用户名: 密码: 验证码:
新型直线超声电机的研究及其在运动平台中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线超声电机具有直接输出推力、无电磁干扰、定位精度高、结构简单、设计灵活等特点,这使得它在近些年得到了快速的发展,并在微小型精密驱动系统中发挥着日益显著的作用。目前,在德国、日本、美国、以色列等国家,直线超声电机正朝着产业化方向发展,且其产品逐步在某些高、精、尖技术领域得到了应用。我国的直线超声电机研究工作刚刚开始,尚没有国产直线超声电机产品出现。国外该类低端产品已进入我国市场,但其价格昂贵,高端产品也限制对我国出口。为此,加大直线超声电机的研究和开发力度,加速直线超声电机的产业化发展,将会有力的促进我国高新技术产业的发展。本课题在国家自然科学基金重点项目“压电精密致动技术的基础研究”(No.50735002)和国家自然基金和广东联合基金项目“精密电子制造装备关键理论与技术研究”(No. U0934004)的资助下,以研究和开发拥有自主知识产权的直线超声电机为目标,开展了直线超声电机的驱动机理、优化设计、接触动力学模型、性能仿真、电机实验等方面的研究工作,并把所研制的3种新型直线超声电机在运动平台中进行了应用尝试,实现了大行程,高精度。本论文的主要研究内容和成果如下:
     1、总结了直线超声电机的特点,提出了新的分类方法。通过对国内外直线超声电机的研究历程、应用现状和应用前景的分析,指出了深入进行直线超声电机研究的必要性。
     2、根据国内外现有的研究成果,对压电陶瓷的性能指标及其诱发应变机制、椭圆运动的形成机理、直线超声电机对压电陶瓷、定子及动子材料、摩擦材料的要求等关键技术问题进行了系统的总结。
     3、提出了一种利用同形弯振模态的轮式直线超声电机的设计理论,并系统地分析了该种电机的工作机理。通过所研制的3种轮式直线超声电机,总结了该种电机定子的动态设计方法和电机总体结构设计方法。
     4、提出了一种具有三角形位移放大机构的面内模态直线超声电机。系统的分析和阐述了该型电机的工作原理,动力学特性和定子动力学优化设计方法。三角形位移放大结构的特别设计,使得该种电机结构紧凑,易于小型化。
     5、提出了利用响应面法对直线超声电机定子进行优化设计的方法,并应用于蝶形直线超声电机定子的优化设计。结果表明,优化后的电机满足了多方面的设计要求:两相工作模态频率差较小(<100Hz);定子驱动足振幅较大(>2μm);工作模态远离干扰模态(>1kHz);定子支撑点振幅较小(<1μm)。
     6、建立了基于库仑摩擦模型的驻波型直线超声电机接触动力学模型,对电机定、动子之间的动力学行为进行了研究。通过仿真,分析了不同模型参数对电机性能的影响,并通过实验对该模型进行了验证。
     7、根据所研制的不同直线超声电机的结构特点,设计制作了3种不同结构形式的运动平台,并构建了运动平台的测控系统,实现了大行程(≤100mm)、高定位精度(±0.5μm)。
Linear ultrasonic motors have been developing rapidly in recent years and they are playing animportant role in microminiaturizing precision driving systems for their attractive characteristics ofsimple mechanical construction, easy to realize miniaturization and lightweight of the device, highpositioning accuracy, direct drive, no electromagnetic interference and so on. Now, several types oflinear ultrasonic motors have been commercialized by some foreign companies and well used in somehigh technology fields. However, the study on the linear ultrasonic motor is immature and there is noproduct for sale in China. At the same time, the high-end products of linear ultrasonic motors arelimited to export to China. Therefore, there is much need to strengthen the efforts to study linearultrasonic motors.
     Supported by NSFC (No.50735002) and NSFC-Guangdong Natural Science Foundation(No.U0934004), this dissertation presents a systemic research on drive mechanism, optimizationdesign and experiment, contact dynamic model, performance simulation. Furthermore, three newtypes of linear ultrasonic motor have been used in moving stage and achieved long stroke and highprecision. To conclude, main contributions of this dissertation are as follows.
     1. The characteristics of linear ultrasonic motor are systematically summarized and theclassification method of them is proposed. At the same time, the state of the art of linear ultrasonicmotors and their applications both here and abroad are reviewed and summarized. Furthermore, theapplication prospects of linear ultrasonic motor are described and the need for the study of linearultrasonic motors is proposed.
     2. The key problems in design of linear ultrasonic motors are summarized and analyzed: theperformance figure of piezoelectric ceramic and its strain induced mechanism, the formation methodof elliptical motion, the requirement for piezoelectric ceramics, materials of the stator and the slider,friction materials, and so on.
     3. A new design theory of the wheel-shaped linear ultrasonic motor based on bending modes isproposed. The motion mechanism of the motor is analyzed in detail. The dynamic design of the statorand the optimal design of the whole structure of the motor are carried out. Three types of linearultrasonic motors with wheel-shaped stator have been fabricated.
     4.A new linear ultrasonic motor with triangular structure based on in-plane modes is proposed.The operation principle, dynamic performance and structural optimum design of the stator areanalyzed and described in detail. The especial design of the stator is its isosceles triangular structure part, which makes the motor structure compact and easy to realize miniaturization.
     5. A butterfly-shaped linear ultrasonic motor is used as an example to study on the new optimumdesign method of linear ultrasonic motors based on response surface methodology. Many designrequirements of optimal results can be well fulfilled: the work mode frequency difference is little(<100Hz), the amplitude of the driving foots is large (>2μm), the disturb modes are far away fromworking modes (>1kHz) and the amplitude of the clamping points is little (<1μm).
     6. A contact model is established based on coulomb law of friction, which simultaneouslydescribes the dynamic behavior between the slider and the stator. The influence of the modelparameters on the motor behavior is studied to find out the requirements for an optimal contactbetween the slider and the stator. The model prediction agrees well with the experiment data.
     7.Several types of positioning stage drived by different linear ultrasonic motors developed inthis dissertation have been fabricated. At the same time, the measurement and control systems havebeen constructed. The motion stages realize long stroke(~100mm) and high positioning precision (±0.5μm).
引文
[1]刘剑.基于薄板面内振动的直线超声电机的研究.硕士学位论文,南京:南京航空航天大学,2001
    [2]李朝东.纵弯复合大推力直线超声电机的研究.博士学位论文,南京:南京航空航天大学,1999
    [3]赵淳生著.超声电机技术与应用.科学出版社,北京,2007.9
    [4] F J. Britten. Britten’s watch and clock maker’s handbook: dictionary and guide. New York:Arco Publishing Co.,1978:109
    [5]见诚尚志,指田年生.超音波モ—タ入门.东京:总合电子出版社,1991,16-23
    [6]指田年生.超音波モ—タ.应用物理,1985,54(6):589-590
    [7]内野研二.压电セラミックスを用いた超音波モ—タ.固体物理,1988,23(8):124-132
    [8] S.Ueha, Y.Tomikawa. Ultrasonic motors theory and applications. Oxford University Press,1993
    [9] M. Kuribayashi, S. Ueha and E. Mori. Excitation conditions of flexural traveling wave for areversible ultrasonic linear motor. J. Acoust. Soc. Am,1985,77(4):1431-1435
    [10] M. Kurosawa, S. Ueha. High speed ultrasonic linear motor with high transmission efficiency.Ultrasonics,1989,27:39-44
    [11]宫崎隆,青柳诚司,神谷好承,等.超音波振动を用ぃたリニアモ—タの基础的考察.1989年度精密工学会春季大会学术讲演会讲演论文集,273-274
    [12] A. Kimura, H. Seki. Vibration wave driven motor. U. S. Patent,5274294,1993
    [13]星伸一,河村笃男.3自由度运动が可能な自律形平面超音波アクチュエ—タ.自动化技术,1994,26(5):14-18
    [14]星伸一,河村笃男.スライダ驱动型超音波アクチュエ—タの解析と多自由度平面型アクチュエ—タへの应用.电气学会论文志D,1994,114(11):1074-1082
    [15] Linear piezoelectric ultrasonic motor. U.S. Patent,6984920,2006
    [16] Bansiavichus R. UdSSR Patent No.693493,1977
    [17] Zumeris J. European Patent Application, EP0663616A2,1994.
    [18] W. Wishnewskiy. Offenlegungsschrift19938954,1999.
    [19] W. Wishnewskiy. US Patent,20030052573A1,2002.
    [20] W. Wishnewskiy, S. Kovalev, A. Vyshnevshyy. New ultrasonic piezoelectric actuator fornanopositioning. Actuator2004, Bremen.
    [21] W.Wischnewskij, A. Wischnewskij. Linear ultraschall-piezomotor. DE102004059429.
    [22] K.Spanner, O.Vyshneevskyy, W. Wishnewskiy. New linear ultrasonic micro-motor forprecision mechatronic systems. Actuator2006, Bremen.
    [23] S. Ueha, Y. Tomikawa, et al. Ultrasonic motors: theory and applications. Oxford UniversityPress,1993
    [24] Endo, N. Sasaki and Y. Tomikawa. Linear type ultrasonic motor using two-dimensionallypositioned piezoelectric elements. Ferroelectrics,1990.112:165-170
    [25]上羽贞行.超音波アクチュエ—タ.电子情报通信学会志,1989,72(4):457-462
    [26]大西一正.超音波リニアアクチュエ—タの原理とメカニズム.省力と自动化,1990,12:52-56
    [27]大西一正,内藤浩一,中泽彻,山越贤乘.纵-曲げ结合振动を用いた超音波リニアアクチュエ—タ.日本音响学会志,1991,47(1):27-34
    [28] Y.Tomikawa, T.Ogasawara. Ultrasonic motors-constructions/characteristics/applications.Ferroelectrics,1989,91:163-178
    [29] M. Kurosawa, O. Kodaira, Y. Tsuchitoi, et al. Transducer for high speed and large thrustultrasonic linear motor using two sandwich-type vibrators. IEEE Transactions on UltrasonicFerroelectrics and Frequency Control,1998,45(5):1186-1195
    [30] T.Wakai, M. Kuiosawa, T. Higuchi. Transducer for an ultrasonic linear motor with flexibledriving part.1998IEEE Ultrasonic Symposium
    [31] K. Asumi, T. Fujimura, R. Fukunaga, et al. Improvement of the low speed controllability of aV-shaped, two bolt-clamped Langevin-type transducer, ultrasonic linear motor. Proc. Int.Symp. On Micro-NanoMechatronics and Human Science,2007,377-382,11-14Nov, Nagoya,Japan.
    [32] K.Asumi, R.Fukunaga, T. Fujimura, and M. K. Kurosawa. High speed, high resolutionultrasonic linear motor using V-shape two bolt-clamped Langevin-type transducers. Acoust.Sci.&Tech.,2009,30(3):180-186.
    [33] K.Asumi, R. Fukunaga, T. Fujimura and M. K. Kurosawa. Miniaturization of a V-Shapetransducer ultrasonic motor. Jpn. J. Appl. Phys.,2009,48(7):07GM02-1-07GM02-5. DOI:10.1143/JJAP.48.07GM02.
    [34] SQUIGGLE motor overview. http://www.newscaletech.com/downloads.html,2007-6-6
    [35] Hu Junhui. A standing wave-type noncontact linear ultrasonic motor. IEEE Transtactions OnUltrasonics Ferroelectrics And Frequency Control,2001,48(3):234-251
    [36] M.K.Kurosawa. State-of-the-art surface acoustic wave linear motor and its future applications.Ultrasonics,2000,38(3):15-19
    [37]吉田龍一,岡本泰弘.マイクロ圧電アクチュ工‐夕[J].精密工学会誌,2002,68(5):645-648
    [38]桑名捻,神原哲郎,千頭基孝.圧電素子を用いた駆動装置[C].精密工学会春季大会学術講演論文集,1999,344
    [39] Chong-Yun Kang, Kyoung-Ho Yoo, Hyun-Phill Ko, et al. Analysis of driving mechanism fortiny piezoelectric linear motor. J Electroceram,2006,17:609-612
    [40] T.Takano, Y. Tomikawa. Characteristics of the ultrasonic linear motor using radial andnonaxisymmetric vibration modes of an annular plate. Jpn. J. Appl. Phys,1995,34Part1(9B):5288-5291
    [41] PILine miniature high-speed, ultrasonic piezo linear motor for OEMs. http://www.pi-china.cn/pdf/PIChinaCD/pdf/P661_Datasheet.pdf,2009-6-6
    [42] PCLM Linear Motors. Co. ANORAD, USA,1998
    [43] Nanomotion Catalog2008. http://www.nanomotion.com,2009-6-6
    [44] http://www.piezo-tech.com,2009-6-6
    [45] EDO piezoelectric motor. http://www.sensorsmag.com/sensors/article/articleDetail.jsp?id=361287,2009-6-8
    [46] http://www.elliptec.com/en/products/motor-x15g/elliptec-motor-x15g.html,2007-6-8
    [47] Francis S. Luecke, A.Tuganov. Piezoelectric Actuator for Optical Alignment Screws, U.S.Patent5410206, Apr.25,1995.
    [48]董蜀湘,孟永钢,等.利用压电和电流变功能材料构造的平面步进式驱动器,功能材料,2000,31(5):534-535
    [49]刘维东,狄士春,等.线形双向式超声马达的设计与分析.压电与声光,1997,19(4):226-230
    [50]辜承林,董干.双π型压电超声波直线电机.中国电机工程学报,1998,18(2):226-330
    [51]李朝东等.仿生步行小型直线超声电机.微特电机,2001,11(6):10-11
    [52]胡伟.直线型行波超声马达的研究.硕士学位论文,南京:南京航空航天大学,1996
    [53]胡伟,赵淳生.直线型行波超声马达的研究.振动、测试与诊断,1996,16(3):8-14
    [54]李朝东,金龙,赵淳生.复合定子型大推力行程直线超声电机特性研究.声学学报,1999,24(6):653-654
    [55]赵淳生,李朝东.直线超声电机及其驱动振子.中国发明专利,ZL9811128.2,1998-5-7
    [56]刘剑,赵淳生.弯扭耦合型驻波超声马达定子的研究.应用力学学报,1998,15(增刊):159-163
    [57]刘剑,赵淳生.基于利用矩形板振动的直线超声电机的设计.振动与波利用技术的新进展.东北大学出版社,2000.9,255-259
    [58]赵淳生,刘剑.基于矩形压电陶瓷薄板面内振动的直线超声电机,中国发明专利,ZL01127038.1,2001-7-27
    [59]许海.小型、精密直线超声电机及其驱动与控制技术.博士学位论文,南京:南京航空航天大学,2005
    [60]赵淳生,金家楣.方板式直线超声电机及其电激励方法.中国发明专利,CN200710020965.7,2007-4-5
    [61]李玉宝.新型直线超声电机及其应用的研究.博士学位论文,南京:南京航空航天大学,2009
    [62] Markus G. Bauer, Thomas A. Dow. Design of a linear high precision ultrasonic piezoelectricmotor. North Carolina State University, Raleigh, NC27695
    [63] Ultra high vacuum system for chemical analysis and thickness measurement. Co. Kyocera,Israel,2000
    [64]超声波线性电动机的应用产品-小型电动遥控反射镜.机电信息,Vol.5
    [65]胜又育秀,小川矿一,通口健.宇宙用π字型リニア超音波モ—タの试作.宇宙科学技术连合讲演会讲演论文集,1994,38th:123-124
    [66]王大春.压电陶瓷超声波电机.压电与声光,1989,11(4):53-60
    [67]袁易全.超声换能器.南京:南京大学出版社,1992
    [68]李远等.压电与铁电材料测量.北京:科学出版社,1984
    [69] Zu Jiakui, Zhao Chunsheng. Research on resonance and anti-resonance states of free stator oftraveling wave ultrasonic motors. Chinese Journal of Acoustics,2004,23(4):289-301
    [70]祖家奎.行波型超声电机电学特性与驱动控制技术研究.南京:南京航空航天大学博士后研究报告,2004
    [71]张福学,王丽坤.现代压电学.北京:科学出版社,2001
    [72]山东大学压电铁电物理教研室编.压电陶瓷及其应用.济南:山东人民出版社,1994
    [73]王树昕,董蜀湘,桂治轮,李龙土.压电陶瓷材料对超声马达性能的影响.压电与声光.2002,22(1):23-29
    [74]林书玉.超声换能器的原理及设计.北京:科学出版社,2004
    [75]关亮.方环形直线驻波超声电机的研究.硕士学位论文,锦州:辽宁工学院,2007
    [76]褚祥诚,陈维山,陈在礼.超声波马达定子部分的粘接工艺.电子工程技术,1997,18(3):121-123
    [77] A.Tokushima. Ultrasonic motor. National Technical Report,1987,33(5):542-550
    [78]束德林主编.金属力学性能.北京:机械工业出版社,1995
    [79]赵淳生,李朝东.日本超声电机的产业化、应用和发展.振动、测试与诊断.1999,19(1):1-7
    [80] T.Hemsel, J.Wallaschek. State of the art and development trends of ultrasonic linear motors.IEEE Ultrasonics Symposium, Vancouver, BC, Canada,2000
    [81] M.Takashi. Recent progress of ultrasonic motors in Japan.The First International Workshopon Ultrasonic Motors and Actuators, Yakohama, Japan,2005
    [82] Dong Shuxiang, Yan Li, Wang Naigang, et al. A small, linear, piezoelectric ultrasoniccryomotor. Applied Physics Letters,86,053501(2005)
    [83] Zhao Chunsheng, Zhao Xiangdong, Liu Changqin, et al. Efficiency improvement of ultrasonicmotor using cylinder-bending traveling wave. IEEE International Ultrasonic Symposium, SanJuan, Puerto Rico,2000
    [84]刘剑,赵淳生.基于矩形薄板面内振动的直线超声电机的研究.声学学报,2003,28(1):86-90.
    [85]许海,李洁,赵淳生.双足型直线超声电机的设计与实验.中国机械工程,2005,16(3):243-245
    [86]朱华.行波型杆式超声电机的关键技术研究.博士学位论文,南京:南京航空航天大学.2007
    [87]胡金云,鹿存跃,陈宇,周铁英.双振子型直线超声电机.清华大学学报(自然科学版),2008,48(8):1236-1239
    [88]鹿存跃,魏燕定,郭吉丰,等.双振子自走型直线超声电机的研究.浙江大学学报(工学版),2009,43(8):1469-1472
    [89] Jin Jiamei, Zhao Chunsheng. A method for improving the performances of ultrasonic motorsusing intermittent contact scheme, Nanjing, China,4thInternational workshop on piezoelectricmaterials and applications in actuators. September.9-14,2007
    [90]胡海岩.机械振动与冲击.北京:航空工业出版社,1998
    [91]马相林.杆式行波型超声电机的研究.硕士学位论文,南京:南京航空航天大学,2004
    [92] Bansiavichus R. UdSSR Patent,693493,1977
    [93] J. Zumeris. European Patent Application, EP0663616A2,1994
    [94]时运来,李玉宝,赵淳生.基于面内模态的直线超声电机的优化设计.中国电机工程学报,2008,28(30):56-60
    [95]王光远.应用分析动力学.北京:人民教育出版社,1981
    [96]邱家俊.机电分析动力学.北京:科学出版社,1992
    [97]胡仁喜,王庆五,阎石,等编著. ANSYS8.2机械设计高级应用实例.北京:机械工业出版社,2006
    [98] R.J.Allemang. A correlation coefficient for modal vector analysis. Proceedings of the1stInternational Modal Analysis Conference, Orlando, Florida,110-116,1982
    [99] R. D库克著.程耿东,何方,等译.有限元分析的概念和应用.北京:科学出版社,1989
    [100]张令弥,何柏庆,袁向荣.动态有限元模型修正中灵敏度分析的迭代LANCZOS方法.振动工程学报.1994,7(3):230-234
    [101] P.Hagedorn, J.Wallaschek. Traveling Wave Ultrasonic Motors, Part I: Working Principle andMathematical Modelling of the Stator, Journal of Sound and Vibration,1992,155(1):31-46
    [102] J.Wallaschek, P.Hagedorn and W. Konrad. Traveling wave ultrasonic motors part II: anumerical method for the flexural vibrations of the stator. J. Sound. Vib.1993,168:115-122.
    [103]赵向东,赵淳生.行波超声电机带齿定子固有频率解析.振动、测试与诊断,1998,18(4):243-247
    [104] H. Hirata, S. Ueha. Design of a traveling wave type ultrasonic motor, IEEE Transactions onUltrasonics, Ferroelectrics, And Frequency Control,1995,42(2):225-231
    [105] H. Hirata, S. Ueha. Characteristics estimation of a traveling wave type ultrasonic motor. IEEETransactions on Ultrasonics. Ferroelectrics. And Frequency Control,1993,40(4):402-406
    [106] Nesbitt W. Hagood, Andrew J. Mcfarland. Modeling of a piezoelectric rotary ultrasonic motor.IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,1995,42(2):210-224
    [107] P.Le Moal, P. Minotti. A2-D analytical approach of the stator/rotor contact problem includingrotor bending effect for the high torque piezomotor design. Eur. J. Mech., A/Solids,1997,16(6):1067-1103
    [108]朱华.行波型杆式超声电机的关键技术研究.南京航空航天大学博士论文.2007
    [109] G.E.P.Box, J.S.Hunter. Multifactor experimental design for exploring response surface.Annals of Mathematical Statistics,1957,28:195-241
    [110] W.J.Hill, W.G.Hunter. A review of response surface methodology: a literature survey.Technometrics,1966,8(4):571-590
    [111] G.E.P.Box, K.B.Wilson. On the experimental attainment of optimum conditions (withdiscussion). Journal of Royal Statistical Society,1951, B13:1-45
    [112] G.E.P Box, N.R. Draper. A basis for the selection of a response surface design. Journal ofAmerican Statistical Association,1959,54:622-654
    [113] R.H.Myers, D.C. Montgomery response surface methodology. New York, Wiley andSons.1995:1-200
    [114] A.I. Khuri, J.A. Cornell. Response Surfaces,2ndEdition. New York, Marcel Dekker, INC.1996
    [115] V.V.Toropov. Simulation approach to structural optimization. Structural Optimization,1989,1(1):37-46
    [116] W.J.Roux, N.Stander, R.T.Haftka. Response surface approximations for structuraloptimization. International Journal of Numerical Methods in Engineering.1998,42:517-534
    [117] G.Venter, R.T.Haftka, J.H. Starnes. J. Construction of response surface approximations fordesign optimization. The6thAIAA/NASA/ISSMO Symposium on Multidisciplinary Analysisand Optimization. Bellevue, Washington,1996,1:48-564
    [118] M.H.V. Houten, A.J.G. Schoofs, D.H.V. Campen. Response surface techniques in structuraloptimization.1stWCSMO World Congress of Structural and Multidisciplinary Optimization.Germany,1995:89-95
    [119] S. Kok, N. Stander, W. Roux. Thermal optimization in transient thermoelasticity usingresponse surface approximations. International Journal for Numerical Methods in Engineering,1998,43:1-21
    [120] Nesbitt W.Hagood, Andrew J. Mcfarland. Modeling of a piezoelectric rotary ultrasonic motor,IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,1995,42(2):210-224
    [121] Norddin EI Ghouti. Hybrid modeling of a traveling wave piezoelectric motor. PhD Thesis,Department of Control Engineering in Aalborg University, May,2000
    [122]赵向东.旋转型行波超声电机动力学模型及性能仿真的研究.博士学位论文,南京:南京航空航天大学,2000
    [123]上羽贞行,富川义郎.超声波马达理论与应用.上海:上海科学出版社,1998
    [124] J.L.Pons, H.Rodriguez, J.F.Fernandez, et al. Parametrical optimisation of ultrasonic motors,Sensors and Actuators. A, Physical,2003,107(2):169-182
    [125] Jorg Wallaschek. Contact mechanics of piezoelecctric ultrasonic motors. Smart Mater. Struc,1998,7(5):369-381
    [126]陈超.旋转型行波超声电机理论模型的研究.博士学位论文,南京:南京航空航天大学,2005
    [127] H.Hirata, S.Ueha. Design of a traveling wave type ultrasonic motor. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,1995,42(2):225-231
    [128] H.Hirata, S.Ueha. Characteristics estimation of a traveling wave type ultrasonic motor. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control,1993,40(4):402-406
    [129] T. Maeno, David B. Bogy. Effect of the rotor/stator interface condition including contact type,geometry, and material on the performance of ultrasonic motor. Transactions of the ASME,1994,116(4):726-732
    [130]孙合明.纵扭复合型超声电机的研究.博士学位论文,南京:南京航空航天大学,2000
    [131]郭海训,郭吉丰,刘晓.纵扭复合型超声波电机的力学传递模型.中国电机工程学报.2003,23(5):80-85
    [132]刘锦波,陈永校.超声波电机定转子接触的摩擦传动模型及其实验研究.中国电机工程学报.2000,20(4):59-63
    [133]鹿存跃.基于扭转振动的旋转型压电电机的研究.博士学位论文,南京:南京航空航天大学,2004
    [134]龚书娟.纵扭复合型超声波电机的若干问题研究.博士学位论文,杭州:浙江大学,2005
    [135]陶征.纵扭复合型超声电机的研究.博士学位论文,南京:南京航空航天大学,2006
    [136] JEAN-CLAUDE PIEDB UF, JEAN DE CARUFEL. Friction and stick-Slip in robots:simulation and experimentation. Multibody System Dynamics,2000,4(4):341-354
    [137] S.Endo, H.Kobayashi, C.J.Kempt, et a1. Robust digital tracking controller design forhigh-apeed positioning system. Control Eng.Practice,1996,4(4):527-536
    [138] Ken vanagisawa, et a1. Two dimensional drive system. U.S. Patent, No.006327929B1,2001,11.11
    [139] H.Mizumoto,罗兵.采用扭轮摩擦传动的超精密定位系统.国防科技参考,1997,18(3):58-62
    [140]叶云岳.直线电机在现代机床业中的应用与发展.电机技术,2010,3:1-5
    [141]蔡长春,徐志锋,潘晶,等.直线电机的发展和应用.微电机,36(2):47-50
    [142]宋书中,胡业发,周祖德.直线电机的发展及应用概况.控制工程,2006,13(3):199-201
    [143]节德刚,刘延杰,孙立宁,等.一种宏微双重驱动精密定位机构的建模和控制.光学精密工程,2005,13(2):171-178
    [144]陈戬恒.应用于精密定位的超磁致伸缩执行器的控制研究.浙江大学硕士学位论文,2007
    [145]高培德.智能材料和结构.功能材料与器件学报,2002,8(2):93-98
    [146]郝晓红,梅雪松,张东升,等.新型磁悬浮精密定位平台的研究.西安交通大学学报,2005,39(9):937-940
    [147]刘俊标.微纳加工中的精密运动平台技术.北京:北京工业大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700