用户名: 密码: 验证码:
基于MPA和IDA的偏心结构性态评估分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性态的地震工程及其相关设计理论、方法等都是目前地震工程学术界和工程界广泛关注的课题。其主要的研究内容为如何依据设防水准合理确定设计参数,使结构的抗震能力最优,并使结构在不同强度的地震作用下,达到预计的性态水平,以减少生命财产损失。在性态抗震理论中,采用何种方法高效、精确地分析结构的性态反应,是基于性态的地震工程中的重要基础课题之一。同时,近年来我国大、中型城市中土木工程建设日渐增多,其中不乏偏心和不规则结构,如何科学合理地分析这些偏心或不规则结构在地震作用下的抗震性能、评估其性态反应,已成为目前性态反应分析研究中的关键问题之一。
     针对基于等效单自由度体系和单向地震动输入的能力谱方法无法反映偏心结构平扭耦联反应特性的问题,本文利用偏心结构模态信息,通过建立模态等效多自由度体系,并拓展模态Pushover分析方法在偏心结构中的应用,对偏心结构进行简化分析、性态反应评估。改进了考虑平扭耦联效应的结构性态评估方法,使其进一步完善,也为偏心结构基于性态的抗震设计等工作提供了新思路。本文的研究内容主要包括以下几个方面:
     (1)针对模态静力非线性分析中,基于顶点位移的能力曲线存在失稳现象,分析了这种失稳现象发生的机理,认为实际结构振动中这种失稳现象并不存在,而是由推覆过程造成的。通过在模态Pushover中利用基于结构变形能的等效变形替代基于顶点位移的变形,解决了高阶模态能力曲线失稳的问题。通过与顶点位移计算变形的方法进行比较,结果表明本文方法稳定、精度好,且不增加计算量。能力曲线稳定性问题的解决,也为模态能力谱在偏心结构中的应用奠定了基础。
     (2)结构楼层平面内偏心且受到单向地震作用的情况较为常见,单向偏心结构模型也是研究平扭耦联反应最常用的模型。本文通过将单向偏心结构基底扭矩和顶点扭转角转化成扭转能力曲线,考虑了平扭耦联效应,拓展了模态Pushover分析方法和能力谱方法。通过将等效单自由度体系构造单向偏心特性,引入扭转自由度,提出等效二自由度简化模型,可以快速、可靠地求解单向偏心结构的非线性反应,进行性态评估。
     (3)平面双向偏心结构受到双向地震作用时,其非弹性反应十分复杂,本文基于模态分解理论,将结构按模态简化成含有三个自由度的简化体系,提出了等效三自由度简化模型,并依照平动、扭转的模态能力曲线考虑其非线性特性,解决了双向偏心结构性态评估问题,使能力谱方法能够更好的分析双向偏心结构。进一步地,通过引入等位移原理简化了本文提出的性态评估分析方法。分析表明,本文方法计算精度好,效率高。
     (4)静力非线性分析中,加载模式的选取将直接影响到性态评估的结果。自适应加载模式能够合理的考虑结构体系非线性的发展,但自适应加载的能力曲线也存在失稳现象。在分析总结多种加载模式的基础上,为了全面的考虑偏心结构进入非线性阶段的性态反应,本文通过将结构变形能等效为两个平动变形和一个扭转变形指标,来代替顶点位移和扭转角变形,解决了三维能力曲线失稳的问题,提出了自适应三维能力谱方法,并用双向地震作用下复杂偏心结构进行了验证。
     (5)等效多自由度简化模型可以较好的考虑偏心结构的空间耦合反应,且具备计算效率高、峰值反应精度好的优点;增量动力分析方法可以全面的评估结构的抗震性能,但需对结构进行大量的非线性时程分析,计算量巨大。本文方法将两者结合在一起,通过将等效二自由度和等效三自由度简化模型引入增量动力时程分析中,提出偏心结构的简化增量动力分析方法:2D-IDA和3D-IDA方法,使增量动力分析方法分别应用于单向偏心结构受单向地震动作用以及双向偏心结构受双向地震动作用的性态评估之中,解决了偏心结构的可靠性和失效概率等性态评估问题。结果表明,本文方法对偏心结构在受到强地震动作用下的结构性态评估有较高的精度,可以追踪结构从弹性阶段到防止倒塌各阶段的性态变迁全过程,并进行定量评估。
The Performance-Based Earthquake Engineering (PBEE), including the theory and method of design, are issues paid attentions extensively by earthquake engineering academia and engineers at present. The contents of PBEE include the evaluation of the seismic behavior of structures, optimization of the structural performance based on capacity criterions and design of different seismic intensity rationally to reduce possible loss of life and property. The performance of structures should be evaluated accurately and efficiently according to PBEE theory, which is one of the most important subjects in PBEE. On the other hand, there are more and more complicated structures were built up in the cities of China, including many asymmetric and irregular buildings. Estimation of the seismic performance of the asymmetric and irregular buildings has become a key issue in the research of performance analysis at present.
     The capacity spectrum method adopting single degree of freedom model and considering uni-dimensional ground motions cannot capture the lateral-rotational coupled effect. This work developed multi-degree of freedom systems based on the modal information of asymmetric structures and extended modal pushover analysis method in the performance estimation for asymmetric structures. Fast estimation procedures for the asymmetric structural performance are proposed. The method of performance estimation for asymmetric structures is improved, which provides a new approach to performance-based design for asymmetric structures. The main contents of this dissertation are followed.
     (1) The capacity curve deduced from multi-mode nonlinear static procedure (NSP) has showed unstable phenomenon in practice. The mechanism of the unstable phenomenon has been analyzed in this work. The result indicated that the unstable phenomenon do not occur in real structural responses and it is caused by higher-modal pushover analysis. By making utility of the equivalent deformation index deduced from the deformation energy of the structures, the unstable issue of the higher modal capacity curve is solved. Compared with the method based on the roof displacement, the new method is stable and possess favorable precision with relatively computational cost. Furthermore, the unstable capacity curve prevented can pave the way for the extension utility of the modal capacity spectrum for asymmetric buildings.
     (2) One-way asymmetric structural model subjected to uni-directional seismic excitation is common and widely used in the research of asymmetric structures responses. By calculating the rotational capacity curve from the base torque and top rotational angle including the lateral-rotational coupled effect, the modal pushover analysis and capacity spectrum method is extended for asymmetric structures. The Equivalent Dual-Degree of Freedom (EDDOF) system is proposed by offsetting the mass at the top of the SDOF model for construction of the eccentric property. The NSP provides the hysteretic rules for the nonlinear property of EDDOF model, and the coupled effect is considered in NSP. The issue of performance estimation of one-way asymmetric structures including lateral-rotational coupled effect can be solved fast and reliable.
     (3) The two-way asymmetric structures subjecting dual-directional seismic excitation will generate complicate nonlinear responses. Based on the modal decoupled operation, the problem is simplified by decoupling the responses into lateral responses and rotational response. The Equivalent Triple-Degree of Freedom (ETDOF) model is proposed based on the decoupled modal equations. The performance evaluations issue of two-way asymmetric structures is solved with high precision and efficiency. In addition, the equal displacement rule is adopted to determine the target displacement of NSP, which simplified the procedure and improved the robustness for three dimensional issues.
     (4) For many NSP methods, the loading distribution takes effect on the performance evaluation results directly. Considering the nonlinear development of the structures, the adaptive load pattern is accepted as the most reasonable formula at present. However, the adaptive load distribution algorithm is with poor stability. Firstly, the study summarizes and discusses different load patterns. By transforming the deformation energy into three equivalent deformation indexes, the stability issue is solved and the adaptive algorithm is improved. The adaptive modal combination procedure (three dimensional capacity spectrum method) is proposed and the method is verified with a complicated asymmetric structure subjecting two-way seismic excitation.
     (5) The equivalent multi-degree of freedom models present the lateral-rotational coupled effect and can capture the peak deformation responses very well. On the other hand, the Incremental Dynamic Analysis (IDA) can be used in the performance evaluation for many performance criterions. However, IDA is a computationally extremely work. Based on IDA and the equivalent multi-degree of freedom models, the 2D-IDA method and 3D-IDA method are proposed for one-way asymmetric structures subjected to uni-directional excitation and two-way asymmetric structures subjected to dual-directional excitation, respectively. The 2D-IDA and 3D-IDA methods can evaluate the performance overall stages from elastic phase to collapse prevention level for reliability and collapse fragility consideration with computational simplicity.
引文
1席涛,范军,崔浩等.四川汶川地震对中国经济,社会,环境的影响分析.国际经济评论. 2008, 7-8(4):13~18
    2 E. Rosenblueth, R. Meli. The 1985 Mexico Earthquake: Causes and Effects in Mexico City. ACI Concrete International. 1986, 8:23~24
    3杨光,沈繁銮.日本阪神地震灾害的一些调查统计数据.华南地震. 2005, 25(001):83~86
    4陈纯森.台湾集集大地震高层建筑倒塌破坏与混凝土施工之探讨.建筑结构. 2002, 32(001):41~45
    5王亚勇,皮声援.台湾9·21大地震特点及震害经验.工程抗震. 2000(2): 42~46
    6王亚勇,王言诃.汶川大地震建筑震害启示.建筑结构. 2008, 38(7):1~6
    7谢礼立.抗震性态设计和基于性态的抗震设防.《大型复杂结构的关键科学问题及设计理论研究论文集》编辑委员会.大连理工大学出版社. 1999: 26~34.
    8周云,安宇.基于性态的抗震设计理论和方法的研究与发展.建筑结构. 2001, 17(2):1~7
    9 H. Krawinkler. Challenges and Progress in Performance-Based Earthquake Engineering. International Seminar on Seismic Engineering for Tomorrow - In Honor of Professor Hiroshi Akiyama. Tokyo, Japan. 1999:1~10
    10谢礼立.抗震性态设计和基于性态的抗震设防.大连理工大学出版社, 2000
    11 ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Applied Technology Council, Red Wood City, California. 1996
    12 FEMA-273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings. Applied Technology Council, Redwood City, California. 1997
    13 FEMA-274. NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings. Applied Technology Council, Redwood City, California. 1997
    14 FEMA-356. Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Report FEMA-356, Washington, DC. 2000
    15 V. Kilar, P. Fajfar. Simple Push-over Analysis of Asymmetric Buildings. Earthquake Engineering and Structrual Dynamics. 1997, 26(2):233~249
    16 UBC-97. Uniform Building Code. International Conference of Building Officials, Whittier, California. 1997
    17 IBC 2003. International Code Council. 2003 International Building Code. 2002
    18 EUROCODE-8. Eurocode 8 in Earthquake Resistant Regulations. 1996
    19 NBCC-1995. National Building Code of Canada. 1995
    20 NZS-4203. New Zealand Standard, Code of Practice for General Structural Design and Design Loadings for Buildings. NZS 4203, Part 3 (Earthquake provisions). 1992
    21 GB 50011-2001.建筑抗震设计规范. 2001
    22 JGJ 3-2002.高层建筑混凝土结构技术规程. 2002
    23 JGJ 99-98高层民用建筑钢结构技术规程. 2002
    24小谷俊介,叶列平.日本基于性能结构抗震设计方法的发展.建筑结构. 2000, 30(6):3~9
    25 J. P. Moehle. Displacement-Based Design of RC Structures Subjected to Earthquakes. Earthquake Spectra. 1992, 8(3):403~428
    26钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构. 2001, 31(4):3~6
    27 M. S. Medhekar, D. J. L. Kennedy. Displacement-Based Seismic Design of Buildings - Theory. Engineering Structures. 2000, 22(3):201~209
    28 M. S. Medhekar, D. J. L. Kennedy. Displacement-Based Seismic Design of Buildings - Application. Engineering Structures. 2000, 22(3):210~221
    29 M. J. N. Priestley, G. M. Calvi, M. J. Kowalsky. Displacement-Based Seismic Design of Structures. IUSS Press, Pavia, Italy: 2007
    30 P. Fajfar, H. Krawinkler. Seismic Design Methodologies for the Next Generation of Codes. Seismic Design Practice into the Next Century. Balkema Rotterdam, The Netherlands 1998:459~467
    31 T. Okada, H. Hiraishi, H. OACI, et al. A New Framework for Performance-Based Design of Building Structures (Paper No. 2098). 12th World Conference of Earthquake Engineering. Upper Hutt, New Zealand, 2000:12
    32李宏男,霍林生.结构多维减震控制.科学出版社. 2008:1~34
    33 A. Ghobarah, H. A. Elfath, B. Ashraf. Response-Based Damage Assessment of Structures. Earthquake Engineering and Structural Dynamics. 1999, 28(1): 79~104
    34李宏男,孙强,王宁伟.面波产生的地震动转动分量的试验验证.工程力学. 2007, 24(4):113~117
    35 M. D. Trifunac. A Note on Rotational Components of Earthquake Motions on Ground Surface for Incident Body Waves. Soil Dynamics and Earthquake Engineering. 1982, 1(1):11~19
    36 M. D. Trifunac. Review: Rotations in Structural Response. Bulletin of The Seismological Society of America. 2009, 99(2B):968~979
    37 N. Li, L.L. Xie, C.H. Zhai. Comparison of Perfectly Matched Layer and Multi-Transmitting Formula Artificial Boundary Condition Based on Hybrid Finite Element Formulation. ACTA Seismological Sinica. 2007, 20(6): 684~695
    38 W. H. K. Lee, B.-S. Huang, C. A. Langston, et al. Review: Progress in RotationalGround-Motion Observations from Explosions and Local Earthquakes in Taiwan. Bulletin of The Seismological Society of America. 2009, 99(2B): 958~967
    39 C.-J. Lin, C.-C. Liu, W. H. K. Lee. Recording Rotational and Translational Ground Motions of Two Taiger Explosions in Northeastern Taiwan on 4 March 2008. Bulletin of The Seismological Society of America. 2009, 99(2B): 1237~1250
    40 C.-C. Liu, B.-S. Huang, W. H. K. Lee, et al. Observing Rotational and Translational Ground Motions at the Hgsd Station in Taiwan from 2007 to 2008. Bulletin of The Seismological Society of America. 2009, 99(2B): 1228~1236
    41 L. Godinho, P. Amado Mendes, A. Tadeu, et al. Numerical Simulation of Ground Rotations Along 2d Topographical Profiles under the Incidence of Elastic Plane Waves. Bulletin of The Seismological Society of America. 2009, 99(2B): 1147~1161
    42 M. Takeo. Rotational Motions Observed During an Earthquake Swarm in April 1998 Offshore Ito, Japan. Bulletin of The Seismological Society of America. 2009, 99(2B): 1457~1467
    43 H. Wang, H. Igel, F. Gallovic, et al. Source and Basin Effects on Rotational Ground Motions: Comparison with Translations. Bulletin of The Seismological Society of America. 2009, 99(2B): 1162~1173
    44 S. Freeman, J. Nicoletti, J. Tyrell. Evaluations of Existing Buildings for Seismic Risk–a Case Study of Puget Sound Naval Shipyard, Bremerton, Washington. 1975: 113~122
    45 M. Saiidi, M. A. Sozen. Simple Nonlinear Seismic Analysis of R/C Structures. Journal of the Structural Division. 1981, 107(5): 937~953
    46 P. Fajfar, M. Fischinger. Non-Linear Seismic Analysis of RC Buildings: Implications of a Case Study. European Earthquake Engineering. 1987, 1(1): 31~43
    47 P. Fajfar, M. Fischinger. N2 - a Method for Non-Linear Seismic Analysis of Regular Structures. 1988
    48 P. Fajfar, P. Gaspersic. The N2 Method for the Seismic Damage Analysis of RC Buildings. Earthquake Engineering and Structural Dynamics. 1996, 25(1): 31~46
    49 S. A. Freeman. Development and Use of Capacity Spectrum Method. Seattle, CD-ROM, EERI, Oalkland, California. 1998
    50 S. Otani, H. Hiraishi, M. Midorikawa, et al. New Seismic Design Provisions in Japan. ACI Special Publicatioins. 2001, 197:87~104
    51 FEMA-368. Fema 368: Nehrp Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Washington, DC. 2001,
    52 Structural Engineers Association of California. Vision 2000: A Framework for Performance-Based Seismic Engineering. 1995
    53 H. Krawinkler, G. D. P. K. Seneviratna. Pros and Cons of a Pushover Analysis ofSeismic Performance Evaluation. Engineering Structures. 1998, 20(4-6): 452~464
    54 A. K. Chopra, R. K. Goel. A Modal Pushover Analysis Procedure for Estimating Seismic Demands for Buildings. Earthquake Engineering and Structural Dynamics. 2002, 31(3):561~582
    55 M. Aydinolu. An Incremental Response Spectrum Analysis Procedure Based on Inelastic Spectral Displacements for Multi-Mode Seismic Performance Evaluation. Bulletin of Earthquake Engineering. 2003, 1(1):3~36
    56 E. Kalkan, S. K. Kunnath. Adaptive Modal Combination Procedure for Nonlinear Static Analysis of Building Structures. Jounral of Structural Engineering. 2006, 132(11): 1721~1731
    57 S. Antoniou, R. Pinho. Development and Verification of a Displacement-Based Adaptive Pushover Procedure. Journal of Earthquake Engineering. 2004, 8(5): 643~661
    58 P. Fajfar. Capacity Spectrum Method Based on Inelastic Demand Spectra. Earthquake Engineering and Structural Dynamics. 1999, 28(9): 979~993
    59 M. Aschheim, E. Black. Yield Point Spectra for Seismic Design and Rehabilitation. Earthquake Spectra. 2000, 16: 317~335
    60 C. Chintanapakdee. Drift Spectrum vs. Modal Analysis of Structural Response to near‐Fault Ground Motions. Earthquake Spectra. 2001, 17(2): 221~237
    61 E. Miranda, S. Akkar. Generalized Interstory Drift Spectrum. Journal of Structural Engineering. 2006, 132(6):840
    62 C. H. Zhai, L. L. Xie. A New Approach of Selecting Real Input Ground Motions for Seismic Design: The Most Unfavourable Real Seismic Design Ground Motions. Earthquake Engineering and Structural Dynamics. 2007, 36(8): 1009~1027
    63翟长海,孙亚民,谢礼立.考虑P-△效应的等延性位移比谱.哈尔滨工业大学学报. 2007, 39(10):1513~1516
    64 C. Zhai, L.L. Xie. The Modification Factors of Strength Reduction Factors for MDOF Effect. Advances in Structural Engineering - An International Journal. 2006, 9(4): 477~490
    65 A. K. Chopra, R. K. Goel. A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Unsymmetric-Plan Buildings. Earthquake Engineering and Structural Dynamics. 2004, 33(8): 903~927
    66 C. Chintanapakdee, A. K. Chopra. Evaluation of Modal Pushover Analysis Using Generic Frames. Earthquake Engineering and Structural Dynamics. 2003, 32(3): 417~442
    67 M. Poursha, F. Khoshnoudian, A. S. Moghadam. Assessment of Modal Pushover Analysis and Conventional Nonlinear Static Procedure with Load Distributions ofFederal Emergency Management Agency for High-Rise Buildings. The Structural Design of Tall and Special Buildings. 2008: In press
    68汪梦甫,周锡元.高层建筑结构静力弹塑性分析方法的研究现状与改进策略.工程抗震. 2003, 19(4): 12~15
    69 R. K. Goel, A. K. Chopra. Extension of Modal Pushover Analysis to Compute Member Forces. Earthquake Spectra. 2005, 21(1): 125~139
    70 T.S.Paraskeva, A.J.Kappos, A.G.Sextos. Extension of Modal Pushover Analysis to Seismic Assessment of Bridges. Earthquake Engineering and Structural Dynamics. 2006, 35(10): 1269~1293
    71 M. Aydinoglu. An Incremental Response Spectrum Analysis Procedure Based on Inelastic Spectral Displacements for Multi-Mode Seismic Performance Evaluation. Bulletin of Earthquake Engineering. 2003, 1(1): 3~36
    72 M. N. Aydinoglu, G. Onem. Nonlinear Performance Assessment of Bridges with Incremental Response Spectrum Analysis (IRSA) Procedure. Computational Structural Dynamics and Earthquake Engineering: Vol. 2, Structures, Infrastructures Series. Taylor and Francis. 2008
    73 T. Jan, M. Liu, Y. Kao. An Upper-Bound Pushover Analysis Procedure for Estimating the Seismic Demands of High-Rise Buildings. Engineering Structures. 2004, 26(1): 117~128
    74 B. Gupta, S. K. Kunnath. Adaptive Spectra-Based Pushover Procedure for Seismic Evaluation of Structures. Earthquake Spectra. 2000, 16(2): 367~392
    75 E. Kalkan, S. Kunnath. Assessment of Current Nonlinear Static Procedures for Seismic Evaluation of Buildings. Engineering Structures. 2007, 29(3): 305~316
    76 E. Hernández-Montes, O. S. Kwon, M. A. Aschheim. An Energy-Based Formulation for First-and Multiple-Mode Nonlinear Static (Pushover) Analyses. Journal of Earthquake Engineering. 2004, 8(1): 69~88
    77卢文生,吕西林.框架剪力墙结构模态静力非线性抗震分析方法研究.地震工程与工程振动. 2005, 25(1): 58~66
    78卢文生,吕西林.模态静力非线性分析中模态选择的研究.地震工程与工程振动. 2004, 24(6): 32~38
    79 J. Mao, C. Zhai, L. Xie. An Improved Modal Pushover Analysis Procedure for Estimating Seismic Demands of Structures. Earthquake Engineering and Engineering Vibration. 2008, 7(1): 25~32
    80钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构. 2001, 31(4): 3~6
    81罗文斌,钱稼茹.钢筋混凝土框架基于位移的抗震设计.土木工程学报. 2003, 36(5): 22~29
    82 Q. Xue. A Direct Displacement-Based Seismic Design Procedure of Inelastic Structures. Engineering Structures. 2001, 23(11): 1453~1460
    83 Q. Xue, C.-C. Chen. Performance-Based Seismic Design of Structures: A Direct Displacement-Based Approach. Engineering Structures. 2003, 25(14): 1803~1813
    84 A. S. Moghadam, W. K. Tso. 3-D Pushover Analysis for Damage Assessment of Buildings. Journal of Seismology and Earthquake Engineering. 2000, 2(Summer): 23~31
    85 T. K. Makarios. Equivalent Non-Linear Single-Degree-of-Freedom System of Spatial Asymmetric Multi-Storey Buildings in Pushover Procedure: Theory and Applications. The Structural Design of Tall and Special Buildings. 2008: In press
    86 T. Paulay. Displacement-Based Design Approach to Earthquake-Induced Torsion in Ductile Buildings. Engineering Structures. 1997, 19(9): 699~707
    87刘畅,邹银生,陈敏.偏心结构考虑扭转的三维Pushover分析.建筑科学与工程学报. 2005, 22(2): 47~50
    88刘畅,邹银生.多层偏心结构的pushover分析.重庆建筑大学学报. 2007, 29(3): 61~65
    89刘畅,邹银生.偏心结构在双向地震作用下扭转反应之影响因素.防灾减灾工程学报. 2007, 27(1): 23~28
    90 G. Li, Y. Liu. Target Displacement in Pushover Analysis for Eccentric Building Structures Considering Torsion Effect. COMPUTATIONAL MECHANICS, WCCM VI in conjunction with APCOM’04. Tsinghua University Press, Springer-Verlag, Beijing, China. 2004
    91李刚,李宏男.三维偏心结构的Pushover分析.计算力学学报. 2005, 22(5): 529~533
    92李宏男.结构多维抗震理论与设计方法.科学出版社. 1998
    93李宏男.结构多维抗震理论.科学出版社,北京. 2006
    94 K. Anastassiadis, A. Athanatopoulou, T. Makarios. Equivalent Static Eccentricities in the Simplified Methods of Seismic Analysis of Buildings. Earthquake Spectra. 1998, 14(1): 1~34
    95 B. Calderoni, A. D'Aveni, A. Ghersi, et al. Static Vs. Modal Analysis of Asymmetric Buildings: Effectiveness of Dynamic Eccentricity Formulations. Earthquake Spectra. 2002, 18(2): 219~231
    96 A. S. Moghadam, W. K. Tso. Pushover Analysis for Asymmetric and Set-Back Multi-Story Buildings. Proceedings of the 12th European Conference on Earthquake Engineering. Paper No. 1093. London, U.K. 2002.
    97 A. K. Chopra, C. Chintanapakdee. Evaluation of Modal and Fema PushoverAnalyses: Vertically―Regular‖and Irregular Generic Frames. Earthquake Spectra. 2004, 20(1): 255~271
    98 C. Chintanapakdee, A. K. Chopra. Seismic Response of Vertically Irregular Frames: Response History and Modal Pushover Analyses. Journalof Structural Engineering. 2004, 130(8): 1171~1185
    99 D. Vamvatsikos, C. A. Cornell. Incremental Dynamic Analysis. Earthquake Engineering and Structural Dynamics. 2002, 31(3): 491~514
    100 D. Vamvatsikos, C. A. Cornell. Applied Incremental Dynamic Analysis. Earthquake Spectra. 2004, 20(2): 523~553
    101 D. Vamvatsikos, C. A. Cornell. Developing Efficient Scalar and Vector Intensity Measures for Ida Capacity Estimation by Incorporating Elastic Spectral Shape Information. Earthquake Engineering and Structural Dynamics. 2005, 34(13): 1573~1600
    102 A. S. Elnashai. Do We Really Need Inelastic Dynamic Analysis? Journal of Earthquake Engineering. 2002, 6(1): 123~130
    103马千里,叶列平,陆新征等.采用逐步增量弹塑性时程方法.建筑结构学报. 2008, 29(2): 132~140
    104 F. Zareian, H. Krawinkler. Assessment of Probability of Collapse and Design for Collapse Safety. Earthquake Engineering and Structural Dynamics. 2007, 36(13): 1901~1914
    105 M. Fragiadakis, D. Vamvatsikos, M. Papadrakakis. Evaluation of the Influence of Vertical Irregularities on the Seismic Performance of a Nine-Storey Steel Frame. Earthquake Engineering and Structural Dynamics. 2006, 35(12): 1489~1509
    106 H. Tagawa, G. MacRae, L. Lowes. Probabilistic Evaluation of Seismic Performance of 3-Story 3d One- and Two-Way Steel Moment-Frame Structures. Earthquake Engineering and Structural Dynamics. 2008, 37(5): 681~696
    107 L. Pasticier, C. Amadio, M. Fragiacomo. Non-Linear Seismic Analysis and Vulnerability Evaluation of a Masonry Building by Means of the Sap2000 V.10 Code. Earthquake Engineering and Structural Dynamics. 2008, 37(3): 467~485
    108 M. Dolsek. Incremental Dynamic Analysis with Consideration of Modeling Uncertainties. Earthquake Engineering and Structural Dynamics. 2009, 38(6): 805~825
    109 Jack W. Baker. Probabilistic Structural Response Assessment Using Vector-Valued Intensity Measures. Earthquake Engineering and Structural Dynamics. 2007, 36(13): 1861~1883
    110 P. Tothong, N. Luco. Probabilistic Seismic Demand Analysis Using Advanced Ground Motion Intensity Measures. Earthquake Engineering and StructuralDynamics. 2007, 36(13): 1837~1860
    111 M. S. Williams, R. G. Sexsmith. Seismic Damage Indices for Concrete Structures: A State-of-the-Art Review. Earthquake Spectra. 1995, 11(2): 319~349
    112 F. Jalayer, P. Franchin, P. E. Pinto. A Scalar Damage Measure for Seismic Reliability Analysis of RC Frames. Earthquake Engineering and Structural Dynamics. 2007, 36(13): 2059~2079
    113 K. A. Porter, J. L. Beck, R. V. Shaikhutdinov. Investigation of Sensitivity of Building Loss Estimates to Major Uncertain Variables for the Van Nuys Testbed. Report No. PEER2002/03. University of California, Berkeley. 2002
    114 A. Azarbakht, M. Dolsek. Prediction of the Median Ida Curve by Employing a Limited Number of Ground Motion Records. Earthquake Engineering and Structural Dynamics. 2007, 36(15): 2401~2421
    115 S. W. Han, A. K. Chopra. Approximate Incremental Dynamic Analysis Using the Modal Pushover Analysis Procedure. Earthquake Engineering and Structural Dynamics. 2006, 35(15): 1853~1873
    116 M. Dolsek, P. Fajfar. Simplified Probabilistic Seismic Performance Assessment of Plan-Asymmetric Buildings. Earthquake Engineering and Structural Dynamics. 2007, 36(13): 2021~2041
    117 D. Vamvatsikos, C. A. Cornell. Direct Estimation of Seismic Demand and Capacity of Multidegree-of-Freedom Systems through Incremental Dynamic Analysis of Single Degree of Freedom Approximation. Journal of Structural Engineering. 2005, 131(4): 589~599
    118王东升,李宏男,王国新.双向地震动作用的拟等延性系数谱.地震工程与工程振动. 2004, 24(1): 25~32
    119王东升,李宏男,王国新.双向地震动作用弹塑性反应谱研究.大连理工大学学报. 2005, 45(2): 248~255
    120蔡贤辉,邬瑞锋,许士斌.多层剪切型均匀偏心结构的弹塑性地震反应规律的研究.应用数学和力学. 2001, 22(11): 1129~1134
    121蔡贤辉,邬瑞锋,綦宝晖.偏心结构的弹塑性平扭耦合反应与地震动强度.应用数学和力学. 2000, 21(5): 451~458
    122黄宗明,王耀伟.强度偏心对偏心结构非弹性反应的影响分析.建筑结构. 2005, 35(3): 48~50
    123王耀伟,黄宗明.影响偏心结构非弹性地震反应的主要因素分析.重庆建筑大学学报. 2001, 23(6): 114~120
    124王朝晖,汪梦甫.双向水平地震作用下非对称框架结构抗震分析简化方法.湖南大学学报(自然科学版). 2007, 34(4): 1~4
    125姜忻良,霍毅,臧姮.土-偏心结构相互作用平扭耦联反应参数分析.振动工程学报. 2007, 20(6): 652~657
    126许翥中.单层单向偏心结构的地震荷载.太原工学院学报. 1980, 4: 1~17
    127许翥中,张淑芳.偏心结构抗震简化算法的讨论.工程抗震. 1990(1): 30~33
    128王光远.建筑结构的振动.科学出版社: 1978
    129戴君武,张敏政,郭迅等.偏心结构非线性地震反应分析的一种简化方法.地震工程与工程振动. 2003, 23(3): 60~67
    130 A. Rutenberg, T. I. Hsu, W. K. Tso. Response Spectrum Techniques for Asymmetric Buildings. Earthquake Engineering and Structural Dynamics. 1978, 6(5): 427~435
    131 J. I. Bustamante, E. Rosenblueth. Building Code Provisions on Torsional Oscillations. Proc. 2nd World Conference on Earthquake Engineering, Japan. 1960, 2: 879~894
    132 E. Rosenblueth, J. Elorduy. Response of Linear Systems to Certain Transient Disturbances. 4 th World Conference on Earthquake Engineering. Santiago de Chile. 1969: 185~196
    133 N. M. Newmark. Torsion in Symmetrical Buildings. The 4th World Conference on Earthquake Engineering. Santiago de Chile. 1969: 19~32
    134 C. L. Kan, A. K. Chopra. Effects of Torsional Coupling on Earthquake Forces in Buildings. Journal of the Structural Division. 1977, 103(4): 805~819
    135 A. Chandler, G. Hutchinson. Evaluation of Code Torsional Provisions by a Time History Approach. Earthquake Engineering and Structural Dynamics. 1987, 15(4): 491~516
    136 J. C. Correnza, G. L. Hutchinson, A. M. Chandler. Effect of Transverse Load-Resisting Elements on Inelastic Earthquake Response of Eccentric-Plan Buildings. Earthquake Engineering and Structural Dynamics. 1994, 23(1): 75~89
    137 W. K. Tso, K. M. Dempsey. Seismic Torsional Provisions for Dynamic Eccentricity. Earthquake Engineering and Structural Dynamics. 1980, 8(3): 275~289
    138 R. Hejal, A. K. Chopra. Lateral-Torsional Coupling in Earthquake Response of Frame Buildings. Journal of Structural Engineering. 1989, 115(4): 852~867
    139 C. L. Kan, A. K. Chopra. Simple Model for Earthquake Response Studies of Torsionally Coupled Buildings. Journal of the Engineering Mechanics Division. 1981, 107(5): 935~951
    140 C. L. Kan, A. K. Chopra. Torsional Coupling and Earthquake Response of Simple Elastic and Inelastic Systems. Journal of the Structural Division. 1981, 107(8): 1569~1588
    141 H. Sedarat, V. V. Bertero. Effects of Torsion on the Linear and Nonlinear SeismicResponse of Structures. Report No. EERC/90-12. Earthquake Engineering Research Center, University of California. 1990
    142 R. Hejal, A. K. Chopra. Earthquake Response of Torsionally-Coupled Frame Buildings. Journal of Structural Engineering. 1989, 115(4): 834~851
    143 R. Hejal, A. K. Chopra. Earthquake Response of Torsionally-Coupled Buildings. Earthquake Engineering Research Center, University of California; for sale by the National Technical Information Service, US Dept. of Commerce. 1987
    144 R. K. Goel, A. K. Chopra. Inelastic Seismic Response of One-Story, Asymmetric-Plan Systems. Report No. EERC/90-14. Earthquake Engineering Research Center, University of California. 1990
    145 R. Goel, A. Chopra. Inelastic Seismic Response of One-Storey, Asymmetric-Plan Systems: Effects of Stiffness and Strength Distribution. Earthquake Engineering and Structural Dynamics. 1990, 19(7): 949~970
    146 J. C. De La Llera, A. K. Chopra. Understanding the Inelastic Seismic Behaviour of Asymmetric-Plan Buildings. Earthquake Engineering and Structural Dynamics. 1995, 24(4): 549~572
    147 J. De-La-Colina. Effects of Torsion Factors on Simple Non-Linear Systems Using Fully-Bidirectional Analyses. Earthquake Engineering and Structural Dynamics. 1999, 28(7): 691~706
    148 T. Paulay. A Mechanism-Based Design Strategy for Torsional Seismic Response of Ductile Buildings. European Earthquake Engineering. 1998, 2: 33~48
    149 T. Paulay. Torsional Mechanisms in Ductile Building Systems. Earthquake Engineering and Structural Dynamics. 1998, 27(10): 1101~1121
    150 T. Paulay. Some Design Principles Relevant to Torsional Phenomena in Ductile Buildings. Journal of Earthquake Engineering. 2001, 5(3): 273~308
    151 W. Tso, A. Sadek. Inelastic Seismic Response of Simple Eccentric Structures. Earthquake Engineering and Structural Dynamics. 1985, 13(2): 255~269
    152 A. W. Sadek, W. K. Tso. Strength Eccentricity Concept for Inelastic Analysis of Asymmetrical Structures. Engineering Structure. 1990, 11: 189~194
    153 W. K. Tso, H. Ying. Additional Seismic Inelastic Deformation Caused by Structural Asymmetry. Earthquake Engineering and Structural Dynamics. 1990, 19(2): 243~258
    154 V. Kilar, P. Fajfar. Simple Push-over Analysis of Asymmetric Buildings. Earthquake Engineering and Structural Dynamics. 1997, 26(2): 233~249
    155 B. Myslimaj, W. K. Tso. A Strength Distribution Criterion for Minimizing Torsional Response of Asymmetric Wall-Type Systems. Earthquake Engineering and Structural Dynamics. 2002, 31(1): 99~120
    156 B. Myslimaj, W. K. Tso. Desirable Strength Distribution for Asymmetric Structures with Strength-Stiffness Dependent Elements. Journal of Earthquake Engineering. 2004, 8(2): 231~248
    157 B. Myslimaj, W. K. Tso. A Design-Oriented Approach to Strength Distribution in Single-Story Asymmetric Systems with Elements Having Strength-Dependent Stiffness. Earthquake Spectra. 2005, 21(1): 197~212
    158 I. Perus, P. Fajfar. On the Inelastic Torsional Response of Single-Storey Structures under Bi-Axial Excitation. Earthquake Engineering and Structural Dynamics. 2005, 34(8): 931~941
    159 D. D. Maru?i?, P. Fajfar. On the Inelastic Seismic Response of Asymmetric Buildings under Bi-Axial Excitation. Earthquake Engineering and Structural Dynamics. 2005, 34(8): 943~963
    160 K. Fujii, Y. Nakano, Y. Sanada. Simplified Nonlinear Analysis Procedure for Asymmetric Buildings. Proceedings of 13th WCEE. Vancouver, B.C., Canada. 2004
    161 K. G. Stathopoulos, S. A. Anagnostopoulos. Inelastic Earthquake Response of Single-Story Asymmetric Buildings: An Assessment of Simplified Shear-Beam Models. Earthquake Engineering and Structural Dynamics. 2003, 32(12): 1813~1831
    162 J. L. Lin, K. C. Tsai. Simplified Seismic Analysis of Asymmetric Building Systems. Earthquake Engineering and Structural Dynamics. 2007, 36(4): 459~479
    163 J. L. Lin, K. C. Tsai. Seismic Analysis of Two-Way Asymmetric Building Systems under Bi-Directional Seismic Ground Motions. Earthquake Engineering and Structural Dynamics. 2008, 37(2): 305~328
    164 J. L. Lin, K. C. Tsai. Simplified Seismic Analysis of One-Way Asymmetric Elastic Systems with Supplemental Damping. Earthquake Engineering and Structural Dynamics. 2007, 36(6): 783~800
    165 T. L. Trombetti, J. P. Conte. New Insight into and Simplified Approach to Seismic Analysis of Torsionally Coupled One-Story, Elastic Systems. Journal of Sound and Vibration. 2005, 286(1-2): 265~312
    166 T. Trombetti, S. Silvestri, G. Gasparini, et al. Numerical Verification of the Effectiveness of the―Alpha‖Method for the Estimation of the Maximum Rotational Elastic Response of Eccentric Systems. Journal of Earthquake Engineering. 2008, 12(2): 249~280
    167 A. A. K. Al-Ali, H. Krawinkler. Effects of Vertical Irregularities on Seismic Behavior of Building Structures. Report No. 130. The John A. Blume Earthquake Engineering Center, Stanford University. 1998
    168 S. L. Wood. Seismic Response of R/C Frames with Irregular Profiles. Journal ofStructural Engineering. 1992, 118(2): 545~566
    169 S. H. Jeong, A. S. Elnashai. Analytical Assessment of an Irregular RC Full Scale 3D Test Structure. MAE Report 2004-03. Mid-America Earthquake Center, University of Illinois at Urbana-Champaign. 2004
    170 S. H. Jeong, A. S. Elnashai. Analytical Assessment of an Irregular RC Frame for Full-Scale 3d Pseudo-Dynamic Testing Part I: Analytical Model Verification. Journal of Earthquake Engineering. 2005, 9(1):95~128
    171 S. H. Jeong, A. S. Elnashai. Analytical Assessment of an Irregular RC Frame for Full-Scale 3d Pseudo-Dynamic Testing Part II: Condition Assessment and Test Deployment. Journal of Earthquake Engineering. 2005, 9(2): 265~284
    172 S. N. Bousias, M. N. Fardis, A. L. Spathis, et al. Pseudodynamic Response of Torsionally Unbalanced Two-Storey Test Structure. Earthquake Engineering and Structural Dynamics. 2007, 36(8): 1065~1087
    173 J. De-la-Colina, Q. Acu?a, A. Hernández, et al. Laboratory Tests of Steel Simple Torsionally Unbalanced Models. Earthquake Engineering and Structural Dynamics. 2007, 36(7): 887~907
    174戴君武.钢筋混凝土偏心结构非线性地震反应研究.中国地震局工程力学研究所. 2002
    175韩军,李英民.抗震结构扭转控制及设计方法的国内外规范对比分析.西安建筑科技大学学报. 2008, 40(1): 25~32
    176 A. Rutenberg, O. A. Pekau. Seismic Code Provisions for Asymmetric Structures: A Re-Evaluation. Engineering Structures. 1987, 9(4): 255~264
    177 A. K. Chopra, R. K. Goel. Evaluation of Torsional Provisions in Seismic Codes. Jounral of Structural Engineering. 1991, 117(12): 3762~3782
    178王云剑.结构在平移-扭转耦联地震反应中偏心距动力放大因子.力学学报. 1979, 4: 399~404
    179马人乐,张猛,张哲.对称结构在水平地震作用下的扭转效应和抗扭设计探讨.世界地震工程. 2006, 22(3): 136~141
    180 V. Kilar, P. Fajfar. Application of the BST Surface for Seismic Evaluation of an Asymmetric Multi-Storey Building. EAEE Task Group 8: Asymmetric and Irregular Structures. "Irregular Structures", Istanbul Technical University, Istanbul. 1999
    181 G. Magliulo, R. Ramasco. Seismic Response of Three-Dimensional R/C Multi-Storey Frame Building under Uni- and Bi-Directional Input Ground Motion. Earthquake Engineering and Structural Dynamics. 2007, 36(12): 1641~1657
    182 W. K. Tso, B. Myslimaj. A Yield Displacement Distribution-Based Approach for Strength Assignment to Lateral Force-Resisting Elements Having StrengthDependent Stiffness. Earthquake Engineering and Structural Dynamics. 2003, 32(15): 2319~2351
    183 W. K. Tso, B. Myslimaj. Effect of Strength Distribution on the Inelastic Torsional Response of Asymmetric Structural Systems. Paper No. 081. London, U.K. 2002
    184 R. K. Goel, A. K. Chopra. Inelastic Seismic Response of One-Story, Asymmetric Buildings under Bi-Axial Excitation. Report No. EERC 90/14. University of California, Berkeley, CA. 1990
    185 OpenSees. Open System for Earthquake Engineering Simulation. Version 2.1.1. [EB/OL]. http://opensees.berkeley.edu. 2009-6-30
    186 F. T. McKenna. Object-Oriented Finite Element Programming: Frameworks for Analysis, Algorithms and Parallel Computing. University of California, Berkeley. 1997
    187 M. H. Scott. Software Frameworks for the Computational Simulation of Structural Systems. University of California, Berkeley. 2004
    188 M. H. Scott, G. L. Fenves, F. McKenna, et al. Software Patterns for Nonlinear Beam-Column Models. Journal of Structural Engineering. 2008, 134(4): 562~571
    189 T. Haukaas, A. Der Kiureghian. Finite Element Reliability and Sensitivity Methods for Performance-Based Engineering, Report No. PEER2003/14, Pacific Earthquake Engineering Research Center. University of California, Berkeley, CA. 2004
    190 A. H. Schellenberg. Advanced Implementation of Hybrid Simulation. University of California, Berkeley. 2008
    191 Mathematics and Computer Science Division Argonne National Laboratory. Mpich2 User Guide. Version 1.1. http://www.mcs.anl.gov/research/projects/mpich2/ documentation. 2009-6
    192 Mathematics and Computer Science Division, Argonne National Laboratory. Petsc Users Manual. Revision 3.0.0. http://www.mcs.anl.gov/petsc/petsc-as/ documentation. 2008-12
    193 Multifrontal Massively Parallel Solver Users’Guide. Version 4.8.4. http://mumps. enseeiht.fr/doc/. 2008-12-15.
    194 Ranger User Guide. Texas Advanced Computing Center. http://services.tacc. utexas.edu/index.php/ranger-user-guide. 2008-9
    195 A. Chopra, R. Goel, C. Chintanapakdee. Evaluation of a Modified Mpa Procedure Assuming Higher Modes as Elastic to Estimate Seismic Demands. Earthquake Spectra. 2004, 20(3):757~778
    196 C. M. Uang, V. V. Bertero. Use of Energy as a Design Criterion in Earthquake-Resistant Design. Report No. EERC/88-18. Earthquake Engineering Research Center, University of California. 1988
    197易伟建,蒋蝶.一种基于滞回耗能的改进Pushover分析方法.自然灾害学报. 2007, 16(3): 104~109
    198魏新磊,周云,赵彤.基于结构能量分析的抗震设计新方法的研究.世界地震工程. 2003, 19(3): 62~67
    199 L. Decanini, F. Mollaioli. Formulation of Elastic Earthquake Input Energy Spectra. Earthquake Engineering and Structural Dynamics. 1998, 27(12): 1503~1522
    200 G. W. Housner. Limit Design of Structures to Resist Earthquake. Proceeding of 1st World Conference on Earthquake Engineering. California. 1956
    201程光煜,叶列平.弹塑性SDOF系统的地震输入能量谱.工程力学. 2008, 25(2): 28~38
    202程光煜,叶列平.弹塑性MDOF系统地震输入能量研究.工程抗震与加固改造. 2007, 29(6): 29~35
    203 A. K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering (Second Edition). Tsinghua Press, Beijing. 2005
    204屈成忠,谢礼立.性态点的数值解法.世界地震工程. 2003, 19(1): 21~24
    205 J. De la Llera, A. Chopra. Inelastic Behavior of Asymmetric Multistory Buildings. Journal of Structural Engineering. 1996, 122(6): 597~606
    206 A. Lucchini, G. Monti, S. Kunnath. Seismic Behavior of Single-Story Asymmetric-Plan Buildings under Uniaxial Excitation. Earthquake Engineering and Structural Dynamics. 2009, 38(9): 1053~1070
    207 E. F. Cruz, S. Cominetti. Three-Dimensional Buildings Subjected to Bi-Directional Earthquakes. Validity of Analysis Considering Uni-Directional Earthquakes. Procedings of the 12th world Conference on Earthquake Engineering. New Zealand Society for Earthquake Engineering: Upper Hutt, Auckland. 2000
    208 K. Kasai, Y. Ooki, S. Motoyui, et al. Results of Recent E-Defense Tests on Full-Scale Steel Buildings Part 3 -- Experiments on Dampers and Frame Subassemblies. ASCE, Vancouver, BC, Canada. 2008: 268~268
    209 K. Suita, S. Yamada, M. Tada, et al. Results of Recent E-Defense Tests on Full-Scale Steel Buildings: Part 1 -- Collapse Experiments on 4-Story Moment Frames. ASCE, Vancouver, BC, Canada. 2008: 266~266
    210 M. Ohsaki, K. Kasai, Y. Matsuoka, et al. Results of Recent E-Defense Tests on Full-Scale Steel Buildings: Part 2 - Collapse Simulation and Blind Analysis Contest. ASCE, Vancouver, BC, Canada 2008: 267~267
    211 T. Takeuchi, K. Kasai, M. Midorikawa, et al. Results of Recent E-Defense Tests on Full-Scale Steel Buildings: Part 4 -- Experiments Utilizing of Multipurpose Test Bed. ASCE, Vancouver, BC, Canada 2008: 269~269
    212 E-Defence. Hyogo Earthquake Engineering Research Center. http://www.bosai.go.jp/hyogo/ehyogo/index.html. 2007-5
    213 V. Graizer. Tilts in Strong Ground Motion. Bulletin of the Seismological Society of America. 2006, 96(6): 2009-2102
    214 M. Bouchon, K. Aki. Strain, Tilt, and Rotation Associated with Strong Ground Motion in the Vicinity of Earthquake Faults. Bulletin of the Seismological Society of America. 1982, 72(5): 1717-1738
    215 C. F. Wu, W. H. K. Lee, H. C. Huang. Array Deployement to Observe Rotational and Translational Ground Motions Along the Meishan Fault, Taiwan: A progress Report. Bulletin of the Seismological Society of America. 2009, 99(2B): 1468-1474
    216廖振鹏.工程波动理论导论.科学出版社: 2002.
    217李宁,谢礼立,翟长海.基于混合有限元格式的PML与MTF人工边界比较研究.地震学报. 2007, 29(6): 643-653
    218李宁,翟长海,谢礼立.基于MPA的单向偏心结构性态评估方法.哈尔滨工业大学学报. 2009, 41(8): 30-34
    219 R. Riddell, H. Santa-Maria. Inelastic Response of One-Storey Asymmetricplan Systems Subjected to Bi-Directional Earthquake Motions. Earthquake Engineering and Structural Dynamics. 1999, 28(3): 273~285
    220 A. S. Veletsos, N. M. Newmark. Effect of Inelastic Behavior on the Response of Simple Systems to Earthquake Motions. University of Illinois, 1960: 895~912
    221 A. S. Veletsos, N. M. Newmark, C. V. Chepalati. Deformation Spectra for Elastic and Elastoplastic Systems Subjected to Ground Shock and Earthquake Motion. Proceedings of the 3th World Conference on Earthquake Engineering. 1965: 663~682
    222 E. Miranda, V. V. Bertero. Evaluation of Strength Reduction Factors for Earthquake-Resistant Design. Earthquake Spectra. 1994, 10(2): 357~379
    223 A. K. Chopra, C. Chintanapakdee. Inelastic Deformation Ratios for Design and Evaluation of Structures: Single-Degree-of-Freedom Bilinear Systems. Journal of Structural Engineering. 2004, 130(9): 1309~1319
    224 P. Fajfar, P. Gaspersic, D. Drobnic. A Simplified Nonlinear Method for Seismic Damage Analysis of Structures. Proceedings of the workshop on seismic design methodologies for the next generation of codes. Rotterdam. 1997: 183~193
    225 C.H. Zhai, L.L. Xie. Constant-Ductility Strength Demand Spectra for Seismic Design of Structures. Earthquake Engineering and Engineering Vibration. 2005, 4(2): 243~250
    226 C. Zhai, N. Li, Y. Ma, et al. P-ΔEffect on Inelastic Displacement Ratio Spectra for Seismic Structures. Journal of Harbin Institute of Technology (New Series). (Accepted)
    227 A. K. Chopra, R. K. Goel. Evaluation of the Modal Pushover Anlaysis Procedure for Unsymmetric-Plan Buildings. Proceedings of the 8th U.S. Conference on Earthquake Engineering, San Francisco, California. 2006
    228 K. Kasai, Y. Ooki, M. Ishii, et al. Value-Added 5-Story Steel Frame and Its Components: Part 1-Full-Scale Damper Tests and Analysis. 14WCEE. International Association for Earthquake Engineering, Beijing, China. 2008
    229 Y. Ooki, K. Kasai, Y. Azuma, et al. Value-Added 5-Story Steel Frame and Its Components: Part 2- Full-Scale Tests of Beam-Column-Gusset Plate Assemblies. 14WCEE. International Association for Earthquake Engineering, Beijing, China. 2008
    230 S. Yamada, K. Suita, M. Tada, et al. Collapse Experiment on 4-Story Steel Moment Frame: Part 1 Outline of Test Results. 14WCEE. International Association for Earthquake Engineering, Beijing, China. 2008
    231 E. Kalkan, S. K. Kunnath. Assessment of Current Nonlinear Static Procedures for Seismic Evaluation of Buildings. Engineering Structures. 2007, 29(3):305~316
    232 M. Stupazzini, J. de la Puente, C. Smerzini, et al. Study of Rotational Ground Motion in the near-Field Region. Bulletin of The Seismological Society of America. 2009, 99(2B): 1271~1286
    233 S. Antoniou, A. Rovithakis, R. Pinho. Development and Verification of a Fully Adaptive Pushover Procedure. 12th European Conference on Earthquake Engineering. No. 822. Elsevier Science Ltd, London, UK. 2002:1~10.
    234 S. K. Kunnath, E. Kalkan. Evaluation of Seismic Deformation Demands Using Non-Linear Procedures in Multistory Steel and Concrete Moment Frames. ISET Journal of earthquake technology. 2004, 41(1): 159~181
    235侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动. 2004, 24(3): 89~97
    236 J. W. Baker. Probabilistic Structural Response Assessment Using Vector-Valued Intensity Measures. Earthquake Engineering and Structural Dynamics. 2007, 36(13): 1861~1883
    237 S. W. Han, A. K. Chopra. Approximate Incremental Dynamic Analysis Using the Modal Pushover Analysis Procedure. Earthquake Engineering and Structural Dynamics. 2006, 35(15): 1853~1873
    238 N. A. Alexander. The Role of Phase Difference Components of Ground Motions in the Torsional Response of Asymmetric Buildings. Earthquake Engineering and Structural Dynamics. 2007, 36(10): 1385~1406
    239 R. A. Medina, H. Krawinkler. Seismic Demands for Nondeteriorating Frame Structures and Their Dependence on Ground Motions. Report No. 144. John A.Blume Earthquake Engineering Center. Stanford University. 2003
    240 F. Zareian. Simplified Performance-Based Earthquake Engineering. Stanford University. 2006
    241 H. Krawinkler, F. Zareian. Prediction of Collapse - how Realistic and Practical Is It, and What Can We Learn from It? The Structural Design of Tall and Special Buildings. 2007, 16(5): 633~653
    242 M. Tada, M. Ohsaki, S. Yamada, et al. E-Defense Tests on Full-Scale Steel Buildings:Part 3 - Analytical Simulation of Collapse. ASCE Structures Congress, Long Beach, CA. 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700