用户名: 密码: 验证码:
高超声速飞行器机体/发动机一体化构型设计与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文结合风洞实验与数值模拟方法,对基于升力体构型的高超声速飞行器机体/发动机一体化设计与性能分析方法进行了研究。
     在借鉴国内超燃冲压发动机研究成果的基础上,完成了高超声速一体化飞行器基准构型的设计,在发动机关闭和发动机通流状态下开展了缩比模型风洞实验,并结合数值模拟方法,对基准构型在发动机关闭状态和通流状态下的流场特征以及纵向气动性能进行了研究。计算结果与实验结果基本吻合,验证了数值计算技术的可靠性。采用数值模拟方法研究了不同模型尺度以及来流条件对飞行器气动性能的影响,分析了风洞实验条件与飞行条件下数值模拟数据产生差别的原因,指出了发动机通流状态下摩阻系数的不同是导致二者产生差别的主要原因。
     发展了一套模拟超燃冲压发动机燃烧流场的计算程序ChemTur3D,考虑了湍流与与化学反应非平衡效应以精确模拟氢/空气混合与燃烧。该程序数值求解三维RANS方程,采用有限体积法离散计算域。反应模型采用七组份八方程,湍流模型采用Menter提出的SST湍流模型,对流项采用AUSM+以及二阶MUSCL格式求解,粘性项采用中心差分格式求解,应用LU-SGS以及点隐式方法进行时间迭代。在MPICH环境下实现了并行计算,通过相关算例验证了程序的可靠性。数值模拟了直连式超燃冲压发动机以及飞行器基准构型的燃烧室/尾喷管一体化燃烧流场,对燃烧室内的流场特征进行了分析。根据飞行器一体化算力体系划分方法,结合气动数据与推进数据,对飞行器基准构型在发动机点火状态下的性能进行了研究。结果表明,飞行器基准构型在攻角小于3度时可以产生净正推力,但存在配平攻角较大等缺点。
     在冷流状态下,进行了不同部件构型设计对飞行器整体性能影响的研究,发现机身上表面构型采用卡门曲线设计,可增加低头力矩,有利于配平前体下表面产生的较大抬头力矩。在点火状态下,针对不同燃料混合增强装置、不同燃料喷注位置及当量比对飞行器整体性能的影响进行了研究。
     将以上研究成果应用于飞行器优化构型的设计,优化构型的容积比基准构型增加16%,通过采用数值模拟方法对优化构型在三种工作状态下的性能进行研究,表明优化构型的配平攻角较小,综合性能较优。
     论文为研究高超声速飞行器在真实飞行中不同工作状态转变下的性能变化以及一体化构型设计奠定了一定基础。
The configuration design and performance analysis of an airframe/scramjet integrated hypersonic lifting body vehicle was researched by using the method of numerical simulation and wind tunnel experiments.
     A baseline vehicle configuration based on the current research of scramjets was designed, the cowl-closed and cowl-open subscale test models have been built and tested in the wind tunnel, and numerical study was performed on the two configurations to examine the flow-field characteristics and longitudinal aerodynamic performance. A reasonable match between the computed and the test data showed that the CFD methodology may be used for further research at flow conditions where no experimental data was available with confidence. The CFD results were used to access effects of model scale and air flow conditions on the vehicle overall aerodynamic performance. It was indicated that the difference of friction drag coefficient of the wall surface was great, which was the main difference of the drag coefficient between full scale model and subscale model and that between wind tunnel test condition and flight test condition when the cowl door was opened.
     A computational code ChemTur3D was developed to simulate the reacting flows in scramjet engine combustors. To accurately compute the flow of a hydrogen/air mixture and combustion at high temperature, the turbulent and chemical nonequilibrium effects must be taken into account. The 3D Reynolds averaged Navier-Stokes equations and species conservation equations were solved using a finite volume, cell vertex scheme on three-dimension structured grids. Chemical reactions were modeled using finite rate chemistry between hydrogen and air consisting of seven species and eight reactions, and turbulent mixing was modeled using the Menter's Shear-Stress Transport (SST) approach. The AUSM+ scheme with the Monotone Upwind Scheme in Conservation Law (MUSCL) interpolation and second order central difference scheme were employed for the convection terms and the viscous terms, respectively. The LU-SGS implicit algorithm was used for the time integration, to eliminate the stiffness problem due to chemical reactions and turbulence, a point implicit method was implemented into the LU-SGS method. The code's implementation of parallel multi-blocking was realized in MPICH environment, and the numerical accuracy was evaluated by applying the program to compute several test cases.
     The analysis of flow field characteristics of scramjet combustor in direct-connect test and the integration of scramjet combustor/nozzle of baseline vehicle were carried out by using the code ChemTur3D. The performance of the baseline vehicle working at powered mode was evaluated by integrating the data of aerodynamic and that of propulsion accounting to the force accounting system. Results showed that positive thrust of the powered baseline vehicle was obtained at the angle of attack less than three degree, but the trimmed angle of attack was too high.
     Numerical simulations of different part configurations under cold flow condition have been performed, and the influence of each configuration design on the overall aerodynamic characteristics was analyzed. It was found that the airframe upper surface geometry featured Von Karman curve could provide a nose down pitch moment, which may be propitious to trim the large nose up pitch moment generated by the forebody. The effects of variation fuel mixing enhancement, distribution of fuel injection and equivalence ratio on the combustor performance were studied by numerical simulation under combustion flow condition.
     Based on these results, several enhancements to the baseline vehicle was adopted and the optimized vehicle was designed and analyzed, the optimized vehicle has a 16% larger capacity than the baseline one. Numerical simulation results showed that the optimized vehicle has a reduced trim angle of attack than the baseline one, and a better overall aerodynamic performance.
     This work has established a foundation for increasing the knowledge of the aerodynamics and propulsion performance associated with the different working mode of the hypersonic integrated vehicle free flight as well as supporting the highly airframe/scramjet integrated vehicle configuration design.
引文
[1]Prisell E.The scramjet;A solution for hypersonic aerodynamic propulsion.AIAA 2005-3550.
    [2]Kazmar R R.Airbreathing Hypersonic Propulsion at Pratt & Whitney - Overview.AIAA 2005-3256.
    [3]Mercier R.Hypersonic Propulsion - Transforming the Future of Flight.AIAA 2003-2732.
    [4]Jones R A,Huber P W.Toward scramjet aircraft.Astronautics and Aeronautics,1978:38-48.
    [5]Hallion R P.The History of Hypersonics:or,"Back to the Future-Again and Again".AIAA 2005-0329.
    [6]Bowcutt K,Gonda M,Hollowell S,et al.Performance,Operational and Economic Drivers of Reusable Launch Vehicles.AIAA 2002-3901.
    [7]Chase R L,Tang M H.A history of the NASP Program from the formation of the Joint Program Office to the termination of the HySTP Scramjet Performance Demonstration Program.AIAA 1995-6031.
    [8]Hagseth P E,Benner K W,Gillen S,et al.Technology Development for High Speed/Hypersonic Applications.AIAA 2005-3212.
    [9]Tang M,Chase R.Hypersonics - A Periodic Quest.AIAA 2005-3258.
    [10]Tsai C Y,Nicholson C,Marconi F.Inlet Performance Evaluation in the Newly Acquired GASL 15-Inch Aero Tunnel.AIAA 2005-3901.
    [11]Walker S H,Rodgers M F.Falcon Hypersonic Technology Overview.AIAA 2005-3253.
    [12]Moses P L.X-43C plans and status.AIAA 2003-7084.
    [13]Hueter U,McClinton C R.NASA's Advanced Space Transportation Hypersonic Program.AIAA 2002-5175.
    [14]Boudreau A H.Hypersonic Air-Breathing Propulsion Efforts In the Air Force Research Laboratory.AIAA 2005-3255.
    [15]Bouchez M,Roudakov A S,Kopchenov V I,et al.French-Russian analysis of Kholod dual-mode ramjet flight experiments.AIAA 2005-3320.
    [16]Kislykh V V,Kondratov A A.The program for the complex investigation of the hypersonic flight laboratory(HFL) 'IGLA' in the PGU of TSNIIMASH.AIAA 2001-1875.
    [17]Rodriguez C G.CFD analysis of the CIAM/NASA scramjet.AIAA 2002-4128.
    [18]Roudakov A S,Semenov V L,Strokin M V,et al.The prospects of hypersonic engines in-flight testing technology development.AIAA 2001-1807.
    [19]Boyce R R,Gerard S,Paull A.The HyShot scramjet flight experiment - Flight data and CFD calculations compared.AIAA 2003-7029.
    [20]Boyce R R,Paull A.Scramjet intake and exhaust CFD studies for the HyShot scramjet flight experiment.AIAA 2001-1891.
    [21]Gardner A D,Hannemann K,Steelant J,et al.Ground testing of the HyShot supersonic combustion flight experiment in HEG and comparison with flight data.AIAA 2004-3345.
    [22]Kodera M,Sunami T,Itoh K.Numerical Simulation of a Scramjet Engine for JAXA's Flight Experiment Using HyShot.AIAA 2005-3355.
    [23]Walker S H,Rodgers M F,Esposita A L.Hypersonic Collaborative Australia/United States Experiment(HyCAUSE).AIAA 2005-3254.
    [24]Hass N E,Smart M K,Paull A.Flight Data Analysis of HyShot 2.AIAA 2005-3354.
    [25]罗世彬.高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究.[博士学位论文].国防科学技术大学研究生院.2004.
    [26]李晓宇.高超声速飞行器一体化布局气动外形设计.[博士学位论文].国防科学技术大学研究生院.2008.
    [27]贺元元,倪鸿礼,乐嘉陵.一体化高超声速飞行器气动-推进性能评估.实验流体力学,2007,21(2):63-67.
    [28]贺元元,乐嘉陵,倪鸿礼.吸气式高超声速机体/推进一体化飞行器数值和试验研究.实验流体力学,2007,21(2):29-34.
    [29]范晓樯.高超声速进气道的设计、计算与实验研究.[博士学位论文].国防科学技术大学研究生院.2006.
    [30]袁生学.论超声速燃烧.中国科学(A辑),1998,28(8):735-741.
    [31]乐嘉陵,胡欲立,刘陵.双模态超燃冲压发动机研究进展.流体力学实验与测量,2000,14(1):1-12.
    [32]Chang X,Gu H,Chen L.Thrust and Drag of a Scramjet Model with Different Combustor Geometries.AIAA 2005-3315.
    [33]李大鹏.煤油双模态超燃冲压发动机燃烧室工作过程研究.[博士学位论文].国防科学技术大学研究生院.2006.
    [34]余勇.超燃冲压发动机燃烧室工作过程理论和试验研究.[博士学位论文].国防科学技术大学研究生院.2004.
    [35]Le J-L,Liu W-X,Tan Y,et al.Performance Study of Model Scramjet with Fuel of Kerosene in Pulse Facility.AIAA 2003-6936.
    [36]俞刚.煤油-氢双燃料超声速燃烧点火特性研究.流体力学实验与测量,2000,14(1):63-71.
    [37]Li J-G,Yu G;Li Y,et al.Experimental Studies of Self-Ignition of Hydrogen/Air Supersonic Combustion.AIAA 1996-3139.
    [38]俞刚.超声速气流中的煤油喷雾研究.流体力学实验与测量,2001,15(4):12-14.
    [39]丁猛.基于凹腔的超声速燃烧火焰稳定技术研究.[博士学位论文].国防科学技术大学研究生院.2005.
    [40]王发民,沈月阳,姚文秀,等.高超声速升力体气动力气动热数值计算.空气动力学报,2001,19(4):339-445.
    [41]郑忠华.双模态冲压发动机燃烧室流场的大规模并行计算及试验验证.[博士学位论文].国防科学技术大学研究生院.2003.
    [42]徐旭,蔡国飙.氢-碳氢燃料超声速燃烧的数值模拟.推进技术,2002,23(5):398-401.
    [43]徐胜利.具有H2引燃的CH4、煤油超声速混合的三维数值研究.应用数学与力学,2001,22(4):411-419.
    [44]Rubert K F,Lopez H J.The NASA Hypersonic Research Engine Program.NASA-TM-92-21521.
    [45]Andrews E H,Mackley E A.Review of NASA's Hypersonic Research Engine Project.AIAA 1993-2323.
    [46]Dessornes O,Scherrer D.Weighing of the JAPHAR dual mode ramjet engine.AIAA 2002-5187.
    [47]Serre L,Falempin F.PROMETHEE the french military hypersonic propulsion program Status in 2002.AIAA 2002-5426.
    [48]Marshall L A,Corpening G P,Sherrill R.A Chief Engineer's View of the NASA X-43A Scramjet Flight Test.AIAA 2005-3332.
    [49]Nonweiler T R F.Aerodynamic problems of manned space vehicles.Journal of the Royal Aeronautical Society,1959,63:521-528.
    [50]Starkey R P,Lewis M J.Aerodynamics of a box constrained waverider missile using multiple scramjets.AIAA 1999-2378.
    [51]O'Brien T F,Lewis M J.RBCC engine-airframe integration on an osculating cone waverider vehicle.AIAA 2000-3823.
    [52]Lewis M J,Boyd I D,Cockrell C E.Aerodynamics for optimal engine-integrated airbreathing launcher configurations.AIAA 2004-3983.
    [53]Sabean J,Lewis M J,Mee D,et al.Performance Study of a Power Law Starbody.Journal of Spacecraft and Rockets,1999,36(5):646-652.
    [54]Starkey R P,Lewis M J.Simple Analytical Model for Parameteric Studies of Hypersonic Waveriders.Journal of Spacecraft and Rockets,1999,36(4):516-523.
    [55]Starkey R P,Rankins F,Pines D.Coupled Waverider Trajectory Optimization for Hypersonic Cruise.AIAA 2005-530.
    [56]王发民,李立伟,姚文秀.乘波飞行器构型方法研究.力学学报,2004,66(5):513-519.
    [57]Rodi P E.The Osculating Flowfield Method of Waverider Geometry Generation.AIAA 2005-0511.
    [58]Blankson I M,Hagseth P.Propulsion/Airframe Integration Issues for Waverider Aircraft.AIAA 1993-0506.
    [59]Bowcutt K G,Anderson J D,Capriotti D P.Viscous Optimized Hypersonic Waveriders.AIAA 1987-0272.
    [60]Corda S,Anderson J D.Viscous Optimized Hypersonic Waveriders Designed from Axisymmetric Flow Fields.AIAA 1988-0369.
    [61]Allan B G,Owens L R,Berrier B L.Numerical Modeling of Active Flow Control in a Boundary Layer Ingesting Offset Inlet.AIAA 2004-2318.
    [62]Tam C J,Baurle R A,Streby G D.Numerical analysis of streamline-traced hypersonic inlets.AIAA 2003-13.
    [63]Serre L,Minard J P.French potential for semi-free jet test of an experimental dual mode ramjet in Mach 4-8 conditions.AIAA 2002-5448.
    [64]Hiraiwa T,Kanda T,Mitani T,et al.Experiments on a scramjet engine with ramp-compression inlet at Mach 8 condition.AIAA 2002-4129.
    [65]Fujiwara H,Murakami A,Watanabe Y.Numerical analysis on shock oscillation of two-dimensional external compression intakes.AIAA 2002-2740.
    [66]Kodera M,Nakahashi K,Hiraiwa T,et al.Scramjet inlet flow computations by hybrid grid method.AIAA 1998-0962.
    [67]Kovachevich A,Paull A,McIntyre T.Investigation of an intake injected hot-wall scramjet.AIAA 2004-1037.
    [68]Kovachevich A L,Hajek K M,McIntyre T J,et al.Imaging of hydrogen fuel injection on the intake of a heated wall scramjet.AIAA 2006-5039.
    [69]Holland S D.Reynolds Number and Cowl Position Effects For a Generic Sidewall Compression Scramjet Inlet at Mach 10:A Computational and Experimental Investigation.AIAA 1992-4026.
    [70]Holland S D.Schlieren Photographs and Internal Pressure Distributions for Three Dimensional Sidewall Compression Scramjet Inlets at a Mach Number of 6 in CF4.Nasa TM-4479,1993.
    [71]Zha G C,Knight D,Smith D.Numerical Investigations of HSCT Inlet Unstart Transient at Angle of Attack.AIAA 1998-3583.
    [72]Smart M K,Trexler C A.Mach 4 performance of a fixed geometry hypersonic inlet with rectangular to elliptical shape transition.AIAA 2003-0012.
    [73]Smart M K,White J A.Computational investigation of the performance and back-pressure limits of a hypersonic inlet.AIAA 2002-0508.
    [74]Matthews A J,Jones T V.Design and Test of a Modular Waverider Hypersonic Intake.AIAA 2005-3379.
    [75]骆晓臣,张望元.侧压式进气道内部阻力的参数分析.推进技术,2007,28(3):273-277
    [76]孙波,张堃元,金志光.流线追踪Busemann进气道马赫数3.85实验研究.航空动力学报,2007,22(3):396-399.
    [77]Fan X,Yi S,Li H.Forced Boundary-Layer Transition of Axisymmetric Inlet in Math 8 Gun Wind Tunnel and Its Numerical Verification.AIAA 2005-3551.
    [78]Chen L,Gu H,Chen F,et al.Comparison of external and sidewall compression scramjet inlet models.AIAA 2003-7043.
    [79]Heiser W H,Pratt D T,Daley D H,et al.Hypersonic airbreathing propulsion.American Institute of Aeronautics and Astronautics,Inc,1994.
    [80]Waltrup P J,Billig F S.Structure of shock waves in cylindrical ducts.AIAA Journal,1973,11(10).
    [81]Waltrup P J,Billig F S.Prediction of precombustion wall pressure distributions in scrarnjet engines.Journal of Spacecraft and Rockets,1973,10(9).
    [82]Billig F S.Research on Supersonic Combustion.Journal of Propulsion and Power,1993,9(4):499-514.
    [83]Sullins G.Experimental results of shock trains in rectangular ducts.AIAA 1992-5103.
    [84]Rice T.High aspect ratio isolator performance for access-to-space vehicles.AIAA 2003-7041.
    [85]Kawatsu K.Pseudo-Shock Wave Produced by Backpressure in Straight and Diverging Rectangular Ducts.AIAA 2005-3285.
    [86]王成鹏,张垫元,程克明.非对称来流隔离段流动特性研究.推进技术,2006,27(5):436-440.
    [87]Grendell K M.A comparison study of rectangular and chamfered isolator crosss sectional shape with varied divergence.AIAA 2004-129.
    [88]Montgomery C J,Zhao W,Tam C J,et al.CFD simulations of a 3-D scramjet flameholder using reduced chemical kinetic mechanisms.AIAA 2004-3874.
    [89]Seiner J M,Dash S M,Kenzakowsk D C.Historical survey on enhanced mixing in scramjet engines.AIAA 1999-4869.
    [90]Kim J-H,Sim J,Kim J,et al.Mixing enhancement of hydrogen diffusion flames in supersonic air using shock waves.AIAA 1999-2785.
    [91]Chenault C F,Beran P S.K-e and reynolds stress turbulence model comparisons for two dimensional injection flows.AIAA Journal,1998,36(8):1401-1412.
    [92]Ali M,Fujiwara T,Leblanc J E.Influence of main flow inlet configuration on mixing and flameholding in transverse injection into supersonic airstream. International Journal of Engineering Science,2000,38(2000):1161-1180.
    [93]Choi J Y,Ma F,Yang V.Combustion oscillations in a scramjet engine combustor with transverse fuel injection.Proceedings of the Combustion Institute,2005,30:2851-2858.
    [94]Choi J Y,Ma F H,Yang V.Dynamics Combustion Characteristics in Scramjet Combustors with Transverse Fuel Injection.AIAA 2005-4428.
    [95]Choi J Y,Yang V,Ma F,et al.DES Combustion Modeling of a Scramjet Combustor.AIAA 2006-5097.
    [96]Gerlinger P,Algermissen J,Bruggemann D.Simulation of turbulent slot injection of different gases into a supersonic air stream.AIAA 1994-2247.
    [97]McDaniel J C,Fletcher D G,Hartfield R J,et al.Staged transverse injection into Math 2 flow behind a rearward-facing-step:a 3D compressible flow test case for hypersonic combustor CFD validation.AIAA 1992-0827.
    [98]Olynciw M J.Effects of Scaling on Numerical Modeling of a Transverse Jet into Supersonic Cross Flows.AIAA 1999-3368.
    [99]王军旗,李素循,倪招勇,等.数值模拟侧向超声速单喷流干扰流场特性.宇航学报,2007,28(3):598-602.
    [100]朱守梅,刘陵,刘敬华.超音速气流中横向喷射氢气流场数值模拟.推进技术,1993,14(2):1-7.
    [101]Sriram A T,Mathew J.Nuerical Simulation of Transverse Injection of Circular Jets into Turbulent Supersonic Streams.Journal of Propulsion and Power,2008,24(1):45-54.
    [102]Aradag S,Knight D.Simulation of Supersonic Cavity Flow Using 3D RANS Equations.AIAA 2004-4966.
    [103]Baurle R A.Modeling of turbulent reacting flows with probability density functions for scramjet applications.Ph.D.Dissertation,North Carolina State University,1995.
    [104]Kim K M,Back S W,Han C Y.Numerical study on supersonic combustion with cavity-based fuel injection.International Journal of Heat and Mass Transfer,2004,47:271-286.
    [105]Mohieldin T O,Tiwari S N.Effects of tandem injection on compressible turbulent shear layer.AIAA 1998-1638.
    [106]Alexander D C,Sislian J P.Computational Study of the Propulsive Characteristics of a Shcramjet Engine.Journal of Propulsion and Power,2008,24(1):34-44.
    [107]Bonanos A M.Scramjet operability range studies of an integrated aerodynamic-ramp-injector/plasma-torch igniter with hydrogen and hydrocarbon fuels.Ph.D.Dissertation,Virginia Polytechnic Institute and State University,2005
    [108]刘欧子.煤油超声速燃烧的数值分析.推进技术,2004,25(5):463-468.
    [109]岳连捷.液体碳氢燃料超燃的数值模拟.[博士学位论文].中国科学院力学研究所.2003.
    [110]刘宏.甲烷超声速燃烧过程的数值模拟.推进技术,2002,23(1):63-66.
    [111]刘君.甲烷-空气超声速燃烧流动数值模拟.推进技术,2003,24(4):296-299.
    [112]孙英英.煤油-空气预混气流超声速燃烧数值研究.推进技术,2004,25(2):101-106.
    [113]王元光,徐旭,蔡国飙.超燃冲压发动机缩比燃烧室流场数值模拟.航空动力学报,2006,21(2):56-60.
    [114]梁剑寒,王承尧.超燃发动机燃烧室流场的数值模拟.推进技术,1996,17(1):13-17.
    [115]孙英英.碳氢燃料超燃火焰传播与性能的实验研究.[博士学位论文].中国科学技术大学.2000.
    [116]刘敬华,刘兴洲,胡欲立.超音速气流中氢燃料强化混合的燃烧试验研究.推进技术,1996,17(1):1-7.
    [117]刘卫东,梁剑寒.超燃冲压模型发动机试验研究.中国国防科学技术报告,2003.
    [118]张新宇,陈立红,顾洪斌.超燃冲压模型发动机实验设备和实验技术.力学进展,2003,33(4):491-498.
    [119]梁德旺.三维管内激波湍流附面层干扰流场的数值模拟.南京航空航天大学学报,2004,36(2):139-144.
    [120]丁猛.碳氢燃料超燃冲压发动机进气道与燃烧室匹配性能试验研究.航空学报,2005,26(1):27-31.
    [121]Nasuit F,Onofri M.Analysis of InFlight Behavior of Truncated Plug Nozzles.AIAA 2000-3289.
    [122]Tatum K E,Huebner L D.Exhaust gas modeling effects on hypersonic powered simulation at Mach 10.AIAA 1995-6068.
    [123]Cockrell C E,McMinn J D.Enhanced control effector designs for airbreathing transatmospheric vehicles.AIAA 1997-0297.
    [124]Marathe A G;Thiagarajan V.Effect of Geometric Parameters on the Performance of Single Expansion Ramp Nozzle.AIAA 2005-4429.
    [125]Panin S.Experimental and numerical study of convective heat transfer in submerged nozzle.AIAA 2002-0659.
    [126]Hiraiwa T,Tomioka S,Izumikawa M,et al.Performance of a Scramjet Nozzle in Hypersonic Flight Conditions.AIAA 1995-2579.
    [127]Bradford J E.Rapid prediction of aftbody nozzle performance in SCCREAM.
    [128] Edwards T A. The effect of exhaust plume/afterbody interaction on installed scramjet performance. Ph.D. Dissertation, Stanford University, 1988.
    [129] Huebner L D, Witte D W, Andrews E H. Exhaust Simulation Testing of a Hypersonic Airbreathing Model at Transonic Speeds. AIAA 2003-7001.
    [130] Engelund W C, Holland S D, Cockrell C E. Propulsion system airframe integration issues and aerodynamic database development for the Hyper-X flight research vehicle. ISOABE 1999-7215.
    [131] Gnoffo P A. Computational Fluid Dynamic Technology for Hypersonic Applications. AIAA 2003-2829.
    [132] Lockwood M K. Airbreathing hypersonic vehicle design and analysis methods and interactions. Progress in Aerospace Sciences, 1999,35:1-32.
    [133] Witte D W, Huebner L D. Propulsion airframe integration test techniques for hypersonic airbreathing configurations at NASA Langley research center. AIAA 2003-4406.
    [134] Bowcutt K G. Optimization of Airbreathing Hypersonic Vehicles. Journal of Propulsion and Power, 2001,17(6): 1184-1190.
    [135] Ebrahimi H B. An overview of computational fluid dynamics for application to advanced propulsion systems. AIAA 2002-5130.
    [136] Apdin H, Ferguson F, Shengyoung Z. An engineering method for the construction and analysis of Hypersonic Vehicle Configurations. AIAA 2005-3364.
    [137] Neidhoefer J, Gibson C, Saeks R, et al. Accurate Automation Corporation's LoFLYTE program. AIAA 2002-3502.
    [138] Morelli E A, Deny S D. Aerodynamic Parameter Estimation for the X-43A (Hyper-X) from Flight Data. AIAA 2005-5921.
    [139] Bermudez L M, Gladden R D, Jeffries M S. Aerodynamic characterization of the Hyper-X Launch Vehicle. AIAA 2003-7074.
    [140] Engelund W C, Holland S D, Cockrell C E, et al. Aerodynamic Database Development for the Hyper-X Airframe Integrated Scramjet Propulsion Experiments. AIAA 2000-4006.
    [141] Frendi A. On the CFD support for the Hyper-X aerodynamic database. AIAA 1999-0885.
    [142] Hegedus M C, Mendenhall M R. Vortex influence on the aerodynamic characteristics of the Hyper-X Launch Vehicle. AIAA 2003-1104.
    [143] Marshall L A, Bahm C, Corpening G P. Overview With Results and Lessons Learned of the X-43A Mach 10 Flight. AIAA 2005-3336.
    [144] McClinton C R. X-43-Scramjet Power Breaks the Hypersonic Barrier Dryden Lectureship in Research for 2006. AIAA 2006-1.
    
    [145] McClinton C R, Voland R T, Holland S D, et al. Wind tunnel testing, flight scaling and flight validation with Hyper-X.AIAA 1998-2866
    [146]Buning P G,Wong T-c.Computational fluid dynamics prediction of Hyper-X stage separation aerodynamics.Journal of Spacecraft and Rockets,2001,38(6):820-827.
    [147]Parikh P,Engelund W,Armand S,et al.Evaluation of a CFD Method for Aerodynamic Database Development using the Hyper-X Stack Configuration.AIAA2004-5385.
    [148]Woods W C,Holland S D,DiFulvio M.Hyper-X Stage Separation Wind-Tunnel Test Program.Journal of Spacecraft and Rockets,2001,38(6):811-819.
    [149]Cockrell C E,Englund W C,Bittner R D,et al.Integrated aero-propulsive CFD methodology for the Hyper-X flight experiment.AIAA 2000-4010.
    [150]Neel R E,Godfrey A G;McGrory W D.Low-Speed,Time-Accurate Validation of GASP Version 4.AIAA 2005-686.
    [151]White J A,Morrison J H.A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations.AIAA 1999-3360.
    [152]Abdol-Hamid K S,Frink N T,Deere K A,et al.Propulsion simulations using advanced turbulence models with the unstructured-grid CFD tool,TetrUSS.AIAA 2004-714.
    [153]Pirzadeh S Z,Frink N T.Assessment of the unstructured grid software TetrUSS for drag prediction of the DLR-F4 configuration.AIAA 2002-0839.
    [154]Pandya M J,Frink N T.Agglomeration multigrid for an unstructured grid flow solver.AIAA 2004-759.
    [155]Parikh P.Application of a scalable,parallel,unstructured-grid-based Navier-Stokes solver.AIAA 2001-2584.
    [156]Bhat M K,Parikh P.Parallel implementation of an unstructured grid-based Navier-Stokes solver.AIAA 1999-0663.
    [157]叶友达,王振亚,卢笙.高超声速飞行器一体化流场数值模拟研究.全国流体力学青年研讨会.2003.
    [158]贺元元,乐嘉陵.机体/推进一体化高超声速飞行器气动-推进性能数值研究.第十一届全国激波与激波管学术会议.2004.
    [159]范晓樯,贾地,潘沙.源项法模拟高超声速飞行器内外一体化流场.推进技术,2005,26(5):385-388.
    [160]刘伟.类升力体外形俯仰阻尼特性数值研究.空气动力学学报,2001,19(3):331-337.
    [161]赵忠良.跨超、高超声速风洞模型动导数试验技术研究.航空学报,2000,21(1):52-55.
    [162]Rodriguez D L.Response surface based optimization with a Cartesian CFD method.AIAA 2003-0465.
    [163]Jameson A,Kim S.Reduction of the adjoint gradient formula in the continuous limit.AIAA 2003-0040.
    [164]Jameson A,Martinelli L,Vassberg J,et al.Aerodynamic simulation and shape optimization for high speed flow.AIAA 2006-708.
    [165]Jameson A.CFD for aerodynamic design and optimization:its evolution over the last three decades.AIAA 2003-3438.
    [166]Jameson A.Optimum aerodynamic design using CFD and Control theory.AIAA 1995-1729.
    [167]Jameson A.Computational fluid dynamics for aerodynamic design:its current and future impact.AIAA 2001-0538.
    [168]Gage P,Kroo I.A role for genetic algorithms in a preliminary design environment.AIAA 1993-3933.
    [169]Pulliam T H,Nemec M,Holst T,et al.Comparison of evolutionary(genetic)algorithm and adjoint methods for multi-objective viscous airfoil optimizations.AIAA 2003-298.
    [170]Hartfield R J,Burkhalter J E,Jenkins R M.Scramjet missile design using genetic algorithms.Applied Mathematics and Computation,2006,174:1539-1563.
    [171]Hasegawa S,Knight D.Numerical analysis and optimization of two-dimensional hypersonic inlets.AIAA 2004-856.
    [172]Hasegawa S,Knight D.Application of Optimization Algorithms to Scramjet Inlet Design.AIAA 2005-3207.
    [173]Hagenmaier M A.Scramjet component optimization using CFD and design of experiments.AIAA 2002-0544.
    [174]Craddock C S.Computational Optimization of Scramjets and Shock Tunnel Nozzles.Ph.D.Dissertation,The University of Queensland,1999.
    [175]陈兵,徐旭,蔡国飙.基于遗传算法和空间推进方法的高超声速进气道优化设计研究.宇航学报,2006,27(5):1010-1015.
    [176]徐大军,蔡国飙,乐川.吸气式高超声速飞行器气动热试验研究.宇航学报,2006,27(5):1004-1009.
    [177]吴先宇.超燃冲压发动机一体化流道设计优化研究.[博士学位论文].国防科学技术大学研究生院.2007.
    [178]车竞,唐硕.高超声速飞行器后体/尾喷管一体化设计.飞行力学,2006,24(3):74-77.
    [179]徐华舫.空气动力学基础.北京:北京航空学院出版社,1987.
    [180]Curran E T,Murthy S N B.Scramjet Propulsion.American Institute of Aeronautics and Astronautics,Inc,2001.
    [181]Tsujikawa Y,Northam G B.Effects of hydrogen active cooling on scramjet engine performance.Int.J.Hydrogen Energy,1996,21(4):299-304.
    [182]孙明波,梁剑寒,王振国.超声速燃烧火焰稳定凹腔质量交换特性的数值研究.力学学报,2007,39(2):188-193.
    [183]孙明波,梁剑寒,王振国.二维凹腔超声速流动的混合RANS/LES模拟.推进技术,2006,27(2):119-123.
    [184]潘余.超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究.[博士学位论文].国防科学技术大学研究生院.2007.
    [185]熊海泉,刘昶,郑本武.飞机飞行动力学.航空工业出版社,1990.
    [186]CFD Research Corparation,CFD-Fastran V2003 user manual.Huntsville,2004.
    [187]Gordon S,Mcbride B J.Computer Program for the Calculation of Complex Equilibrium Compositions,Rocket Performance,Incident and Reflected Shocks and Chapman-Jouguet Detonations.NASA SP-273,1971.
    [188]Evans J S,Schexnayder C J.Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic hydrogen Flames.AIAA Journal,1980,18(2):188-193.
    [189]梁剑寒.超燃发动机氢/空气混合增强与燃烧流场的并行数值模拟.[博士学位论文].国防科学技术大学研究生院.1998.
    [190]Norris J W,Edwards J R.Large-eddy simulation of high-speed,turbulent diffusion flames with detailed chemistry.AIAA 1997-0370.
    [191]Gaffney R L,White J A,Girimaji S S,et al.Modeling turbulent chemistry interactions using assumed pdf methods.AIAA 1992-3638.
    [192]Keistler P G,Gaffney R L,Xiao X,et al.Turbulence modeling for scramjet applications.AIAA 2005-5382.
    [193]Roy C J.A computational study of turbulent reacting flowfields for scramjet applications.Ph.D.Dissertation,North Carolina State University,1998.
    [194]Xiao X,Edwards J R,Hassan H A.Variable Turbulent Schmidt Number Formulation for Scramjet Applications.AIAA 2005-1099.
    [195]Menter F R.Two-equation eddy-viscosity turbulence models for engineering applications.AIAA Journal,1994,32(8):1598-1605.
    [196]Bohn D,Schonenborn H,Wilhelmi H.Numerical simulation of supersonic,chemically reacting flow using an implicit finite-volume method.AIAA 1996-0347.
    [197]Deepu M,Gokhale S S,Jayaraj S.Numerical Modeling of Scramjet Combustor Flow Field Using Unstructured Point Implicit Finite Volume Method.AIAA 2006-1382.
    [198]Shuen J S.Upwind Differencing and LU Factorization for Chemical Non-equilibrium Navier-Stokes Equations.Journal of Computational Physics,1992,99:233-250.
    [199]Gerlinger P,Stoll P,Bruggemann D.An Implicit Multigrid Method for the Simulation of Chemically Reacting Flows.Journal of Computational Physics,1998,146:322-345.
    [200]Tu S,Aliabadi S,Johnson A A.A Robust Parallel Implicit Finite Volume Solver for High-speed Compressible Flows.AIAA 2005-1396.
    [201]Tam L T.LU-SGS implicit scheme for entry vehicle flow computation and comparison with aerodynamic data.AIAA 1992-2671.
    [202]Choi J-Y,Oh S.Memory optimization of LU-SGS Code for the acceleration on latest microprocessors.AIAA 2003-0433.
    [203]Kim K H,Kim C G,Rho O H.Accurate computations of hypersonic flows using AUSMPW+ scheme and shock-aligned grid technique.AIAA 1998-2442.
    [204]Kim S-s,Rho O H.A Multigrid algorighm for computing hypersonic,chemically reacting flows.AIAA 2000-2479.
    [205]Lee J H,Rho O H.Numerical analysis of hypersonic viscous flow around a blunt body using Roe's FDS and AUSM+ schemes.AIAA 1997-2054.
    [206]Lee R A,Hosangadi A,Cavallo P A,et al.Application of unstructured-grid methodology to scramjet combustor flowfields.AIAA 1999-0087.
    [207]Liou M S.Progress towards an improved CFD method - AUSM+.AIAA 1995-1701.
    [208]Liou M S.Ten years in the making -AUSM-family.AIAA 2001-2521.
    [209]Darracq D,Champagneux S,Corjon A.Computation of unsteady turbulent airfoil flows with an aeroelastic AUSM+ implicit solver.AIAA 1998-2411.
    [210]Hagenmaier M A.A global relaxation Navier Stokes algorithm for finite rate chemistry calculations in scramjets.Ph.D.Dissertation,the University of Cincinnati,1995.
    [211]Jeong E,Won S H,Jeung I S,et al.Numerical Simulation Study of Supersonic Combustion in Model Combustors.AIAA 2005-3972.
    [212]Yi T H.Numerical simulations of steady and unsteady oblique detonation phenomena with application to propulsion.Ph.D.Dissertation,The University of Texas at Arlington,2005
    [213]Wilkinson B,Allen M.Parallel Programming:Techniques and Applications Using Networked Workstation and Parallel Computers.北京:机械工业出版社,2002.
    [214]Moss J,Perrell E.CFD Analysis of combined cycle Scramjet/Rocket.AIAA 2005-4426.
    [215]Mitani T,Kouchi T.Flame structures and combustion efficiency computed for a Mach 6 scramjet engine.Combustion and Flame,2005,142:187-196.
    [216]Wang Q.On the prediction of convective heat transfer coefficients using general-purpose CFD codes.AIAA 2001-0361.
    [217]Taha A A,Tiwari S N,Mohieldin T O.Validation of fluent CFD code in supersonic flow fields. AIAA 2001-2637.
    [218] Mattick S J, Frankel S H. Numerical Modeling of Supersonic Combustion Validation and Vitiation Studies Using FLUENT. AIAA 2005-4287.
    [219] Reid R, Prausnitz J, Poling B. The Properties of Gases and Liquids. New York:McGraw Hill, 1987.
    [220] Aso S, Okuyama S, Kawai M, et al. Experimental study on the mixing phenomena in supersonic flows with slot injection. AIAA 1991-0016.
    [221] Spaid F, Zukoski E. A study of the interaction of gases jets from transverse slots with supersonic external flows. AIAA Journal, 1968,6(2): 205-212.
    [222] Chenault C F, Beran P S. K-e and reynolds stress turbulence model comparisons for two dimensional injection flows. AIAA Journal, 1998,36(8): 1401-1412.
    [223] Manna P, Chakraborty D. Numerical simulation of supersonic flow behind a backward facing step in free and confined environment. AIAA 2005-3647.
    [224] Schmisseur J D, Gaitonde D V Numerical investigation of new topologies in strong crossing shock wave turbulent boundary layer interactions. AIAA 2000-0931.
    [225] Zheltovodov A A, Maksimov A I. Hypersonic crossing shock waves/turbulent boundary layer interactions. Technical Report Final Report, EOARD Contract F61775-98-WE091.
    [226] Krishnamurthy R, Rogers R C, Tiwari S N. Numerical Study of Hypervelocity Flows Through a Scramjet Combustor. Journal of Propulsion and Power, 1997,13(1): 131-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700