用户名: 密码: 验证码:
新型杆式压电电机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杆式压电电机是一种利用压电陶瓷的逆压电效应来激励定子产生共振进而实现驱动的新原理电机,是压电学、材料学、弹性力学、机械振动学、摩擦学、超精密加工、电力电子和控制理论等多学科交叉发展的结晶。与其他类型压电电机相比,具有结构简单、加工方便等优点,在航空航天、精密器械、微型机器人、医疗设备等领域具有广阔应用前景。传统杆式压电电机存在着输出力矩较小,效率和寿命较低,不适合长时间连续运转,且定转子间的摩擦材料要求较苛刻等不足,为此本文提出一种新型杆式压电电机。该电机利用活齿啮合取代传统杆式压电电机定、转子间的摩擦力来驱动转子旋转,从而减小摩擦和磨损,实现电机低速、大扭矩、高稳定性的目的。
     本文首先提出了一种新型杆式压电电机,并阐述了其工作机理。根据Власов半无矩柱壳理论,运用能量法,推导了新型杆式压电电机传动系统中关键零件——柔轮变形能和电机输出力矩的计算公式,得出了柔轮平均变形能和电机的平均输出力矩。讨论了柔轮变形能和电机输出力矩随电机参数的变化规律。研究发现:电机的输出力矩随传动比、柔轮厚度和施加在定子陶瓷片上电压的增大而增大,随柔轮长度的增大而减小。活齿半径对电机的输出力矩没有影响。
     在壳体理论的基础上,建立了柔轮在一端固定一端自由边界条件下,自由端在径向受啮合活齿作用的中曲面上各项位移、内力和应力的函数方程,研究了各项位移和各项应力的分布规律,讨论了柔轮自由端处各项位移和固定端处各项应力随相关参数的变化规律。研究发现:为得到较大的柔轮径向位移以增大电机的输出力矩,应适当选择较大的壳体长度、合理的传动比以及施加在陶瓷片上的工作电压。
     建立了啮合活齿在中心轮内齿廓不同位置处的力学平衡方程,得出了柔轮、活齿架和中心轮对啮合活齿的作用力表达式。分析了活齿的接触变形、接触应力和啮合刚度随活齿架转角的变化关系。研究了参数变化对活齿所受作用力、应力和接触变形量以及啮合刚度的影响。
     借鉴Donnell壳体理论和振动理论,分别建立了新型杆式压电电机传动系统中柔轮的动力学模型及其活齿传动系统动力学模型。对系统进行了振动分析,得出了柔轮和传动系统在啮合活齿个数变化情况下的振动模态。讨论了相关参数变化对系统动态特性的影响。运用有限单元法对新型杆式压电电机定子的模态和谐响应进行了分析。研究了新型杆式压电电机定子的固有频率和定子上端摆动幅度随参数的变化规律。
     进行了新型杆式压电电机样机的结构设计、制作和原理性实验。对样机定子一阶弯曲共振频率进行了测试,测量结果和计算值基本一致。
Bar-type piezoelectric motor is a kind of motor which uses the inverse piezoelectriceffect of the piezoelectric ceramic to excite the stator to produce resonance, and thenachieve power transmission. It is the crystallization of the piezoelectric science, materialsscience, elasticity, mechanical vibration, tribology, ultra-precision machining, powerelectronics and control theory, etc. multidisciplinary development. Compared with othertypes of piezoelectric motor, It has the advantages of simple structure, easy to process,and has broad application prospects in the field of aerospace, precision instruments,micro-robots, medical equipment. The traditional rod piezoelectric motor there is lessoutput torque, low efficiency and lifetime, and is not suitable for continuous operation fora long time, and given harsh insufficient friction material requirements between the statorand the rotor. So this paper proposes a new bar-type piezoelectric motor. The motor usemovable teeth meshing replace the friction between the stator and the rotor of thetraditional rod piezoelectric motor to drive the rotor rotating, thereby reducing frictionand wear, achieving the purpose of low speed, high torque, high stability.
     A novel bar-type piezoelectric motor is firstly proposed. The working mechanism ofthe motor is described. According to Власов semi-cylindrical shell theory withoutmoments, using the energy method, The calculation formula of the flexible ringdeformation energy which is the key part in the new bar-shaped piezoelectric motor drivesystem and the motor output torque are derived. The average deformation energy of theflexible ring and the average output torque of the motor are also given. And thedeformation energy of the flexible ring and the motor output torque with parameters arediscussed. Results show: The output torque of the motor increases along with the driveratio, the thickness of the flexible ring and the voltage applied to the ceramic plates in themotor stator increase, decreases with increasing the length of the flexible ring. Movabletooth radius has no effect on the output torque of the motor.
     At one fixed end and the other free end boundary condition, the function equationsof the radial displacement, internal forces and stress of the flexible ring are established bythe action of the free end of the meshing movable tooth on the basis of the shell theory.The distribution of the displacements and stresses are researched, the changes of thevarious displacements of the free end of the flexible ring and all kinds of stresses at thefixed end along with the relevant parameters are discussed. Results show: In order toobtain larger the flexible ring radial displacement for increasing the output torque of themotor, longer length of the flexible ring, and reasonable transmission ratio and largerexciting voltage applied to ceramic plate.
     The mechanical equations of meshing teeth in different position of the fixed rigidgear internal profile were established. The forces expressions from the flexible ring, therotor and the rigid gear were obtained. Changes of the movable tooth contact deformation,contact stress and the meshing stiffness with rotating angle of the rotor are analyzed. Theinfluences of suffered force, stress and contact deformation by movable tooth as well asmeshing stiffness with relative parameters changing are studied. Results show: Comparedwith other contacts, contact force, contact stress and meshing stiffness between themovable teeth and the rigid gear are the largest. Meshing movable teeth are in the middleposition of the rigid gear working profile, each amount of change is small, the outputtorque is more stable.
     Learn from Donnell shell theory and theory of vibration, the dynamics models offlexible ring and movable teeth transmission for a novel bar-shaped piezoelectric motordrive system are proposed. Vibration analysis is done. With the meshing movable teethnumbers changing, vibration modes between the flexible ring and movable teeth drivesystem are given. Mean while, it is analyzed which the system's dynamic characteristicsare influenced by the relevant parameter's variation. The modal and the harmonyresponse analyses of the stator of the bar-type piezoelectric motor are done by using thefinite element method. Variation of the natural frequencies of the new bar-shapedpiezoelectric motor stator and the swing amplitude of the stator along with parameters areresearched.
     The structure design and experimental prototype of the new bar-shaped piezoelectricmotor are given. The principle experiment of the motor is done. Finally, measure the firstbending resonance frequency of the prototype stator. The measurement results and thecalculated values are consistent.
引文
[1]赵淳生.超声电机技术与应用[M].北京:科学出版社,2007:1,8-20,239-241,247-251.
    [2]胡敏强,金龙,顾菊平.超声波电机原理与设计[M].北京:科学出版社,2005:1-20.
    [3]刘一声.压电超声电机及其应用[J].压电与声光,1988,10(6):60-71.
    [4] Park S, He S. Standing wave brass-PZT square tubular ultrasonic motor[J]. Ultrasonics,2012,52(7):880-889.
    [5]赵淳生.面向21世纪的超声电机技术[J].中国工程科学,2002,4(2):86-91.
    [6]李华峰,丁庆军,陈超.超声电机启动可靠性研究[J].中国电机工程学报,2013,33(9):138-145.
    [7]郭海训.大力矩高精度超声波电机的基础研究[D].杭州:浙江大学学位论文,2002:1-10.
    [8]刘宏伟.圆柱定子弯曲振动超声波电机及电源的设计与实验研究[D].厦门:华侨大学学位论文,2007:1-13.
    [9]王波,郭吉丰.基于低通滤波的新型超声波电机控制系统[J].浙江大学学报(工学版),2011,45(1):157-162.
    [10]李锋,张亚洲,田一松,等.超声电机在变体飞行器创新效应器中的应用[J].航空科学技术,2012(4):81-83.
    [11]陈翔宇.Disk-Pivot压力电驱动器及其他小型化驱动电源[D].北京:清华大学学位论文,2010:3-4.
    [12]郑伟,赵淳生.低温环境下超声电机定子特性[J].南京航空航天大学学报,2009,41(1):1-5.
    [13] Boumous Z, Belkhiat S, Kebbab F Z. Effect of shearing deformation on the transient response ofa traveling wave ultrasonic motor[J].Sens. Actuators A, Phys.,2009,150(2):243-250.
    [14]杨淋,赵淳生.大力矩应力型纵扭复合超声电机[J].振动、测试与诊断,2012,32(增刊):126-131.
    [15] Hou X, Lee H, Ong C, et al. Development and numerical characterization of a new standingwave ultrasonic motor operating in the30-40kHz frequency range[J].Ultrasonics,2013,53(5):928-934.
    [16] Qu J-J, Zhou N-N, Wang Y-L.Experimental study of air squeeze effect on high-frequencyfriction contact[J].Tribology International,2010,43:2190-2195.
    [17] L Xu, J Xing. An inertial piezoelectric rotary motor[J].Journal of Mechanical EngineeringScience,2010,224(6):1165-1171.
    [18]史敬灼,周鲁英.超声电机系统最大效率控制研究现状与展望[J].微电机,2009,2:64-66.
    [19]赵淳生,朱华.超声电机技术的发展和应用[J].机械制造与自动化,2008,37(3):1-9.
    [20] Maeno T.Recent progress of ultrasonic motors in Japan[C]//The1stInternational Workshop onUltrasonic Motors and Actuators.Yokohama, Japan,2005:15-17.
    [21] Toyama S. Spherical ultrasonic motor for pipe inspection robot[J]. Applied Mechanics andMaterials,2012,186:3-11.
    [22] Harkness P, Lucas M.A brief overview of space applications for ultrasonics[J]. Ultrasonics,2012,52(8):975-979.
    [23]陈维山,李霞,谢涛.超声电机在太空探测中的应用[J].微特电机,2007,1:42-45.
    [24] Hong J K,Park C H,Lee J S,et al. The trial fabrication and characteristics of linear ultrasonicmotor for application to X-Y table[C]//Proceedings of the IEEE Ultrasonic Symposium,1999,1:683-686.
    [25]柳荣一,御手洗礼治.超音波高精密位置决のミステム[J].自动化技术,1995,24(12):76-81.
    [26]张健滔,朱华,赵淳生.杆式旋转超声电机在精密定位平台上的应用[J].中国机械工程,2011,22(15):1842-1846.
    [27] Zhang X,Zhang G,Nakamura K,et al.A robot finger joint driven by hybrid multi-DOFpiezoelectric ultrasonic motor[J]. Sens. Actuators A, Phys.,2011,169(1):206-210.
    [28] Jung W-S, Kang C-Y, Paik D-S, et al. Dynamic properties of an omni-directional piezoelectricmotor for precision position control[J].Ultrasonics,2009,49(6-7):594-598.
    [29] Iion A,Suzuki K,Kasuga M, et al.Development of a self-oscillating ultrasonic micro-motorand its application to a watch[J].Ultrasonics,2000,38(1):54-59.
    [30] Yan G Z,Lu Q H,Ding G Q,et al.The prototype of a piezoelectric medical microrobot[C]//2002International Symposium on Micromechatronics and Human Science,Nagoya, Japan.IEEE,2002:73-77.
    [31] Byungkyu K, Sukho P, Chang Y J, et al.An earth worm-like locomotive echanism for capsuleendoscopes[J].Intelligent Robots and Systems,2005:2997-3002.
    [32]高媛.微型结肠疾病诊疗机器人系统及实验研究[D].上海:上海交通大学学位论文,2012:5.
    [33]史维佳.超声电机建模及实验研究[D].哈尔滨:哈尔滨工业大学学位论文,2011:2-3.
    [34]电子陶瓷情报网编.压电陶瓷应用[M].济南:山东大学出版社,1985:1-4.
    [35][美]B.贾菲等.压电陶瓷[M].北京:科学出版社,1979:1-4.
    [36] Williams A, Brown W.Piezoelectric motor[P].US Patent,2439499.1942-8-20.
    [37] Snitka V, Mizariene V, Zukauskas D.The status of ultrasonic motors in the former dovietunion[J].Ultrasonic symposium,1996,34(2-5):247-250.
    [38] Lavrinenko V V, Nekrasov M.Piezoelectric motor[P].Soviet Patent,217509,1965.
    [39] Akiyama Y.Present status of ultrasonic motors in Japan[J].JEE,1987:76-80.
    [40] Barth H V.Ultrasonic motor driven[J].IBM technical disclosure bulletin,1973,16(7):2263.
    [41]指田年生.振动片型和表面波型超声波电机(译)[J].压电与声光,1985,7(1):73-78.
    [42]指田年生.超音波驱动モ_タ-の试作—原理の理论およぴ实验的检讨[J].日本应用物理,1982,51(6):713-720.
    [43] Vasiliev P, Klimavichjus R, Kondratiev A, et al.Vibration motor control[P].UK Patent,GB2020857A,1979.
    [44] Toshiiku S, Takashi K.An Introduction to UItrasonic Motors[M].Clarendon Press,1993.
    [45]于寒冰.不断发展的超声波电动机[J].日本的科学与技术,1995,(5):39-44.
    [46] Hojjat Y, Karafi M R.Introduction of roller interface ultrasonic motor(RIUSM)[J].Sens.Actuators A, Phys.,2010,163(1):304-310.
    [47] Zhao S, Twiefel J, Wallaschek J.Design and experimental investigations of high powerpiezoelectric transducers for a novel squeeze film journal bearing[C]//Proceedings of SPIE-TheInternational Society for Optical Engineering,2009,7288,72881G.
    [48] Sharp S L, Paine J S N, Blotter J D.Design of a Linear Ultrasonic Piezoelectric Motor[J].Journalof Intelligent Material Systems and Structures,2010,21(10):961-973.
    [49] Shafik M, Nyathi B, Fekkai S. Computer simulation and modelling of3D travelling waveultrasonic motor using a flexural vibration ring transducer[C]. Applied Mechanics and Materials,2013,307:31-41.
    [50] Lee W H, Kang C Y, Paik D S, et al.Butterfly-shaped ultra slim piezoelectric ultrasonic linearmotor[J].Sensors and Actuators,2011,168:137-130.
    [51] Smith G L, Rudy R Q, Polcawich R G, et al. Integrated thin-film piezoelectric traveling waveultrasonic motors[J]. Sens. Actuators A, Phys.,2012,188:305-311.
    [52] He S, Chiarot P R, Park S.A single vibration mode tubular piezoelectric ultrasonic motor[J].IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2011,58(5):1049-1061.
    [53] Zeichfüβl R, Gottlieb B, Wallenhauer C, et al. A Method for Auto-Adjustment of a NewPiezoelectric Drive Closed-loop Control for Precise Centering of the Drive Kinematics[C]//Proceedings of the IEEE International Conference on Mechatronics. Malaga, Spain, April,2009.
    [54] Petit L, Gonnard P. A multilayer TWILA ultrasonic motor[J]. Sens. Actuators A, Phys.,2009,149(1):113-119.
    [55] Stepanenko D A, Minchenya V T. Development and study of novel non-contact ultrasonic motorbased on principle of structural asymmetry[J]. Ultrasonics,2012,52(7):866-872.
    [56]周铁英,董蜀湘.环形三迭片超声振子及用其钳位的微动马达[P].中国发明专利,89109320,1989-12-21.
    [57]赵淳生.21世纪超声电机技术展望[J].振动、测试与诊断,2000,20(1):7-12.
    [58]郄朝辉,金龙,徐志科,等.基于谐振升压的超声波电动机驱动系统研究[J].微特电机,2011,(1):58-60.
    [59] Qu J, Wang Y, Zhou N. Gradient design model of contact interface for ultrasonic motor[J].Journal of Mechanical Engineering,2010,46(17):73-78.
    [60]蒋春容,胡敏强,金龙,等.行波型超声波电机定转子接触粘滑分布特性[J].电工技术学报,2010,25(12):48-53.
    [61]王光庆,陆跃明,郭吉丰.超声波电动机定子振动能量回收转换特性[J].浙江大学学报,2013,47(1):174-181.
    [62]赵宏伟,吴博达,程光明,等.尺蠖型压电旋转驱动器的静动态特性研究[J].哈尔滨工业大学学报,2009,41(3):125-129.
    [63] Liu Y, Chen W, Liu J, et al.A cylindrical traveling wave ultrasonic motor using longitudinal andbending composite transducer[J].Sens. Actuators A, Phys.,2010,161(1-2):158-163.
    [64]刘英想,陈维山,冯培连,等.弯振复合型超声驱动器振动特性研究[J].振动与冲击,2013,32(1):25-29.
    [65] Jiang C R, Jin L, Hu M Q, et al.Rigid contact model of ultrasonic motor based on finite elementmethod[J].Applied Mechanics and Materials,2012,(105-107):495-499.
    [66] Bai Y, Tuncdemir S, Guo J.Analysis of longitudinal and torsional resonance vibrations of apiezoelectrically excited bar by introducing piezoelectric loss coefficients[J]. Journal ofIntelligent Material Systems and Structures,2012,23(4):453-462.
    [67]赵淳生,李朝东.日本超声电机的产业化、应用和发展[J].振动、测试与诊断,1999,19(1):1-7.
    [68] Akiyama Y,张传忠.日本超声电机的现状[J].压电与声光,1988(4):58-62.
    [69] Kurosawa M, Nakamura K, Okamoto T.An ultrasonic motor using bending vibrations of a shotcylinder[J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,1989,36(5):517-521.
    [70] Maeno T.Recent progress of ultrasonic motor in Japan[C].The First International Workshop onUltrasonic Motors and Actuators, Yokohama, Japan,2005.
    [71] Okumura I.A designing method of a bar-type ultrasonic motor for auto focus lenses[C].International Symposium on Theory of Machines and Mechanism, Nagoya, Japan,1992.
    [72]奥村一郎.超音波モ一タの实用化[J].日本音声学会志,2001,57(6):411-416.
    [73] Morita T, Kurosawa M K, Higuchi T.A cylindrical micro ultrasonic motor using PZT thin filmdeposited by single process hydrothermal method(Φ2.4mm,L=10mm stator transducer)[J].IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,1998,45(5):1178-1187.
    [74] Morita T, Kurosawa M K, Higuchi T.A cylindrical shaped micro ultrasonic motor utilizing PZTthin film (Φ1.4mm and L5.0mm stator transducer)[R].Sendai: Proc. of Int. Conf. on Solid-stateSensors&Actuators, Transducers99,1999,2:1744-1747.
    [75] Morita T, Kurosawa M, Higuchi T.Cylindrical Micro Ultrasonic Motor Utilizing Bulk LeadZirconate Titanate(PZT)[J].Jpn. J. Appl. Phys.,1999,38(5B):3347-3350.
    [76] Lu P, Lee K H, Lim S P, et al.A kinematic analysis of cylindrical ultrasonic micromotors[J].Sensors and Actuators,2001, A(87):194-197.
    [77] Koc B, Cagatay S, Uchino K.A piezoelectric motor using two orthogonal bending modes of ahollow cylinder[J].IEEE Trans.Ultrason. Ferroelectr. Frequency Control,2002,4(49):495-500.
    [78]彭海军,王德石,杜贻群.压电超声微马达的研究新进展[J].机械设计与制造,2009,(6):109-111.
    [79] Kanda T, Makino A, Oomori Y, et al.A cylindrical micro ultrasonic motor usingmicro-Machined piezoelectric vibrator[C]//The13th International Conference on Solid-stateSensors and Actuators and Microsystems, Seoul, Korea,2005:721-724.
    [80] Kanda T, Oomori Y, Makino A, et al.Design and Testing of Rotors for a CylindricalMicro-machined Micro-machined Micro Ultrasonic Motor[C]//IEEE Ultrasonics Symposium,2005:301-304.
    [81] Amano T, shii T, Nakamura K, et al.An ultrasonic actuator with multi-degree of freedom usingbending and longitudinal vibrations of a single stator[C]//1998IEEE Ultrasonics Symposium,Miyagi, Japan,1998:667-670.
    [82] Takemura K, Maeno T.Design and control of an ultrasonic motor capable of generatingmulti-DOF motion[J].IEEE/ASME Transactions on Mechatronics,2001,6(4):499-506.
    [83] Takemura K, Maeno T.Characteristics of an ultrasonic motor capable of generating amuti-degrees of freedom motion[C]//Proc. IEEE Int. Conf. Robotics and Automation.SanFrancisco, California,2000:3660-3665.
    [84]董蜀湘,王淑听,沈文江,等.弯曲振动模式压电超声微马达研究[J].声学学报,1999,24(2):120-126.
    [85] Mortia T, Kurosawa M, Higuchi T.An ultrasonic micromotor using a bending cylindricaltransducer based on PZT thin film[J].Sensors and Actuators,1995, A50:75-80.
    [86]赵向东,刘长青,赵淳生.圆柱体弯曲行波压电超声电机运动机理的研究[J].应用力学学报,2000,17(3):120-123.
    [87]褚祥诚,阎立,董蜀相,等.Φ1.8mm棒状压电陶瓷微马达的研究[J].压电与声光,2001,23(2):103-105.
    [88]羊全刚,张凯,周铁英,等.弯曲旋转超声电机接触截面锥形角的分析与实验[J].声学学报,2002,27(5):413-419.
    [89] Dong S, Lim S P, Lee K H, et al. Piezoelectric Ultrasonic Micromotor with1.5mmDiameter[J].IEEE Trans.Ultrason.Ferroelectr.Frequency Control,2003,50(4):361-367.
    [90]朱华,赵淳生.微型旋转超声电机的发展和现状[J].压电与声光,2005,27(6):627-630.
    [91]莫岳平,胡敏强,金龙.双转子柱体声波电机运行机理与实验研究[J].中国电机工程学报,2003,23(1):100-104.
    [92]张凯,周铁英,王欢,等.1mm压电柱式超声微电机的研制[J].声学学报,2004,29(3):258-261.
    [93]周铁英,张凯,陈宇,等.1mm圆柱式超声电机的研制及在OCT内窥镜中的应用[J].科学通报,2005,50(7):713-716.
    [94]马相林,黄卫清,赵淳生.一种新型杆式行波型超声电机的研究[J].机械科学与技术,2004,23(9):1030-1032.
    [95]黄卫清,马相林,董迎辉,等.杆式行波超声电机运动机理的研究[J].振动与冲击,2004,23(2):48-51.
    [96]陶征,董迎辉,赵淳生.压电陶瓷片在杆式超声电机中最佳位置的研究[J].压电与声光,2004,26(1):20-23.
    [97]曲建俊,张国际.实心金属柱状弯曲旋转微超声波马达及其运动机理[J].微电机,2006,39(3):28-31.
    [98]曲建俊,张国际.粘贴压电片的金属柱定子及使用该定子的微超声波马达[P].中国发明专利03132544.0,2004-7-21.
    [99]张辉,董蜀湘,张淑仪,等.1mm压电陶瓷管式微型超声马达研究[J].自然科学进展,2005,15(12):1436-1440.
    [100]马相林,赵淳生,黄卫清.杆式行波超声电机紧固力的实验研究[J].压电与声光,2005,27(4):359-361.
    [101]朱华,陈超,赵淳生.一种微型柱体超声电机的研究[J].中国电机工程学报,2006,26(12):128-133.
    [102]王天华,张辉,周凤梅,等.1mm管式悬臂梁结构微型超声马达研究[J].南京大学学报,2007,43(4):419-425.
    [103]Zhu H, Li Z, Zhao C. An efficient approach to optimize the vibration mode of bar-type ultrasonicmotors[J]. Ultrasonics,2010,50(4-5):491-495.
    [104]朱华,李华峰,赵淳生.小型杆式超声电机及其驱动电源的研究[J].南京航空航天大学学报,2009,41(2):154-158.
    [105]Zhu H, Dong Y, Ma X, et al.New rod-shaped ultrasonic micromotor and its drivingprinciple[J].Transactions of Nanjing University of Aeronautics&Astronautics,2006,23(1):15-19.
    [106]Jin J, Zhao C.A novel traveling wave ultrasonic motor using a bar shaped transducer[J].JournalWuhan University of Technology(Materials Science Edition),2008,23(6):961-963.
    [107]金家楣,张建晖,赵淳生.单振子激励的面内行波旋转超声电机原理[J].湖南大学学报,2008,35(12):27-31.
    [108]王中营,焦群英,陈宇.圆柱弯曲型超声电机定子的结构优化[J].压电与声光,2009,31(5):742-744.
    [109]张健滔,朱华,赵淳生.行波型杆式超声电机模态频率调节[J].中国电机工程学报,2010,30(6):83-87.
    [110]王寅,金家楣,黄卫清.一种面内行波旋转超声电机的模态试验方法[J].振动、测试与诊断,2011,31(5):596-599.
    [111]董迎辉,赵淳生.摇头型超声电机在国内外的发展[J].微特电机,2003(3):35-37.
    [112]邬军飞,褚祥诚,季叶,等.小型方柱压电陶瓷电机的设计及性能[J].稀有金属材料与工程,2009,38(增刊2):245-248.
    [113]Zhao C.Development and applications of ultrasonic motors in China[C]//The2nd InternationalWorkshop on Piezoelectric Materials and Applications in Actuators, Paderborn, Germany,2005.
    [114]Hirose S, Yamayoshi Y, Ono H.A small non-contact ultrasonic motor[C]//IEEE Proceedings ofUltrasonics Symposium,1993:453-456.
    [115]花田秀人,饭田治久,中村健太郎,等.回转翼利用放射压驱动超音波モ一タ[C]//平成3年秋季,日音论文集,日本:日本音响协会,1991,2-4-3:937-938.
    [116]Nakamura K, Ito T, Kurosawa M, et al.A trial construction of an ultrasonic motor with fluidcoupling[J].Jpn. J.Appl. Phys.,1990,29(1):160-161.
    [117]Ueha S, Hashimoto Y, Koike Y.Ultrasonic actuators using near field acoustic levitation[J].1998IEEE International Ultrasonics Symposium. Japan,1998:661-666.
    [118]Yamayoshi Y,Shiina J, Tamura H.Noncontact ultrasonic motor with two flexural standing wavevibration disks[J].Japanese Journal of Applied Physics,2009,48(9Part2):09KD101-09KD105.
    [119]Hu J, Nakamura K.Characteristics of a non-contact ultrasonic motor using acoustic levitation[J].IEEE Ultrasonic Symposium,1996:373-376.
    [120]Hu J, Yamazaki T, Nakamura K, et al.Analyses of an ultrasonic motor driving fluiddirectly[J].Japanese Journal of Applied Physics,1995,34(5B):2702-2706.
    [121]Yamazaki T, Hu J, Nakamura K, et al.Trial construction of a non-contact ultrasonic motor withan ultrasonically levitated rotor[J].Japanese Journal of Applied Physics,1996,35(5):3286-3288.
    [122]Isobe H, Kyusojin A.Motion error correction for non-contact ultrasonics motor driven bymulti-layered actuator[J].Microsyst Technol,2005,11:970-973.
    [123]夏长亮,胡俊辉,史婷娜,等.基于液体媒质的非接触型超声波电机理论与实验研究[J].中国电机工程学报,2001,21(8):64-67.
    [124]刘景全,杨斌,周广华,等.非接触压电马达驱动机理分析[J].压电与声光,2005,27(5):562-565.
    [125]季叶,赵淳生.一种具有高转速的新型非接触式超声电机[J].压电与声光,2006,28(5):527-533.
    [126]鄂世举,汤乐超,程光明.非对称波驱动的非接触式超声电机[J].中国电机工程学报,2011,31(9):94-99.
    [127]陈超,李繁,严小军,等.非接触式球形转子压电作动器的研究[J].中国电机工程学报,2012,32(6):163-169.
    [128]马相林,黄卫清,赵淳生.一种新型杆式行波型超声电机的研究[J].机械科学与技术,2004,23(9):1030-1032.
    [129]黄卫清,马相林,董迎辉,等.杆式行波超声电机运动机理的研究[J].振动与冲击,2004,23(2):48-51.
    [130]薛大为.板壳理论[M].北京:北京工业学院出版社,1988:278-297.
    [131]薛大为.集中力作用下闭口截面圆柱壳的一个解[J].力学学报,1979(1):92-95.
    [132]Raven F H.Velocity and Acceleration Analysis of Plane and Space Mechanism by Means ofIndependent Position Equations[J]. Trans. ASME,1958,(25):1-6.
    [133]Eckhart H D.Kinematic Design of Machines and Mechanisms[M]. McGraw-Hill,2002:41-51.
    [134]Norton R L.Design of Machinery-An Introduction to the Synthesis and Analysis of Mechanismsand Machines[M].McGraw-Hill,2001:125-129.
    [135]李瑰贤,杨伟君,顾晓华.滚柱活齿传动的啮合理论及齿廓接触区数值仿真[J].哈尔滨理工大学学报,2001,6(4):28-31.
    [136]徐芝纶.弹性力学(第二版)下册[M].北京:人民教育出版社,1982:222-226.
    [137]李剑锋,曲继方.波齿传动啮合状态几何模型的建立及其应用[J].甘肃工业大学学报,1989,15(3):26-33.
    [138]丁肇棣,曲继方.波齿传动的受力分析和效率计算[J].东北重型机械学院学报,1988,12(2):28-32.
    [139]曲继方.活齿齿轮副啮合状态等效模型及其应用[J].佳木斯工学院学报,1989,7(3):8-15.
    [140]丁肇棣,曲继方,魏彤,等.圆柱活齿传动的强度计算[J].东北重型机械学院学报,1996,12(4):292-297.
    [141]曹志远.板壳振动理论[M].北京:中国铁道出版社,1989:263-311,378-389.
    [142]Xu L, Qin L. Nonlinear analysis for a novel actuator[J]. Mechanism and Machine Theory,2010,45(3):426-437.
    [143]Jeong K H, Kim K J. Free vibration of a circular cylindrical shell filled with boundedcompressible fluid[J]. Journal of Sound and Vibration,1998,217(2):197-221.
    [144]Jeong K H, Lee S C. Hydroelastic vibration of a liquid-filled circular cylindrical shell[J].Computers and Structures,1998,66(2-3):173-185.
    [145]Chung H. Free vibration analysis of circular cylindrical shells[J]. Journal of sound and vibration,1981,74(3):331-350.
    [146]安子军,张鹏,杨作梅.摆线钢球行星传动系统参数振动特性研究[J].工程力学,2012,29(3):244-251.
    [147]潜波,巫世晶,周广明,等.行星齿轮传动系统动力学特性研究[J].系统仿真学报,2009,21(20):6608-6625.
    [148]王世宇,张策,宋轶民,等.行星齿轮传动固有频率的统计特性分析[J].机械科学与技术,2005,24(6):705-709.
    [149]Xu L, Zhu X.Natural frequencies and vibrating modes for a magnetic planetary gear drive[J].Shock and Vibration,2012,19(6):1385-1401.
    [150]Xu L, Hao X. Internal resonance analysis for electromechanical integrated toroidal drive[J].Journal of Computational and Nonlinear Dynamics,2010,5(4):1-12.
    [151]张策.机械动力学(第二版)[M].北京:高等教育出版社,2008:324-336.
    [152]王中营,焦群英,陈宇,等.圆柱弯曲型超声波电动机定子优化设计[J].微特电机,2008,11:25-28.
    [153]沈润杰.微超声波电机的研究[D].杭州:浙江大学博士后学位论文,2006:22-29.
    [154]王剑.柱状超声波电机的设计理论及控制[D].杭州:浙江大学学位论文,2009:35-39.
    [155]张华,曹祥红,金龙,徐志科.小型柱体超声波电动机的设计及有限元分析[J].微电机,2007,40(3):19-22.
    [156]余建华.环状行波型超声波电机及其定子结构特性研究[D].武汉:华中科技大学学位论文,2003:32-45.
    [157]徐志科.行波型超声波电机的模型仿真与试验研究[D].南京:东南大学学位论文,2005:45-60.
    [158]曲继方.活齿传动理论[M].北京:机械工业出版社,1993:13-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700