用户名: 密码: 验证码:
4种城市绿化树种叶片解剖与PAHs含量特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(Polycyclic Aromatic Hydrocarbon,简称PAHs)是指含有两个或两个以上的苯环,按角形、线形及簇装方式连接在一起的碳氢化合物以及由它们衍生出的各种化合物的总称。它是一类生物累积性强的持久性亲脂有机污染物,广泛分布于环境介质中,对人类健康和生态环境构成潜在的威胁,逐渐引起了各国科学家的极大重视。
     城市绿化树种是城市森林生态系统的重要组成部分,是城市环境的天然净化器。而城市绿化树种叶片对PAHs吸附具有良好的能力,主要表现在对气态和颗粒态PAHs的富集上。发挥城市绿化树种在改善城市方面的重要作用已经成为现代都市建设的主体之一。
     本研究采用了现代分析仪器-气质联用仪对4种城市绿化树种樟树(Cinnamomum camphora)、桂花(Opsmanthus fragrans)、广玉兰(Magnolia grandiflora)、红檵木(Redrlowered loropetalum)叶片的PAHs含量进行检测,同时测定了叶片解剖结构、表面结构和形态学指标等结构特征值,探讨了结构与叶片PAHs含量的关系。主要研究结果如下:
     冬春两季4种城市绿化树种叶片PAHs总含量在0.987-11.522mg·kg-1之间,樟树、桂花、广玉兰、红檵木分别为4.513 mg·kg-1、3.540 mg·kg-1、2.798mg·kg-1、3.992 mg·kg-1,樟树叶片显著高于桂花和广玉兰。从月动态变化和季节特性来看,4种绿化树种叶片PAHs总含量均表现为5月显著低于1月,樟树、广玉兰和红檵木叶片PAHs总量在冬季显著高于春季。
     叶片检出的PAHs化合物中,无论是在冬季还是春季,无论是哪个树种,均以3、4环PAHs为主,占总量的75%以上,而5-6环的PAHs却占总量的13%以内,6环PAHs仅占总量的4%以下,叶片吸附低环PAHs的量大于高环PAHs的量。叶片16种优先控制的PAHs组分中,除春季桂花和广玉兰叶片部分高环化合物未检出外,其余均有不同程度的检出。被检出的PAHs组分,在叶片中也不是等量分配的,其中菲(Phe)的含量在两季4种植物叶片中均是最高的。
     不同树种之间叶片解剖结构与PAHs含量的关系最为密切,其中栅栏组织厚度、海绵组织厚度和叶片总厚度与PAHs含量呈负相关,而种间其它叶片结构上的差异对PAHs的含量多少不敏感。
     樟树叶片随栅栏组织厚度、气孔宽度和栅栏-海绵组织比值的增大,PAHs含量有上升的趋势,而随海绵组织和叶面宽长比的增大,PAHs含量呈减小的趋势。桂花叶片随栅栏-海绵组织比值的增大PAHs含量有减小的趋势。广玉兰叶片随栅栏组织厚度、栅栏-海绵组织比值、叶片总厚度、气孔长度和气孔宽度这些相关结构的增大,PAHs含量呈上升的趋势。红檵木叶片随角质层厚度、海绵组织厚度、叶片总厚度和气孔长宽比的增大PAHs含量有上升的趋势,而随气孔密度和叶面积的增大,PAHs含量呈减小的趋势。
     本研究结果揭示了4种城市绿化树种叶片解剖与PAHs含量间的关系,不仅对深入探讨环境中PAHs的传输途径,不同植物PAHs含量的种间、种内差异,以及环境质量预报提供科学参考数据,而且可为城市绿化抗污树种的合理选择和配置提供科学依据。
Polycyclic Aromatic Hydrocarbons (PAHs) are a group of chemical compounds that consist of fused two or more benzene rings interconnected with each other by angular, linear and cluster means. Besides occurring naturally in coal, crude oil and gasoline, PAHs are also produced by incomplete combustion of coal, gasoline, wood, garbage or other organic materials. PAHs are lipophilic and widely distributed in the environment. As a pollutant, they are of concern because some compounds have been identified as carcinogenic, mutagenic, and teratogenic, which have great harmful effects on plants, animals and human health.
     Urban tree species are an important component of urban forest ecosystems, and play critical role in air purification in the urban environment. Usually, the leaves of urban tree species have strong capacity to absorb and accumulate PAHs, mainly expressed in the enrichment on gaseous and particulate PAHs. As a consequence, careful selection, intensive cultivation and better management of urban tree species have become one of the main subjects of building modern cities in terms of improvement of urban environment.
     In this study, the composition and accumulation of PAHs in leaves of four major urban street tree species (Cinnamomu camphora, Magnolia grandiflora, Opsmanthus fragrans and Redrlowered loropetalum) were investigated using Agilent 6890GC/5973MS in Changsha city, Hunan province. Structural features of the leaves, including leaf stomatal density, stomatal length:width ratio, leaf width:length ratio, and leaf area, were also measured. The aim of the project is to examine the relationship between PAHs concentration and surface structures of leaves of the four urban street tree species.
     The results showed that the concentration of total PAHs in the leaves of the four tree species ranged from 0.987 mg·kg-1 to 11.522mg·kg-1, with the mean of 4.513,3.540,2.798, and 3.992 mg·kg-1 for Cinnamomu camphora, Opsmanthus fragrans, Magnolia grandiflora, and Redrlowered loropetalum, respectively. PAHs concentrations in leaves of Cinnamomum camphora were significantly higher than that of Opsmanthus fragrans and Magnolia grandiflora. The total concentrations of PAHs were significantly lower in May than in January for the four urban street tree species, and the total concentrations of PAHs were statistically higher in the winter than in the spring for the four tree species of Cinnamomum camphora, Magnolia grandiflora, and Redrlowered loropetalum.
     It was found that 3-and 4-ring PAHs are the major parts of the total PAHs in the leaves regardless to the species and sampled seasons, which accounted for more than 75% of the total. The 5-and 6-ring PAHs accounted for less than 13% of the total, and 6-ring PAHs were below 4% of total. The adsorption of low-ring PAHs in the leaves was greater than high-ring PAHs. All 16 priority PAHs were detected in the leaves, except for the high-ring PAHs in Opsmanthus fragrans and Magnolia grandiflora during the spring season. All 16 PAHs were not evenly distributed in the leaves, and the Phe had the highest concentration for the four tree species in the study period.
     There were tightly relationships between leaf anatomical structures and the PAHs concentrations for the tree species. The palisade tissue thickness, spongy tissue thickness and the total leaf thickness were negatively correlated with the PAHs concentrations, while other structural features of the leaves were not sensitive to the changes in PAHs concentrations.
     Specifically, PAHs concentrations of Cinnamomum camphora increased with increasing of palisade tissue thickness, stomatal width and the ratio of palisade to spongy tissues, but decreased with the increases of the spongy tissue and the ratio of leaf width to length. The PAHs contents of Opsmanthus fragrans leaves decreased with increasing of the ratio of palisade to spongy tissues. For species Magnolia grandiflora, the PAHs concentrations increased with the increases of palisade tissue thickness, ration of palisade to spongy tissues, total leaf thickness, stomatal length and stomatal width. The concentrations of PAHs in Red Loropetalum leaves increased with increasing of cuticle thickness, spongy tissue thickness, leaf thickness and ratio of stomatal length to its width, but decreased with the increases of stomatal density and leaf area.
     The present study revealed the relationships between PAHs levels and leaf anatomical features of four urban greening tree species. The results indicated that structural characteristics of leaves of urban tree species were important factors in affecting the accumulation of PAHs in study area. The study not only provided the first-hand data and information regarding to the PAHs levels in different tree species and transmission path of PAHs in the environment, but also provided scientific references for selection and management of urban greening tree species.
引文
[1]徐科峰,李忠,何莼,等.持久性有机污染物(POPs)对人类健康的危害及其治理技术进展[J].四川环境,2003,22(4):29-30.
    [2]Menzie C A, Potocki B B, Santodonato J. Exposure to carcinogenic PAHs in the environment[J].Environmental Science Technology,1992,26(7):1278-1284.
    [3]McLachlan M S. Bioaccumulation of Hydrophobic Chemicals in Agricultural Food Chains[J].Environ Sci Technol,1996,30 (1):252-259.
    [4]Borneff F, H.Selenka, H.Kunte, et al. The synthesis of benzopyrene and other polycyclic aromatic hydrocarbons in plants[J].Arch.Hyg.1968,152(3):279-282.
    [5]Yunker M B, Macdonald R W. Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada[J]. Organic Geochemistry.2003,34(10):1429-1454.
    [6]Golomb D, Barry E, Fisher Q et al. Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters. Atmospheric Environment.2001, 35(36):6245-6258.
    [7]韩菲.多环芳烃来源与分布及迁移规律研究概述[J].气象与环境学报,2007,23(4):57-61.
    [8]Mastral A H, Callen M S, Garcia T. Toxic organic emissions from coal combustion[J]. Fuel Processing Technology,2000,67(1):1-10.
    [9]王桂山,仲兆庆,王福寿PAHs的危害及产生的途径[J].山东环境,2001,41(2):41.
    [10]Nakajima T, Sakaki S, Kawai A, et al. Effects of fuel properties on diesel exhaust emission(1)[J]. Journal of Japan Society for Atmospheric Environment,1998a,33(4): 250-261.
    [11]Fraser M P, Gass G R, Simoneit B R T. Gas-phase and particle-phase organic compounds emitted from motor vehicle traffic in a Los Angeles roadway Tunnel[J]. Environmental Science Technology,1998,32(14):2051-2060.
    [12]朱利中,刘勇健,沈学优,等.城市道路交通PAHs污染现状及来源解析[J].环境科学学报,2000,20(2):183-186.
    [13]朱利中,王静,杜烨,等.汽车尾气中多环芳烃(PAHs)成分谱图研究[J].环境科学,2003,24(3):26-29.
    [14]刘勇健,朱利中,王静,等.室内空气中多环芳烃(PAHs)的源及贡献率[J].环境科学,2001,22(6):39-43.
    [15]尤孝方,李晓东,陆胜勇,等.垃圾与煤混烧PAHs排放特性研究[J].燃料化学学报,2002,30(2):130-135.
    [16]李军,张干,祁士华.广州市大气中多环芳烃分布特征、季节变化及其影响因素[J].环境科学,2004,25(3):7-13.
    [17]杨萍.东北地区松针中多环芳烃的污染水平与特征[D].大连:大连理工大学,2008.5-6.
    [18]Miguel A H, Kirchstetter T W, Harley R A, et al. On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles [J]. Environmental Science and technology,1998,32(4):450-455.
    [19]Kim B M, Henry R C. Application of SAFER model to the Los Angeles PM10 data[J]. Atmospheric Environment,2000,34(11):1747-1759.
    [20]White P A. The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures[J]. MutationResearch-Genetic Toxicology and Environmental Mutagenesis. 2002.515(1-2):85-98.
    [21]Sims R C, Overcash M R. Fate of polycyclic aromatic compounds(PAHs) in soil-plant system[J]. ReSidue Reviews,1983,88:1-68.
    [22]李立波,谢华林,蒋宏伟.多环芳烃在不同粒径大气颗粒物上的分布[J].环境与健康,2004,21(3):153-154.
    [23]叶安珊.钢铁工业城市环境中多环芳烃分布特征与癌症发病率关系研究[J].贵阳学院学报,2009,4(3):6-10.
    [24]万开,江明,杨国义.珠江三角洲典型城市蔬菜中多环芳烃分布特征[J].土壤,2009,41(4):583-587.
    [25]魏志成,常彪,邱炜殉,等.北京市民居室内气态PAHs浓度及其影响因素[J].环境科学,2001,28(9):2074-2079.
    [26]江桂斌.环境样品前处理技术[M].北京:化学工业出版社,2004.
    [27]Chester T L, Pinkston J D, Raynie D E. Supercritical Fluid Chromatography and Extraction[J], Anal Chem.1996,68:487R-514R.
    [28]游静,王国俊,俞惟乐.超临界流体萃取在环境分析中的应用[J].色谱,1999,17(1):30-34.
    [29]马珞,王晓昌,刘俊健.环境样品中多环芳烃的前处理技术研究进展[J].云南化 工,2009,36(3):66-70.
    [30]黄宏,黄长江,陈图锋,等.超声波萃取-高效液相色谱法在海洋沉积物样品多环芳烃分析中的运用[J].海洋技术,2006,25(1):67-72.
    [31]郭丽,惠亚梅,郑明辉,等.气相色谱-质谱联用测定土壤及底泥样品中的多环芳烃和硝基多环芳烃[J].环境化学,2007,26(2):192-196.
    [32]郑红燕,汪利民.大气中16种多环芳烃化合物高效液相色谱法测定[J].中国劳动卫生职业病杂志,2006,24(9):564-566.
    [33]Adam J, Bystol. Analysis of polycyclic aromatic hydrocarbon sin HPLC fractions by laser-excited time-resolved shopl skill spectrometry with cryogenic fiber-optic probes[J]. Talanta,2003,60(2):449-458.
    [34]McFarlane J C. Plant transport of organic chemicals. In Plant Contamination-Modelling and Simulation of Organic Chemical Processes; Trapp, S., McFarlane, J C,Eds.; Lewis Publishers:Boca Raton, FL,1995.
    [35]Ryan J A, Bell R M, Davidson J M, et al. Plant uptake of non-ionic organic chemicals from soils[J]. Chemosphere,1988,17:2299-2323.
    [36]Paterson S, Mackay D, Tam D, et al. Uptake of organic chemicals by plants:a review of processes, correlations and models[J]. Chemosphere, 1990,21:297-331.
    [37]Schreber L, Schoenherr J. Uptake of organic chemicals in conifer needles:curface adsorption and permeability of cuticles[J]. Environmental Science and Technology,1992,26(1): 153-159.
    [38]Simonich S L, Hites R A. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atomosphere[J]. Nature,1994a,370:49-51.
    [39]Barber J L, Thomas G O, Kerstiens G, et al. Air-Side and Plant-Side Resistances Influence the Uptake of Airborne PCBs by Evergreen Plants[J]. Environmental Science and Technology,2002,36(15):3224-3229.
    [40]Martin Krauss, Wolfgang Wilcke, Christopher Martius, et al. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons(PAHs)in a tropical rain forest environment[J]. Environmental pollution,2005,135(1):143-154.
    [41]马万里,李一凡,孙德智,等.哈尔滨市大气气相中多环芳烃的研究[J].环境科学,2009,30(11):3167-3172.
    [42]叶兆贤,张干,邹世春,等.珠三角大气多环芳烃(PAHs)的干湿沉降[J].中山大学学报,2005,44(1):49-52.
    [43]胡伟,钟秦,袁青青,等.不同类型机动车尾气中的多环芳烃含量分析[J].环境科学学报,2008,28(12):2493-2498.
    [44]Guddal E. Isolation of polynuclear aromatic hydrocarbons from roots of Chrysant hemun Vulgare Barnh[J]. Acta Chemica Scandinavica,1959,13(4):834-835.
    [45]Simonich S L, Hites R A. Importance of vegetation in removing polycvclic aromatic hydrocarbons from the atmospheres[J]. Nature,1994a,370:49-51.
    [46]王晓丽,彭平安,周国逸.广州白云山风景区阔叶植物叶片中的多环芳烃[J].生态环境,2007,16(6):1597-1601
    [47]田晓雪,周国逸,彭平安.珠江三角洲地区主要树种叶片多环芳烃含量特征及影响因素分析[J].环境科学,2008,29(4):849-854.
    [48]王雅琴,左谦,焦杏春,等.北京大学及周边地区非取暖期植物叶片中的多环芳烃[J].环境科学,2004,25(4):23-27.
    [49]董瑞斌,许东风,刘雷,等.多环芳烃在环境中的行为[J].环境与开发,1999,14(4):10-12.
    [50]Daisuke Nakajima, Yukiko Yoshida, Junzo Suzuki, et al. Seasonal changes in the concentration of Polycyclic Aromatic Hydrocarbons in Azalea leave and relationship to atmospheric concentration[J]. chemosphere,1995,30(3):409-418.
    [51]Nikolaou K. Sources and chemical reactivity of polynuclear aromatic hydrocarbons in atmosphere:A critical review[J]. Science of the Total Environment.1984,32(2): 103-132.
    [52]Ryan J A, Bell R M, Davidson J M, et al. Plant uptake of non-ionic organic chemicals from soils[J]. Chemosphere,1988,17:2299-2323.
    [53]Tolls J, McLachlan M S. Partitioning of semi volatile organic compounds between air and Lolium multiflorum (welsh ray grass)[J]. Environ Sci Technol,1994,28: 159-166.
    [54]Hung H, Thomas G O, Jones K C, et al. Grass-air exchange of polychlorinated biphenyls[J]. Environ Sci Technol,2001,35:4066-4073.
    [55]Smith K E C, Jones K C. Particles and vegetation:implications for the transfer of particle-bound organic contaminants to vegetation[J]. Sci Total Environ.2000,246: 207-236.
    [56]焦荔,包贞,洪盛茂,等.杭州市大气颗粒物PM2.5中多环芳烃含量特征研究[J].中国环境监测,2009,25(1):67-70.
    [57]李杏茹,郭雪清,刘欣然,等.北京市冬季大气气溶胶中PAHs的污染特征[J].环境化学,2008,27(4):490-493.
    [58]刘书臻,李喜青,陶澍,等.河北与京津地区非采暖期大气中的PAHs污染特征[J].环境科学学报,2008,28(10):2105-2110.
    [59]Yelena Y, Naumova S, Eisenerich J, et al. Turpin Polycyclic Aromatic Hydrocarbons in the Indoor and Outdoor air of three cites in the U.S[J]. Environ Sci Technol,2002, 36:2552-2559.
    [60]Riederer M. Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system:discussion of a fugacity-based model[J]. Environ Sci Technol,1990,24:829-837.
    [61]Nakajima D, Yoshida Y, Suzuki J, et al. Seasonal changes in the concentration of polycyclic aromatic hydrocarbons in azalea leaves and relationship to atmospheric concentration[J]. Chemosphere,1995,30:409-418.
    [62]McLachlan M S. Framework for the interpretation of measurements of SOCs in plants[J]. Environ Sci Technol,1999,33:1799-1804.
    [63]刘玉,周璐璐.植物叶片吸收汽车尾气多环芳烃的研究[A].持久性有机污染物论坛2008暨第三届持久性有机污染物全国学术研讨会论文集,92-93.
    [64]Simonich S L, Hites R A. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J]. Environ Sci Technol,1994,28:939-943.
    [65]Simonich S L, Hites R A. Organic pollutant accumulation in vegetation. Environ Sci Technol [J].1995,29:2905-2914.
    [66]Schreiber L, Schonherr J. Uptake of organic chemicals in conifer needles:surface adsorption and permeability of cuticles[J]. Environ Sci Technol,1992,26:153-159.
    [67]Pinder J E, McLeod K W, Lide R F, et al. Mass loading of soil particles on a pasture grass[J]. J Environ radioact,1991,13:341-354.
    [68]Pan K Y, Lu AM, Wen J.Characters of leaf epidermis in Hamamelidaceae(s.l)[J]. A cta Phytotaxonomica sinica,1990,28(1):10-26(in chinese).
    [69]Kong H Z. Comparative morphology of leaf epidermis in the chloranthaceae[J]. Botanical Jourual of the Linnean Society,2001,136:279-294.
    [70]萨仁,苏德毕力格,陈家瑞.黄华属植物叶表皮特征及其生物学意义[J].草地学报,2000,8(1):65-76.
    [71]Nadeau J A, Sack F D. Control of stomatal distribution on the Arabidopsis leaf surface[J]. Science,2002,296:1697-1700.
    [72]Serna L. Good neighbours[J]. Nature,2004,430(15):302-304.
    [73]Gay A P, Hurd R G.. The influence of light on stomatal density in the tomato[J]. New Phytol,1975,75:37-46.
    [74]Zacchini M, Morini S, Vitagliano C. Effect of photoperiod on some stomatal characteristics of in vitro cultured fruit tree shoots[J]. Plant Cell Tissue Organ Cult, 1997,49:195-200.
    [75]Ticha I. Photosynthetic characteristics during ontogenesis of leaves.7. stomata density and sizes[J]. Photosynthetica,1982,16:375-471.
    [76]郑淑霞,上官周平.近一世纪黄土高原区植物气孔密度变化规律[J].生态学报,2004,24(11):2457-2464.
    [77]郑淑霞,上官周平.近70年黄土高原3种植物叶片气孔特征参数比较[J].植物资源与环境学报,2005,14(1):1-5.
    [78]邹天才,张著林.山茶属五种植物叶片解剖特征及与光合生理相关性研究[J].西北植物学报,1996,16(1):42-51.
    [79]于龙凤,李富恒,安福全,等.西葫芦不同节位叶片的形态解剖学数量性状研究[J].北方园艺,2009(5):5-8.
    [80]李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2005,22(增刊):118-127.
    [81]Hester M W, Mendelssohn I A, Mckee K L. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints[J]. Environmental and Experimental Botany,2001,46:277-297.
    [82]Roscas G, Scarano F R. Leaf anatomical variation in Alchornea triplinervia (Spreng) Mull. Arg.(Euphorbiaceae)under distinct light and soil water regimes[J]. Botanical Journal of the Linnean Society,2001,136:231-238.
    [83]蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅰ.叶片解剖特征的比较[J].植物生态学报,2001,25(1):90-98.
    [84]史刚荣,邢海涛.淮北相山8个树种叶片的生态解剖特征[J].林业科学,2007,43(3):91-96.
    [85]罗凤霞.叶片形态解剖结构与树木抗S02污染的研究[J].沈阳农业大学学报.1993,24(4):343-346.
    [86]Agrawal M, Singh J. Impact of Coal Power Plant Emission on the Foliar Elemental Conc, in Plants in A Low rainfall Tropical Region [J].Environmental Monitoring and Assessment,2000,60:261-282.
    [87]Fleek J A, Grigal D F, Nater E A. Mercurv Uptake by Trees:An Observational Experiment[J]. Water, Air, and Soil Pollution,1999,115:513-523.
    [88]Zunyu Tao, Keri C.Hornbuckle. Uptake of Polycyclic Aromatic Hydrocarbons (PAHs)by Broad Leaves:Analysis of Kinetic Limitations[J]. Air, and Soil Pollution: Focus,2001,1:275-283.
    [89]Barber J L, Kurt P B, Thomas GO, et al. Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants[J].Environ Sci Technol,2002,36:4282-4287.
    [90]Hung H, Thomas GO, Jones K C, et al. Grass-air exchange of polychlorinated biphenyls[J]. Environ Sci Technol,2001,35:4066-4073.
    [91]刘国卿,张干,刘向,等.大气中多环芳烃(PAHs)在松针和SPMD上的分布[J].环境化学,2005,24(1):81-85.
    [92]焦杏春,左谦,曹军,等.城区叶面尘特性及其多环芳烃含量[J].环境科学,2004,25(2):162-165.
    [93]毕新慧,盛国英,谭吉华,等.多环芳烃在大气中的相分布[J].环境科学学报,2004,24(1):101-106.
    [94]Mott K A, Gibson A G, O'Leary J W. The adaptive significance of amphistomatic leaves[J]. Plant Cell Environ,1982,9:455-460.
    [95]McLachlan M S, Welsch-Pausch K, Tolls J. Field validation of a model of the uptake of gaseous SOC in Lolium multrum (rye grass)[J]. Environ Sci Technol,1995,29: 1998-2004.
    [96]McCrady J K, Maggard S P. Uptake and photodegradation of 2,3,7,8- tetrachlorodibenzo-p-dioxin sorbed to grass foliage[J]. Environ Sci Technol,1993,27: 343-350.
    [97]Gustafson K E, Dickhut R M. Particle/Gas concentrations and distributions of PAHs in the atmosphere of Southern Chesapeake bay[J]. Eviron Sci Technol,1997,31: 140-147.
    [98]Riederer M. Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system:discussion of a fugacity-based model[J]. Environ Sci Technol,1990,24:829-837.
    [99]Franzaring J, Vander Eerder L J M. Accumulation of airborne persistent organic pollutants(POPS) in plants[J]. Basic and Applide Ecology,2000,1(1):25-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700