态效益计量理论与方法.东北林业大学学报,2000,28(1):1~7
    19.李峰,王如松.城市绿色空间建设内涵与存在问题.中国城市林业,2004,2(5)
    20.李辉,赵卫智.北京5种草坪地被植物生态效益的研究.中国园林,1998,4
    21.李晓储,赵御龙,黄利斌等.扬州古运河生态环境林生态保健型绿化模式构建研究.江苏林业科技,2002,29(5):15
    22.刘殿芳.城市森林初探.内蒙古林学院学报(自然科学版),1999,NO.3
    23.刘福才等.城市绿地绿化环境效益研究.中国园林,1986,2:10~11
    24.宋永昌.城市森林研究中的几个问题.中国城市林业,2004,2(1):4~9
    25.孙冰等.城市林业的研究现状御前景.南京林业大学学报,1997,NO.2
    26.汪光杰.城市与城市基础设施.1993,Conference on Chinese and Chinas Development-A Preview of Future Role HongKong.
    27.王丽荣,雷隆鸿.浅谈城市现代化过程中的生态问题.生态环境与保护,2001,11:46~48
    28.王建.中国经济长期发展中的若干问题.1993,Conference on Chinese and China's Development-A Preview of Future Role HongKong.
    29.吴泽民,高建,吴问友.城市森林及其结构研究城市森林生态研究进展.北京:中国林业出版社,2002
    30.吴泽民,黄成林,白林波等.合肥城市森林结构分析研究.林业科学,2002,38(4):7~13
    31.中国21世纪人口、环境与发展白皮书.人类住区可持续发展.北京:中国环境科学出版社,1984
    32. Bongho Han,Kyong J.L.,A study on the analysis of the physiological growth condition and improvement of street in Seoul. Environmental Ecology.2001,10(1):39~48
    33. Deci Zhou,1993,China Cities, Striding into the New Century-some Hard Thinking (Done by Urban Planner, Chinese Cities and China's Development,A preview of the Future Role of HongKong).
    34.何振立等.1998,污染及有益元素的土壤化学平衡,中国环境科学出版社:35~72
    35.高吉喜等,离子强度、pH值和钙铝比值对马尾松幼苗的铝毒害影响.环境科学学报,1991,11(2)
    35.田仁生等,酸化土壤中铝及其植物毒性.环境科学,1990,11(6)
    36.张芬琴等.外源硼对铝胁迫小麦幼苗的缓解效应(简报).植物生理学通讯,2001,37(1):21~24
    37.王健波等.铝胁迫下小麦根尖分生细胞中钙离子分布变化.生态学报,2001,21(8):1246~1250
    38.黄邦全等.植物铝毒害及遗传育种研究进展.植物学通报,2001,18(4):385~395
    39.丁爱芳等.土壤铝对林木根系的影响.浙江林学院学报,2001,18(2):119~122
    40.何龙飞等.铝胁迫下钙对小麦根液泡膜功能和膜脂组成的影响.南京林业大学学报,2000,23(1):10~13
    41.赵可夫、王韶唐.作物抗性生理.北京:农业出版社,1990:8~9
    42. Zhang Y-X. Toxicity of heavy mentals to hordeum vulgate. Acta. Sci. Circumstantiae. 1997, 17 (2): 199~201
    43.周青等.Cd对种子萌发的影响.农业环境保护,2000,19(3):156~158
    44.王春春,沈振国.Cd在植物体内的积累及其对绿豆幼苗生长的影响.南京农业大学报,2001,24(4):9~13
    45. Li D-L,He F,Ma C-Z,Tian C. Effects of arsenic on biological activity of soils and its toxicity to selected-vegetables. Agro-Environ. Protection. 2000, 19(13): 148~151
    46. Hu Z-Y, Shen H, Ca Z-H. Distribution of Cu in soil-crop system polluted by Cu.Environ,Sci.2000,21 (2:62~65
    47.郑春荣,陈怀满.Pb的植物效应.见:陈怀满著.土壤-植物系统中的重金属污染.北京: 科学出版社,1996,238~247
    48.任安芝等.铬、Cd、Pb胁迫堆青菜叶片几种生理生化指标的影响.应用于环境生物学报,2000,6(2):112~116
    49. Kong X S, Zhang M X, Guo X P. Effects of Cd toxicity on cell membrane permeability and protective enzyme activity of maize seedling. Agro-Environ Protection. 1999, 18(3):133~134
    50.赵博生,毕红卫.重金属对植物细胞的毒害作用研究进展.淄博学院学报(自然科学与工程版).1999,1(1):86~88
    51. Coombes AJ. Effect of Copper on IAA-oxidase Actiwty in Root Tissue of Barley. Pflanzenphysiol. 1976, 80:236~242
    52. Mukherji S,Roy B K. Characterization of chromium toxicity in different plant materials. Indian J Exp.Bid.1978,16:1017~1019
    53. Lamoreaux R J, Chaney WR. Grow and water movement in silver maple seedling affected by cadmium. J environ.Qual. 1977,6:201~205
    54.王焕校.污染生态学基础.昆明:云南大学出版社,1990,91~108
    55. Yang JR, He JX,Jiang WR. Effect of Cd Pollution on the physiology and biochemistry of plant. Agro-Environ. Protection. 1995,14(5): 193~197
    56. Zhou JH(周建华), Wang YR(王永锐).Physiological studies on poisoning effects of Cd on Cr on rice (Oryza sativa L.) seedlings through inhibition of Si nutrition.Chin J.Appl Environ Biol. 1995,5(1): 11~15
    57.秦天才等.Cd、Pb及其起相互作用对小白菜根系生理生态效应的研究。生态学报,1998,18(3):320~325
    58. Chen Y,Ren J C,Cai X M. Effects of Cd on nitrate reducates and superoxide dismutase of submerged macrophytes.Acta. Sci.Circumstantiae. 1998,18(3): 313~317
    59. Mathys W. Vergleichende Untersuchugen der Zinkaufnahme Von die Sistenten and Sensitiven Popualtion Von agrosts tenuis Sibth.Flora. 1973,162: 492~499
    60. Zhang Y S (张云荪), Wang H X(王焕校). Effect of Cd accumulated in Vicia faba seeds on the qualty of the seeds. Acta. Sci. Circumstantiae. 1986, 6:199~206
    61. Gao S Y (高圣义), Wang H X(王焕校),Wu Y S (吴玉树). The Effects of Zinc Pollution on Some physiological and Biological Indexes of Vicia fiaba L. Chin. Environ. Sci. 1992, 12(4):281~284
    62 罗立新等.Cd胁迫下小麦叶中超氧阴离子自由基的积累.环境科学学报,1998,18(5):495~499
    63.杨居荣等.不同耐性作物中几种酶活性对Cd胁迫的反应.中国环境科学,1996,16:113
    64.陈宏等.Cd对小麦幼苗脂质过氧化和保护酶活性的影响.西北植物学报,2000,20(3):399~403
    65.郭秀璞等.Zn对小麦幼苗Cd胁迫缓解效应的研究.洛阳农专学报,1998,18(3): 20~24
    66.周启星等.土壤—水稻系统Cd、Zn的复合污染及其衡量指标的研究.土壤学报,1995,32(4):430~435
    67 余国营等.重金属复合污染对大豆生长的影响及其综合评价研究.应用生态学报,1995,6(4)
    68.吴燕玉等.Cd、Pb、Cu、Zn、As复合污染在农田生态系统的迁移动态研究.环境科学学报,1998,18(4):407~414
    69. Monn-L. Heavy metal leaching from catchments under different forests at the Schonbuch nature reserve near Tubingen, FRG Mitteilungen-der-Deutschen-Bodenkundlichen-Gesellschaft. 1989, 59 (1): 429~432;
    70.张学询等.张士灌区Cd、Pb等重金属迁移、分布规律及治理途径.环境科学,1982,3(6):7~10
    71.刘英对、王峰.珠江三角洲主要城市郊区公路两侧土壤和蔬菜中Pb含量初探.仲恺农业技术学院学报,1999,12(4):51~54
    72.王新、吴燕玉.不同作物对重金属复合污染物吸收特性的研究.农业环境保护,1998,17(5)
    73. Wu Y Y, Wang X, Liang R L. Ecological effect of compound pollution of heavy metals in soil-plant system Ⅱ: Effect on element uptake by crops, alfalfa and tree. J. Applly Ecology, 1997, 8:545~552
    74. Yang J R, He J Q, Zhang G X, Mao X Q. Tolerance mechanism of crops to Cd pollution. J Apply Ecology, 1995, 6:87~91
    75. Salt D E, Prince R C, Pickering I J, Raskin I. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol, 1995, 109:1427~1433
    76. Sugiyama M. Role of cellular antioxidants in metal-induced damage. Cell Biol Toxicol, 1994, 10:1~22
    77. Huang Y-S, Luo G-H, Kwan K M Frances. Peroxidation damage of oxygen free radicals induced by cadmium to plant. Acta Bot Sin, 1997, 39:522~526
    78. Van Assche F, Clijsters H. Effects of metal on enzyme activity in plants. Plant Cell Environ., 1990, 13:195~206
    79.任旭喜.土壤重金属污染及防治对策研究.环境保护科学.1999,25(5):31~33
    80.马文月.植物冷害和抗冷性的研究进展.安徽农业科学,2004,32(5):1003~1006
    81. Lyons J M. Chilling injury in plants [J].Ann Rev Plant Physiol, 1973, 24: 445~466
    82.喻方圆、徐锡增.植物逆境生理研究进展.世界林业研究.2003,16(5):6~11
    83.吴楚,王政权.脱落酸及其类似物与植物抗寒性之间的关系.植物生理学通讯.36(6),2000,562-567
    84. Prasad TK.Role of catalase in inducing chilling tolerance inpre-emergent maize seedlings[J]. Plant Physical,1997,114:1369-1376
    85.赵军,王以柔,李美茹,等.低温锻炼对水稻幼苗叶片中Rubisco的影响[J].植物生理学报,1997,23(2):123-129
    86.蔡世英,周倩苹,潘秋红.脱落酸对咖啡幼苗抗冷性的效应[J].热带作物报,1990,11(2):59-77
    87. Hayahi H,MustardyL,DeshniumP, etal.Transformation of a rabid opsisth alana with the codagene for choline oxidase:ac-cumulation of glycine betaine and enhanced tolerance to salt and cold stress[J].Plant,1997,11: 133~142
    88. Lindow SE.Theory and application of genetic engineering for stress resistance and avoidance[J].Hort Sci,1994,29:581
    89. Wada H, Gombos Z, Murata N.Enhancement of chilling tolerance of acyano bacterium by genetic mani-pulation of fatty acid desaturation[J].Nature, 1990,347(6289): 200-203
    90. Georges F, Saleem M, Cutler A J.Design and cloning of asynthetic gene for the flounder antifreeze protein andits expression in plant ceils[J].Gene, 1990,91: 159-165
    91. Hightower R,Baden C,Penzes Eetal.Expression of antifreeze proteins intransgenic plants[J].Plant Mol Biol,1991,17:1013-1021
    92.张宪政.植物叶绿素含量测定——丙酮乙醇混合液法.辽宁农业科学,1986,(3):26~28
    93.贺善安、孙醉君等.常绿阔叶树种抗冻种质的筛选.南京中山植物园研究论文集.北京:科学技术出版社.1986,75~82
    94. John Wiley & Sons. Alloway B J. Heavy metals in soils. New York: 1990.180~183
    95.何开跃,李晓储,黄利斌,等.3种含笑耐寒生理机制研究.南京林业大学学报(自然科学版).2004,2(4):62~64
    96.柳若安等.酸度和铝对马尾松生长的影响.植物学报,1995,37(2):154~158
    97.沈宏等.铝毒胁迫诱导菜豆柠檬酸的分泌与积累.应用生态学报,2002,13(3):307~310
    98.沈宏等.低磷和铝毒胁迫条件下菜豆有机酸的分泌与积累.生态学报,2002,22(3):387~394
    99.张建等.铝毒害与森林衰退研究评述.世界林业研究,1999,12(2):28~30
    100.沈宏等.铝对植物的毒害和植物抗铝毒机理及其影响因素.土壤通报,2001,32(6):281~285
    101.何龙飞等.铝胁迫对小麦根系液泡膜ATP酶、焦磷酸酶活性和膜脂组成的效应.植物生理学报,1999,25(4):350~356
    102 晏笳等.南京市城市生态污染现状、成因分析及治理对策.城市环境与城市生态,2001,14(3):36~38
    103. J.Oleksyn.P.Karolewski et al., Altered root growth and plant chemistry of Pinus syvestris seedlings subjected to aluminum in nutrient solution,trees, 1996,(10): 135~144
    104. Martin R B, Bioinorganic chemistry of aluminum. In: Sigel A, eds, Metal Ions in Biological Sustems, 1998,Vol24.Matcel Dekker, New York,2~57
    105. Nagata T, Hayatsum, Kosuge N, Identification of aluminum forms in tea leaves ~(27)AL NMR, Phytochemichy, 1992,(31): 1215~1218
    106. Taylor G J, Current views of the aluminum stress response: the physiological basis of tolerance, Curr Top Plant Biochem Physiol,. 1991(10):57~93
    107. Wallace S U,Anderson E C, Aluminum toxicity and DNA synthesis in wheat roots,Agron.J., 1984,(76):5~8
    108. Foy C D, Burns GR, Brown J G, Fleming A, Differential aluminum tolerance of two wheat varieties associated with plant-induced pH changes around the roots, Soil Sci.Soc Am Proc, 1965,(29):64~67
    109. Dodge C S, Hiatt A J, Relationships of pH to ion uptake imbalance by varieties of wheat (Triticum vulgare),Agron J,1992,(64):476~481
    110. Haynes R. J. lant Soil,1990,126:247~264
    111. Foy C D. and Fleming, A L, J.Plant Nutr.,1982,(5):1313~1333
    112. Hue W V, etal, Effect of organic acids on aluminum toxicity in subsoils[J].Soil Sci.Soc.Amer. J,1986,(50):28~34
    113. Suhayad C G., Organic acid reduce aluminum toxicity in maize root membranes[J]. Physiol. Plant, 1986,(68):189~195
    114. Clarkson D T, Factors affecting mineral nutrient acquisition by plant[J]. Annu.Rev.Plant Physiol, 1985,(36):77~115
    115.黄晓华,周青,程宏英,等.五种常绿树木对铅污染胁迫的反应.城市环境与城市生态.2000,13(6):48~50
    116.方金梅,应朝阳,陈恩,等.铝胁迫对不同决明品系幼苗生长影响的试验.福建农业科技.2000(6):15~17
    117.周青等.Cd对种子萌发的影响.农业环境保护,2000,19(3):156~158
    118.秦普丰等.Pb与Cd对棉花和水稻萌发及生长的影响.湖南农业大学学报,2000,26(3):205~207
    119.邹琦.植物生理生化实验指导[C].北京:中国农业出版社,1997
    120.张宪政.植物叶绿素含量测定——丙酮乙醇混合液法.辽宁农业科学,1986,(3):26~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700