用户名: 密码: 验证码:
永磁同步电机传动系统的几类非线性控制策略研究及其调速系统的实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以永磁同步电机为执行电机,采用高性能控制策略的控制系统目前已成为电气传动控制系统的一个主流发展方向。永磁同步电机是一个多变量、非线性、时变被控对象,控制系统受电机参数变化、外部负载扰动、对象未建模和非线性动态等不确定性的影响,要获得高性能的永磁同步电机控制系统,必须研究先进的控制策略以解决这些不确定性的影响。近年来,国内外学者围绕如何提高其控制系统的性能、降低成本等问题上,采用了一些先进的非线性控制策略进行了大量的研究和实践,取得了较为丰富的成果。然而对于永磁同步电机控制系统来说,单一先进的非线性方法只能针对某一类问题有效,不能普遍适用。因此,寻求有效的永磁同步电机综合非线性控制方法成为本论文的主要研究内容。论文依托国家高技术研究发展计划(863计划)重点项目资助的《电气传动及控制系统节能技术的研发》(课题编号:2006AA04Z183),对永磁同步电机控制系统的速度控制、位置控制问题以及转子位置自检测问题进行了研究,立足获得具有适应性、可靠性、抗干扰能力和鲁棒性较强的高性能永磁同步电机控制系统。
     具体工作如下:
     1、针对无源控制方法使控制器设计简单和系统稳定性分析更加容易的特点,从能量角度分析永磁同步电机的控制器设计,采用互联、阻尼配置的无源性控制方法,提出了一种新颖的基于端口受控耗散哈密顿(PCHD)方法的永磁同步电机无源滑模控制系统,其速度外环由滑模速度控制器实现,电流内环由无源控制器实现,利用一种滑模观测器估计速度。通过仿真验证了策略的有效性。
     2、为了解决滑模控制存在的抖振问题和在系统稳定性的基础上增强鲁棒性问题,提出了带速度估计的自适应模糊滑模软切换的永磁同步电机鲁棒无源控制方法。该方法利用双曲正切函数代替符号函数设计了自适应模糊滑模软切换速度控制器,实现了软切换连续控制,削弱了滑模控制存在的抖振现象,通过设计鲁棒无源电流控制器,在系统稳定性的基础上增强了鲁棒性,采用自适应滑模观测器进行速度和转子位置的估计。通过仿真验证了策略的有效性。
     3、为了对速度控制系统未知状态和不确定干扰项的实时作用量进行估计并实现前馈补偿,进一步提高系统的抗扰能力,提出了两种新颖的带有扩张状态观测器的永磁同步电机速度控制方法。一种方法是针对滑模变结构控制要求整个系统的摄动必须在一定范围内,而且这个范围与整体控制效果相互制约的这一问题,提出了带扩张状态观测器补偿的自适应滑模调节的永磁同步电机自抗扰-无源控制方法,其速度环采用一种自适应滑模控制器,利用扩张状态观测器观测系统的干扰,并进行前馈补偿,电流环采用了以无源控制为基础,自抗扰控制技术为辅的融合控制策略。另一种方法是从基于解耦模型控制策略的逆系统方法对变化很快的外部扰动抑制效果不理想的角度出发,借助于扩张状态观测器的优势,构建了带扩张状态观测器补偿的自适应逆系统综合控制器,有效的实现了电流与转速解耦控制。通过仿真验证了两种策略的有效性。
     4、针对永磁同步电机位置控制系统追求定位的快速性、准确性和无超调的目标要求,按照双环结构的理念设计了三环位置控制系统,采用一阶系统的自抗扰控制策略构成位置外环控制器,采用自适应反步法构成速度环、电流环控制器的三环系统,增强了系统的鲁棒性,保证了速度控制精度。针对三环位置控制系统,通过仿真验证控制策略的有效性。
     5、针对全速度范围内转子位置自检测问题,提出了一种将脉振高频电压信号注入法和模型参考自适应法有机结合的新型无速度传感器的复合方法,进而分别设计了永磁同步电机无速度传感器的SVPWM调制的id=0矢量控制系统和最优转矩控制系统。通过设计速度切换方案,实现了速度的平稳过渡。此复合方法解决了单一方法不能在全速度范围内同时兼顾良好的动态、稳态性能的问题。通过仿真验证了两种策略的有效性。
     6、依托国家高技术研究发展计划(863计划)资助的项目,搭建了22kW永磁同步电机id=0矢量控制调速系统的实验平台,重点对网络化的综合自动化测试单元进行了介绍。通过实验验证了系统的性能指标达到了目标要求。
The control system which uses permanent magnet synchronous motor (PMSM) and adopts high-performance control strategy has now become a trend of electric drive control system. However, PMSM is a nonlinear, time varying and multiple variables object, and the control system is often influenced by uncertainties which are induced by parameter variations, external load disturbances, unmodelled plants and nonlinear dynamics. In order to obtain PMSM control system with high performance, advanced control schemes have to be developed to deal with these uncertainties. Recently, how to enhance control system performance and reduce costs have been studied, some advanced nonlinear control strategies have been proposed and new results are obtained correspondingly. However, for PMSM control system, a single nonlinear method is only applicable to solving a certain problem. Therefore, the major research topic of this dissertation is to seek a valid integrated nonlinear control technique for PMSM control system. This dissertation relies on the Research of Energy Saving Technology of Electrical Driven and Control System (Project NO. is2006AA04Z183), which is supported by National High Technology Development Plan. In this dissertation, speed control, position control, as well as sensorless control schemes of PMSM control system have been studied in details. The aim of this dissertation is to construct PMSM control system with good flexibility, reliability, and robustness.
     The main research work is as follows:
     1. The passive-based control method could simplify controller design and make system stability analysis easier, controller is designed from the energy point of view. By considering such characteristics and adopting interconnection and damping assignment passivity-based control method, a novel passive-based sliding mode control method is proposed for the speed sensorless control system of surface permanent magnet synchronous motor(SPMSM) based on the port-controlled Hamiltonian system with dissipation(PCHD). The sliding mode controller is adopted for outer loop control, while in the inner loop, passivity-based control is adopted, a sliding mode observer is adopted to estimate the speed. The simulation results illustrate the effectiveness of the proposed strategies.
     2. In order to solve the chattering problem in sliding mode control and improve robustness while ensuring stability of systems, a novel adaptive fuzzy sliding mode soft switch controller for PMSM by using robust Passivity-based control method is proposed based on speed calculated. The adaptive fuzzy sliding mode soft switch controller is designed by using sgn(x) function instead of tanh(x) function, which achieves the soft switch control and reduces chatting. A robust passivity-based control algorithm is constructed based on the passivity-based control principle, and the robustness is improved correspondingly. An adaptive sliding mode observer is established and a speed identification law is proposed. The simulation results verified the effectiveness of the strategies.
     3. In order to estimate the real-time values of unknown state and uncertain interference item for the speed control system, and achieve feed-forward compensation to improve the anti-disturbance ability of the speed control system, two novel PMSM speed control methods by using the integrated nonlinear approach with extended state observer are proposed. For the sliding mode control, the entire system perturbations must be within a certain range which is combined with the overall control effect. One method is to design an adaptive sliding mode control strategy based on ESO compensation, whose speed loop adopts a adaptive sliding mode controller, and ESO is used to observe system interference and makes feed-forward compensation, current loop adopts the integration control strategy which is supplemented by the passive control based on auto-disturbance rejection control technology. Because inverse control system isn't satisfied with the fast changing external disturbance rejection, another method is to build complex adaptive inverse integrated controller based on ESO compensation, which implements the current and speed decoupling control effectively. The simulation verified the effectiveness of two strategies.
     4. To ensure rapidity, accuracy, non-overshoot for the PMSM position control system, the three-loop position control system is designed in accordance with the dual-loop system. The active disturbance rejection control strategy of first-order system is adopted to construct a position of outer loop, and the adaptive back stepping method is used to construct the three loop system of velocity loop and current loop. The robustness is improved and the accuracy of speed control is ensured. For the three loop position servo system, simulation is given to show the effectiveness of the proposed control strategies.
     5. To solve the rotor position self-sensing, a novel method is put forward by combining the fluctuating high frequency voltage signal injection method (FHFVS) and model reference adaptive system method(MRAS), which is used in the SVPWM id=0vector control system and optimal torque control system. The speed-switcher is designed to realize smooth switching between two methods. The presented method can guarantee satisfactory balance between steady and dynamic states, which cannot be obtained by each of the methods. Simulations verified the effectiveness of two strategies.
     6. Based on the Research of Energy Saving Technology of Electrical Driven and Control System, the id=0vector control speed system experimental platform with22kW permanent magnet synchronous motor has been set up. The network-based integrated automated test unit is introduced. Experiments show that the performance index of system can be achieved.
引文
1.郑泽东,李永东.永磁同步电机控制系统综述[J],伺服控制,2009,1(1):22-25.
    2.郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流控制系统[M],北京:中国电力出版社,2006:138-198.
    3.陈荣.交流永磁同步控制系统的现状与发展[J],电气时代,2005,9(9):104-107.
    4.李华德.交流调速控制系统[M],北京:电子工业出版社,2002:92-150.
    5.李永东,张猛.高性能交流永磁同步电机控制系统现状[J],伺服控制,2008,1(1):34-37.
    6. Liu Jun, Wu Pusheng Bai Huayu. Application of fuzzy control in direct torque control of permanent magnet synchronous motor [C], WCICA, Hangzhou, China,2004:4573-4576.
    7. Yan Ying, Zhu Jianguo, Guo Youguang. Modeling and simulation of direct torque controlled pmsm drive system incorporating structural and saturation saliencies [C], IEEE Industry Applications Conference Forty-first IAS Annual Meeting, Tampa, USA,2006:76-83.
    8.吴世昌,吴忠强.自适应控制[M],北京:机械工业出版社,2005:62-129.
    9. Peda V. Medagam, Tansel Yucelen, Farzad Pourboghrat. Adaptive SDRE-Based Nonlinear Sensorless Speed Control for PMSM Drives [C], North American Power Symposium, Las, USA, 2007:518-522.
    10. Ying Luo, YangQuan Chen, Hyo-Sung Ahn. Fractional Order Periodic Adaptive Learning Compensation for Cogging Effect in PMSM Position Servo System [C], American Control Conference, Missour, USA,2009:937-942.
    11. Caponio A, Cascella G.L, Neri F. A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives [J], IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2007,37(1):28-41.hed
    12. Petrovic V, Ortega R, Stankovic A.M. Design and Implementation of an Adaptive Controller for Torque Ripple Minimization in PM Synchronous Motors [J], IEEE Trans. on PE,2000,15(5):871-880.
    13. Mohamed Y.A-R.I. Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time [J], IEEE Transactions on Energy Conversion,2006,21(4):855-862.
    14. Oscar Barambones, Patxi Alcorta. A Robust Control for Induction Motors Using Adaptive Switching Control Law [c], IEEE ISIE, Leipzig, Germany,2008:600-606.
    15. Shihua Li, Zhigang Liu. Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia. [J], IEEE Transactions on Industry Electronics,2009,56(8):3050-3059.
    16.高为炳.变结构控制的理论及设计方法[M],北京:科学出版社,1996:152-249.
    17.王久和.电压型PWM整流器的非线性控制[M],北京:机械工业出版社,2008:110-176.
    18.葛宝明,林飞,李国国.先进控制理论及其应用[M],北京:机械工业出版社,2007:166-216.
    19. Wai R. Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network [J], IEEE Transactions on Industrial Electronics,2001,48(5):926-944.
    20. Yan Li, Ju-Beom Son, Jang-Myung Lee. PMSM speed controller using switching algorithm of PD and Sliding mode control. [C], ICCAS-SICE, Fukuoka, Japan,2009:1260-1266.
    21.汪海波,周波,方斯琛.永磁同步电机调速系统的滑模控制[J],电工技术学报,2009,24(9):71-77.
    22. Akrad Ahmad, Hilairet Mickael, Ortega Romeo. Interconnection and Damping Assignment approach for reliable PM synchronous motor control. [C], Reliability in Electromagnetic Systems, 2007 IET Colloquium, Paris, France,2007:1-6.
    23. Haisheng Yu, Zongwei Zou, Shanshan Yu. Speed regulation of PMSM based on port-controlled hamiltonian systems and PI control principle [C], ICAL, IEEE International Conference, shenyang, China,2009:647-651.
    24.李伟,游林儒,毛宗源.基于无源性的永磁电机无速度传感器控制[J],控制理论与应用,2002,19(3):402-406.
    25.纪志成,薛花,沈艳霞.感应电动机无源性控制方法研究[J],电工技术学报,2005,20(3):1-6.
    26.文建平,曹秉刚.无速度传感器的内嵌式永磁同步电机自抗扰控制调速系统[J],中国电机工程学报,2009,29(30):58-62.
    27.邵立伟,廖晓钟,张宇河.自抗扰控制在永磁同步电机无速度传感器调速系统的应用[J],电工技术学报,2006,21(6):35-39.
    28. Su Y X, Zheng C H, Duan B Y. Automatic disturbance rejection controller for precise motion control of permanent-magnet synchronous motors [J], IEEE Transactions on Industry Electronics, 2005,52(3):814-823.
    29.黄一,张文革.自抗扰控制器的发展[J],控制理论与应用,2002,19(4):485-491.
    30. Yongling Fu, Hesong Liu, Yao Pang. Active Disturbance Rejection Control for the Airborne PMSM in Direct Drive Ema Application [C], The Ninth International Conference on Electronic Measurement & Instruments, Beijing, China,2009:346-357.
    31. Zhou Tao, Weiqun Shu, Wang Lei, Zhou Yang. Active Disturbance Rejection Control of Servo Systems with Friction [C], IITA International Conference on Control, Automation and Systems Engineering, Zhangjiajie, China,2009:558-561.
    32. Z. Gao. "Active Disturbance Rejection Control:a paradigm shift in feedback control system design" [C], Proceedings of the American Control Conference, Minnesota, USA,2006:2399-2405.
    33. Rui-Hua Li, Jian-Fei Zhao, Bo Hu. Adaptive Inverse Control of Permanent Magnet Synchronous Motor Drive in Micro-Electric Vehicle [C], Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding, China,2009:1909-1914.
    34.王家军,赵光宙,齐冬莲.反推式控制在永磁同步电机速度跟踪控制中的应用[J],中国电机工程学报,2004,24(8):95-98.
    35. Kuljaca O, SwamyN, Lewis F L. Design and implementation of industrial neural network controller using backstepping [J], IEEE Trans. Industrial Electronics,2003,50(1):193-201.
    36. Seok-Kyoon Kim. Speed and current regulation for uncertain PMSM using adaptive state feedback and backstepping control. [C], ISIE, IEEE International Symposium, Seoul, Korea,2009:1275- 1280.
    37.纪志成,李三东,沈艳霞.自适应积分反步法永磁同步电机伺服控制器的设计[J],控制与决策,2005,20(3):329-331.
    38. March P, Turner M.C. Anti-Windup Compensator Designs for Nonsalient Permanent-Magnet Synchronous Motor Speed Regulators [J], IEEE.Transactions on Industry Applications,2009,45(5): 1598-1609.
    39.张兴华.永磁同步电机的模型参考自适应反步控制[J],控制与决策,2008,23(3):341-345.
    40. Chih-Hong Lin, Chih-Peng Lin. Adaptive backstepping FNN control for a permanent magnet synchronous motor drive [C], ICIEA,4th IEEE Conference, Xian, China,2009:2712-2717.
    41.杨书生,钟宜生.永磁同步电机转速控制系统鲁棒控制器设计[J],中国电机工程学报,2009,29(3):84-90.
    42. Ge Baoming, Zheng Hongtao, YAN Ling. Robust control methods for PM synchronous motor [C], Proceedings of the 5 World Congress on Intelligent Control and Automation, Hangzhou, China, 2004:4437-4440.
    43. Mohamed, Y.A.-R.I, Waterloo Univ, Waterloo. Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer. [J], IEEE Transactions on Industry Electronics,2007,54(4):1981-1988.
    44. Kuo Kai Shyu, Chiu Keng Lai, Yao Wen Tsai. A newly robust controller design for the position control of permanent-magnet synchronous motor [J], IEEE Transaction on Industrial Electronics, 2002,49(3):558-565.
    45. Cheng K, Tzou Y. Fuzzy optimization techniques applied to the design of a digital PMSM servo drive [J], IEEE Transactions on Power Electronics,2004,19(4):1085-1099.
    46. Orlowska-Kowalska T, Dybkowski M, Szabat K. Adaptive sliding-mode neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors [J], IEEE Transactions on Industry Electronics,2010,57(2):553-564.
    47.刘鑫蕊,张化光,耿加民.永磁同步电机混沌系统鲁棒非脆弱模糊H∞控制[J],电机与控制学报,2008,12(2):218-222.
    48. Hongmei Shi, Wei Si. Simulation & realization of PMSM servo system based on fuzzy active-disturbance rejection [C], ICEMI,9th International Conference, Beijing, China,2009:446-451.
    49. Elmas C, Ustun O. A hybrid controller for the speed control of a permanent magnet synchronous motor drive [J], Control Engineering Practice,2008,16(3):260-270.
    50.魏熙乐.非线性系统自适应综合控制的研究[D],天津:天津大学博士论文,2007.
    51. Mihai Comanescu, Todd D. Batzel. Reduced order observers for rotor position estimation of nonsalient PMSM [C], IEEE Internation Electric Machines and Drives Conference, Miami, USA, 2009:1346-1351.
    52. Chuandong Ding, Jun Wang,Qi Wen. Application of fuzzy sliding mode controller in permanent magnet synchronous motor [C], WCICA,7th world congress, chongqing, China,2008:4727-4730.
    53.刘金琨.机器人控制系统的设计与MATLAB仿真[M],北京:清华大学出版社,2008:420-512.
    54. Nasir Uddin M, Abido M A, Azizur Rahman M. Development and implementation of a hybrid intelligent controller for interior permanent magnet synchronous motor drives [J], IEEE Transactions on Industry Applications,2003,40(1):68-76.
    55. Gadoue S M, Giaouris D, Finch J W. MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms [J], IEEE Transactions on Energy Conversion,2010, pp(99):1-9.
    56.潘佳南.永磁同步电机综合非线性矢量控制控制系统[D],沈阳:东北大学硕士论文,2008.
    57.谷善茂,何凤有,谭国俊.永磁同步电机无传感器控制技术现状与发展[J],电工技术学报,2009,24(11):14-20.
    58.吴奇,程小华.永磁同步电机的无传感器控制策略[J],电机与控制应用,2009,36(8):29-32.
    59.吴芳,黄声华,万山明.永磁同步电机无位置传感器控制技术发展与研究[J],微电机,2008,7(6):56-61.
    60. Gheorghe Daniel Andreescu, Cristian Hie Pitic. Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of IPMSM drives [J], IEEE Transactions on Energy Conversion,2008,23(2):393-402.
    61. Choi S.-H, Ko J.-S, Kim I.-D. Precise position control using a PMSM with a disturbance observer containing a system parameter compensator [J], IEE Proceedings Electric Power Applications,2005, 15(6):1573-1577.
    62. Todd D Batzel, KWang Y Lee. Electric propulsion with sensorless permanent magnet synchronous motor:implementation and performance [J], IEEE Trans. On Energy Conversion,2005,20(3):575-583.
    63. Rashed M, MacConnell P.F.A. Sensorless indirect-rotor-field-orientation speed control of a Permanent-Magnet Synchronous Motor with stator-resistance estimation [J], IEEE Transactions on Industry Electronics,2007,54(3):1664-1675.
    64. Quntao, An Li Sun. On-line parameter identification for vector controlled PMSM drives using adaptive algorithm [C], IEEE Vehicle Power and Propulsion Conference, Harbin, China,2008:1-6.
    65.常凯.基于模型参考自适应的永磁同步电机无速度传感器控制系统的设计[D],沈阳:东北大学硕十论文,2009.
    66. S. Maiti, C. Chakraborty, Y. Hori. Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power [J], IEEE Trans. Ind. Electron,2008,5(2):594-601.
    67. Suman Maiti, Chandan Chakraborty, Sabyasachi Sengupta. Simulation studies on model reference adaptive controller based speed estimation technique for the vector controlled permanent magnet synchronous motor drive [J], Simulation Modelling Practice and Theory,2009,17(1):585-596.
    68. Shinnaka S. New sensorless vector control using minimum-order flux state observer in a stationary reference frame for permanent magnet synchronous motors [J], IEEE Transactions on Power Systems,2006,53(2):388-398.
    69.黄雷,赵光宙,贺益康PMSM的自适应滑模观测器无传感器控制[J],浙江大学学报,2007, 41(7):1107-1110.
    70. M. Comanescu, L. Xu. Sliding mode MRAS speed estimators for sensorless vector control of induction machine," [J], IEEE Trans. Ind. Electron,2006,53(1):146-153.
    71. Chu Jianbo, Hu Yuwen, Huang Wenxin. An improved sliding mode observer for position sensorless vector control drive of PMSM [C], Power Electronics and Motion Control Conference, Wuhai, China,2009:1898-1902.
    72.尚喆,赵荣祥,窦汝振.基于自适应滑模观测器的永磁同步电机无位置传感器控制研究[J],中国电机工程学报,2007,27(3):23-27.
    73. Wesub Eom, Imyong Kang, Jangmyung Lee. Enhancement of the speed response of PMSM sensorless control using an improved adaptive sliding mode observer [C], IEEE, IECON,34th Annual conference, Florida, USA,2008:188-191.
    74.韩杰.基于滑模观测器的PMSM矢量控制系统研究与设计[D],沈阳:东北大学硕士论文,2009.
    75.祝晓辉,李颖晖.基于扰动滑模观测器的永磁同步电机矢量控制[J],电机与控制学报,2007,11(5):456-461.
    76. Vasilios C. Ilioudis and Nikolaos I. Margaris. PMSM sensorless speed estimation based on sliding mode observers [C], PESC'2008 Record 39th Annual IEEE, Rhodes, Greece,2008:2838-2843.
    77.刘家曦,李铁才,杨贵杰.永磁同步电机转子位置与速度预估[J],电机与控制学报,2009,13(5):690-694.
    78.苏健勇,杨贵杰,李铁才PMSM扩展状态滑模观测器及转子位置和速度估算[J],电机与控制学报,2008,12(5):524-528.
    79. Kye Lyong Kang. Sensorless control of PMSM in high speed range with iterative sliding mode observer [C], IEEE Applied Power Electronics Conference and Exposition APEC, Washington, USA,2004:1111-1116.
    80. Long Bo, Jiang Hui. Position tracking controlling system of position sensorless BLDCM by using SMC [C], Proceedings of the 2nd IEEE/ASME International Conference, Beijing, China,2006:1-5.
    81. Zhou Fu, Li Beizhi, Yang Jianguo. A sliding model speed/position observer integrated with a PI controller for PM synchronous motors [C], IEEE International Conference on Robotics and Biomimetics, Sanya, China,2007:1372-1377.
    82. Caux S. Kalman filter and redundant observer comparison for sensorless PMSM velocity control [C], IEEE International Symposium on Industrial Electronics, Dubrovnik, Croatia,2005:887-892.
    83. Zheng Zedong, Li Yongdong, Fadel Maurice. High performance PMSM control system based on extended Kalman filter [J], Transactions of China Electrotechnical Society,2007,22(10):18-23.
    84. Albert Qiu, Wu Bin. Sensorless control of permanent magnet synchronous motor using extended Kalman filter [C], Canadian Conference on Electrical and Computer, Ontario, Canada,2004:1557-1562.
    85. Islam R, Husain L, Fardoun A. Permanent-Magnet Synchronous Motor magnet designs with skewing for torque ripple and logging torque reduction [J], IEEE transaction on Industry Application,2009,45(1):152-160.
    86.秦峰,贺益康.两种高频信号注入法的无传感器运行研究[J],中国电机工程学报,2005,25(5):1 16-121.
    87. Wang Limei, Guo Qingding. Principles and Implementationof permanent magnet synchronous motor zero-speed sensorless control [C], Proceedings of AMC02, Maribor, Slovenia,2002:247-250.
    88. Lorenz R D. Practical issues and research opportunities when implementing zero speed sensorless control [C], Proceedings of the Fifth International Conference on Electrical Machines and Systems, Shenyang, China,2001:1-10.
    89.万山明,吴芳,黄声华.基于高频电压信号注入的永磁同步电机转子初始位置估计[J],中国电机工程学报,2008,28(33):82-86.
    90. Piippo A, Salomaki J, Luomi J. Signal injection in sensorless PMSM drives equipped with inverter output filter [J], IEEE Transactions on Industry Applications,2008,44(5):1614-1620.
    91.刘毅,贺益康,秦峰.基于转子凸极跟踪的无位置传感器永磁同步电机矢量控制研究[J],中国电机工程学报,2005,25(17):121-126.
    92. Marco Linke, Ralph Kennel, Joachim Holtz. Sensorless speed and position control of synchronous machines using alternating carrier injection [C], IEEE, IAS Conf. Rec, Salt Lake City, UT,2003: 1211-1217.
    93.贾洪平,贺益康.基于高频注入法的永磁同步电机转子初始位置检测研究[J],中国电机工程学报,2007,27(15):15-20.
    94. Jang J H, Ha J I, Ohto M. Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection [J], IEEE Transactions on Industry Applications,2004,40(6):1595-1604.
    95.侯利民,张化光,刘秀翀PMSM无速度传感器最优转矩控制系统的研究[J],仪器仪表学报,2009,30(4):706-710.
    96. Juan Manuel Guerrero, Michael Leetmaa, Fernando Briz. Inverter nonlinearity effects in high-frequency signal-injection based sensorless control methods [J], IEEE Trans. Ind. Appl,2005,41(2): 618-626.
    97. Jang J H. Sensorless drive of surface-mounted Permanent-Magnet Motor by high frequency signal injection based on magnetic saliency [J], IEEE Trans. on IA,2003,39(4):1031-1038.
    98.缪学进,李永东,肖曦.高频信号注入无速度传感器永磁同步电机控制系统[J],电气传动,2007,37(3):11-14.
    99.周晓敏,王长松,钟黎萍.基于卡尔曼滤波和高频信号注入法的永磁同步电机转子位置自检测[J],北京科技大学学报,2008,30(7):815-819.
    100.侯利民,张化光,刘秀种.永磁同步电机转子磁位自检测复合方法[J],电机与控制学报,2008,12(5):498-503.
    101.郝雯娟,邓智泉,王晓琳.基于增强型自适应观测器的永磁同步电机无速度传感器[J],电工技术学报,2009,24(3):41-46.
    102.秦峰,贺益康,贾洪平.基于转子位置自检测复合方法的永磁同步电机无传感器运行研究[J], 中国电机工程学报,2007,27(3):12-17.
    103.刘永飘,徐艳平,钟彦儒.永磁同步电机无速度传感器控制研究[J],电气传动,2006,36(2):17-20.
    104.王成元,夏加宽,孙宜标.现代电机控制技术[M],北京:机械工业业出版社,2008:103-137,178-207.
    105.唐任远.现代永磁电机理论与设计[M],北京:机械工业业出版社,2006:234-270.
    106.李珍国.交流电机控制基础[M],北京:化学工业出版社,2010:170-200.
    107.王晓明,王玲.电动机的DSP控制-TI公司DSP应用[M],北京:北京航空航天大学出版社,2003:120-126.
    108.张承慧,崔纳新,李珂.交流电机变频调速及其应用[M],北京:机械工业出版社,2008:57-110.
    109.屈莉莉.三相电压型PWM整流器空间矢量脉宽调制研究[J],电工技术杂志,2002,(7):7-9.
    110.方斯琛,周波.滑模控制的永磁同步电机控制系统一体化设计[J].中国电机工程学报,2009,29(3):96-101.
    111. Chen M, Hwang Y, Tomizuka M A. State-dependent boundary layer design for sliding mode control [J], IEEE Transactions on Automatic Control,2002,47(10):1677-1681.
    112. Lai C K, Kuo Kai Shyu. A novel motor drive design for incremental motion system via sliding-mode control method [J], IEEE Trans. on Industrial Electronics,2005,52(2):499-507.
    113.黄佳佳,周波,李丹.滑模控制永磁同步电机位置控制系统抖振[J],电工技术学报,2009:24(11):41-47.
    114.王庆龙,张崇巍,张兴.基于变结构模型参考自适应系统的永磁同步电机转速辨识[J],中国电机工程学报,2008,28(9):71-75.
    115.张细政,王耀南.基于滑模观测器的永磁同步电机变结构鲁棒控制[J],控制与决策,2009,24(1):157-160.
    116.赵德宗,张承进,郝兰英.一种无速度传感器感应电机鲁棒滑模控制策略[J],中国电机工程学报,2006,26(22):122-127.
    117. Petrovic V, Ortega R, Stankovic A M. Interconnection and damping assignment approach to control of PM synchronous motors [J], IEEE Transactions on Control Systems Technology,2001,9(6): 811-820.
    118. C. De Angelo, G. Bossio, G.O. Garcia, J. Solsona. Speed control of PMSMs with interconnection and damping assignment or feedback linearization comments about their performance [C], IEEE ISIE, Montreal, Canada,2006:2182-2187.
    119. Hung-Chi Tsai, Chia-Chi Chu. Nonlinear STATCOM controller using passivity-based sliding mode control [c], IEEE APCCAS, Singapore,2006:1996-1999.
    120. Ortega Remeo, Schaft Arjan Van der, Maschke Bernhard. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems [J], Automatica,2002,38(4):585-596.
    121. Guo, Y. Xi, Z. Cheng, D. Speed regulation of permanent magnet synchronous motor via feedback dissipative hamiltonian realisation [J], IET Control Theory & Applications,2007,1(1):281-290.
    122.于海生,赵克友.基于端口受控耗散哈密顿方法的PMSM最大转矩/电流控制[J],中国电机工程学报,2006,26(8):82-87.
    123.刘云峰,缪栋.电液控制系统的自适应模糊滑模控制研究[J],中国电机工程学报,2006,26(14):140-144.
    124.李继超,管萍,刘小河.间接自适应模糊滑模控制在电弧炉中的应用[J],系统仿真学报,2009,21(2):542-546.
    125.杨金明,汪小平,赵世伟.开关磁阻平面电机的鲁棒控制[J],中国电机工程学报,2008,28(30):104-108.
    126.齐放,邓秩泉,仇志坚.一种永磁同步电机无速度传感器的矢量控制[J],电工技术学报,2007,22(10):30-34.
    127. Arjan van der Schaft. L2-Gain and passivity techniques in nonlinear control[M], Springer-Verlag: London,2000:12-132.
    128.王久和.交流电动机的非线性控制[M],北京:电子工业出版社,2009:60-203.
    129. Yoon-Seok Han, Jung-Soo Choi, Young-Seok Kim. Sensorless PMSM Drive with a Sliding Mode Control Based Adaptive Speed and Stator Resistance Estimator [J], IEEE.Transactions on magnetics,2000,36(5):3588-3591.
    130.张化光.模糊自适应控制理论及其应用[M],北京:北京航空航天大学出版社,2002:232-240.
    131. Zhang H G, Quan Y B. Modeling, dentification, and control of a class of nonlinear systems [J], IEEE Trans. Fuzzy Systems,2001,9(2):349-354.
    132.黄志武,桂卫华,年晓红.基于自适应观测器的无速度传感器感应电机控制[J],控制理论与应用,2007,24(6):913-918.
    133. Chien An Chen, Huann Keng Chiang. The novel adaptive sliding mode control for current sensorless synchronous reluctance motor speed drive [C], IEEE ICIT, Chengdu, China,2008:1-6.
    134.刘刚,李华德,曹勇.基于逆控制的永磁同步电机速度控制系统[J],北京科技大学学报,2009,31(4):511-515.
    135.孙晓东,朱幌秋.基于逆系统理论的永磁同步电机解耦控制[J],微电机,2009,42(4):17-20.
    136. Kai Sun, Yanlei Zhao, Qifang Shu. A position sensorless vector control system of permanent magnet synchronous motor based on active-disturbance rejection controller [C], ICMA, Internation Conference, Changchun, China,2009:3833-3837.
    137.刘志刚,李世华.基于永磁同步电机模型辨识与补偿的自抗扰控制器[J],中国电机工程学报,2008,28(24):118-123.
    138.夏长亮,刘均华.基于扩张状态观测器的永磁无刷直流电机滑模变结构控制[J],中国电机工程学报,2006,26(20):139-143.
    139.韩京清.自抗扰控制器及其应用[J],控制与决策,1998,13(1):19-23.
    140.韩京清.一类不确定对象的扩张状态观测器[J],控制与决策,1995,10(1):85-88.
    141. Shao Liwei, Liao Xiaozhong, Zhang Yuhe. Application of active disturbance rejection controller and extend state observer for PMSM [J], Transactions of China Electrotechnical Society,2006, 21(6):35-39.
    142.韩京清.从PID技术到“自抗扰控制技术”[J],控制工程,2002,9(3):13-18.
    143. Huang Yi, Han Jingqing. Analysis and design for nonlinear continueous extended state observer [J], Chinese Science Bulletin,2000,45(21):1938-1944.
    144.刘雁玲.基于逆系统的磁悬浮开关磁阻电机控制方法的研究[D],镇江:江苏大学硕士论文,2007.
    145.赵克,安群涛,孙力.永磁同步电机参数自适应辨识的建模与仿真[J],系统仿真学报,2009,21(12):3552-3555.
    146. Soltani J, Pahlavaninezhad M. Adaptive backstepping based Controller design for Interior type PMSM using Maximum Torque Per Ampere Strategy [C], PEDS, International Conference, Kuala Lumpur,2005:596-601.
    147. Ouassaid M, Cherkaoui M, Zidani Y. A nonlinear speed control for a PM synchronous motor using an adaptive backstepping control approach [C], IEEE International Conference on Industrial Technology, Hammamet, Tunisia,2004:1287-51292.
    148. Shun-Sheng Ke, Jung-Shan Lin. Sensorless Speed Tracking Control with Backstepping Design Scheme for Permanent Magnet Synchronous Motors [C], Proceedings of the 2005 IEEE Conference on Control Applications, Toronto, Canada,2005:487-492.
    149.孙凯,许镇琳.基于自抗扰控制器的永磁同步电机位置控制系统[J],中国电机工程学报,2007,27(15):43-46.
    150.孙凯.自抗扰控制策略在永磁同步电机控制系统中的应用研究与实现[D],天津:天津大学博士论文,2007.
    151.王家军,赵光宙,齐冬莲.基于反推的永磁同步电机控制系统的位置跟踪控制[J],电路与系统学报,2004,9(6):19-21.
    152.王家军,王建中,马国进.自适应Backstepping在永磁同步电机速度跟踪控制中的应用[J],电气传动,2006,36(9):20-22.
    153. Tan Y L, Chang J, Tan H L. Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties [J], IEEE Trans on Industrial Electronics,2003,50(10):944-952.
    154. Ouassaid M, Cherkaoui M, Maaroufi M. Improved Nonlinear Velocity Tracking Control for Synchronous Motor Drive Using Backstepping Design Strategy [C], Power Tech, IEEE Conferences, Petersburg, Russia,2005:1-6.
    155. Yan Ruzhong, Li Beizhi, Zhou Fu. Sensorless control of PMSM based on parameter optimized-MRAS speed observer [C], Proceedings of the IEEE International Conference on Automation and Logistics, Qingdao, China,2008:1573-1578.
    156. Young Sam Kim, Sang Kyoon Kim. MRAS Based Sensorless Control of Permanent Magnet Synchronous Motor [C], IEEE. SICE Annual Conference, Fukui, Japan,2003:1632-1637.
    157.梁艳,李永东.无传感器永磁同步电机矢量控制系统概述[J],电气传动,2004,34:302-306.
    158.齐放,邓智泉,仇志坚.基于MRAS的永磁同步电机无速度传感器[J],电工技术学报,2007,22(4):53-58.
    159. Parasiliti F, Petrella R, Tursini M. Sensorless speed control of salient rotor PM synchronous motor based on high frequency signal injection and Kalman filter [C], Proceedings of the 2002 IEEE International Symposium on Industrial Electronics, Sevilla, Spain,2002:623-628.
    160.王丽梅,郭庆鼎.基于多重凸极跟踪的永磁同步电机转子位置估计[J],中国电机工程学报,2007,27(24):48-52.
    161.年珩,贺益康,秦峰.永磁型无轴承电机的无传感器运行研究[J],中国电机工程学报,2004,24(11):]01-105.
    162. Jeong Y, Lorenz R D, Jahns T M. Initial rotor position estimation of an interior permanent magnet synchronous machine using carrier-frequency injection methods [J], IEEE.Trans.on Industry Applications,2005,41(1):38-45.
    163.秦峰.基于电力电子系统集成概念的PMSM无传感器控制研究[D],杭州:浙江大学博士论文,2006.
    164.石坚,汤宁平,潭超.永磁同步电机无位置传感器控制系统[J],电机与控制学报,2007,11(1):50-54.
    165.胡家兵,贺益康.基于磁饱和凸极效应的面贴式PMSM零速下无传感器技术[J],中国电机工程学报,2006,26(10):152-157.
    166.李长红PMSM调速系统中最大转矩电流比控制方法的研究[J],中国电机工程学报,2005,25(21):169-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700