用户名: 密码: 验证码:
大斜度井段岩屑运移实验研究与清洁工具优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现场实践和室内实验研究均表明水平井、大位移井、多分支井的大斜度井段在钻井过程中,岩屑易堆积形成岩屑床,导致钻杆出现高摩阻、高扭矩、拖压等现象,严重时造成卡钻、钻具断落等井下安全事故。因此研究如何提高岩屑运移效率,抑制岩屑床生成的方法和相关机理十分必要。论文重点研究了直井段岩屑在钻井液中的沉降速度,大斜度井段岩屑的启动速度和岩屑悬浮速度等岩屑运移问题。
     根据前人研究成果总结了不同岩性、不同钻头类型和岩石埋深对岩屑颗粒粒径的影响,通过室内实验数据回归得到了不同粒径岩屑颗粒在幂律流体中的阻力系数表达式,从而建立了适用于幂律流体的岩屑沉降速度模型。
     提出了岩屑床休止角的概念,并通过室内实验,测定了岩屑休止角数值。根据岩屑床休止角的定义和力学平衡关系可以求得岩屑颗粒之间滑动运移时的摩擦系数,同时根据岩屑床休止角数值确定大斜度井段起始井斜角。根据岩屑力学平衡关系建立了岩屑床床面颗粒滑动运移、滚动运移和举升运移三种形式的岩屑启动速度模型。
     根据直井段岩屑沉降速度模型和已发表的实验数据,建立了考虑钻杆旋转、岩屑粒径等因素影响的小斜度、中斜度和大斜度井段岩屑悬浮速度模型。模型数值模拟分析结果表明井斜角、机械钻速、钻井液有效粘度对水平井段岩屑运移影响较大,而岩屑粒径和钻杆转速主要影响大斜度井段,流性指数和岩屑密度则影响小斜度井段。
     通过CFD数值模拟方法定量评价了钻杆旋转对岩屑床的抑制作用效果,根据数值模拟结果回归出了岩屑床比面积和压耗计算模型。模拟表明钻杆旋转作用使岩屑在井眼环空内沿周向非对称状分布,能够显著增加钻井液切向速度,由此产生的切向拖拽力能够在一定程度上抑制岩屑床的形成。当钻井液在中低排量下,提高钻杆转速能够显著提高携岩效率,有效提高井眼清洁程度。而在高排量下,钻柱转速达到160RPM以上时对提高携岩效率影响不再显著。
     提出了机械法井眼清洁工具的基本叶片类型,通过数值模拟分析得到了不同类型叶片的旋转辅助清洁岩屑作用机理。由CFD数值模拟可知螺旋形-V形复合型叶片井眼清洁工具有较高岩屑床清洁效率。基于螺旋工具面上岩屑颗粒的力学平衡,可对岩屑通过螺旋式工具后的运动规律进行定量的描述。讨论了基于叶元法井眼清洁工具叶片的水力结构设计方法,为这类工具的设计提供参考依据。
It has been shown by field practice and laboratory experiments that during the drillingoperation of highly-deviated interval of horizontal wells, extended reach wells, multilateralwells, cuttings are likely to accumulate and form cuttings bed, which leads to the phenomenonof high drag, high torque and drag slide of the drill bit, even downhole safety accidents, e.g.,sticking and broken off of the drilling pipe. So we can reach a conclusion that it is necessary toresearch on methods and mechanism of enhancing the hole cleaning efficiency and inhibitingthe formation of cuttings bed. This study is focused on terms of cutting settling velocity indrilling fluids in vertical well interval, cuttings incipient velocity and cuttings suspensionvelocity in highly-deviated interval, etc.
     In this study, how lithology, bit types and the burial depth of the rock influence the rangeof particle size have been summarized based on previous research achievements. The range ofparticle size, in which the cutting is likely to lead to the formation of cuttings bed in the annulus,have been defined. Based on laboratory experiments, a formula of drag coefficient of thecuttings in different particle size in power-low fluid has been introduced, and a model appliedfor cuttings settling velocity in power-low fluid has been established.
     In the study, the concept of cuttings bed repose angle has been proposed.The values ofcuttings bed repose angle of different sort of cuttings have been measured during the laboratoryexperiment of cuttings bed repose angle. The friction coefficient of cuttings during the processof slip transport could be obtained by concept of cuttings bed repose angle mechanical balancerelation. Also, initial deviation angle in highly-deviated interval can be obtained by the valueof cuttings bed repose angle. Based on cuttings mechanical balance relationship, three forms ofcuttings incipient velocity model, e.t., cuttings slip transport,rolling transport,lift transporton the surface of cuttings bed, have been built. Numerical analysis of the model showed thatthe critical slip transport and rolling transport incipient velocities exceed0.6m/s generally forcuttings whose diameter range from1mm to3mm.
     Based on the model of cuttings settling velocity in vertical well section and publishedexperimental data, cuttings suspension velocity models in low, medium and highly deviatedinterval have been built considering impact factors, e.g., rotational speed of drill pipe, cuttingsdiameter, etc.The result of numerical simulation and analysis proves that drilling operation ofhorizontal interval is greatly impacted by deviated angle, rotational speed and effectiveviscosity of drilling fluid. Cuttings diameter and rotational speed of drill pipe impact mainly onhighly-deviated well intervals drilling operation, and flow index and cuttings density influenceon drilling operation in low-deviated well intervals.
     CFD numerical simulation has been applied to quantitatively evaluate the inhibition effectof drill pipe rotation on cuttings bed. Also, according to numerical simulation regression, the specific area of cuttings bed and a model for pressure loss calculation have been obtained. Thesimulation shows cuttings distribute along the circumferential direction asymmetrically in theannulus owing to the rotation of drill pipe, and thus the tangential velocity of drilling fluidincreases significantly. Then the formation of cuttings bed is inhibited to some extent by thetangent drag force caused by the rotation of drill pipe. As a consequence, increasing rotationalspeed could remarkably enhance the cuttings transport efficiency and hole cleaning efficiencyat medium or low pump rate. However, when drill pipe exceed160RPM at high pump rate, theinhabitation of rotation velocity on cuttings transport efficiency is no longer significant.
     In this study, basic blade types of mechanism hole cleaning tools are proposed.Rotationhole cleaning assisted mechanisms of different type of blades are obtained according tonumerical simulation and numerical analysis. Based on CFD numerical simulation, it is provedthat spiral-V shaped hybrid hole cleaning tools has a higher efficiency in hole cleaning in theannulus According to mechanical balance of cuttings on the tool face, the motion law of cuttingswhich pass the spiral tool can be evaluated quantitatively, and tangent velocity and axialvelocity can be calculated separately in particular, providing a reference for the design of thissort of tools.
引文
[1]汪海阁,刘希圣,李洪乾等.水平井段钻井液携带岩屑的实验研究[J].石油学报,1995,16(4):125-129.
    [2]鹿传世.倾斜井眼内岩屑运移的数值计算与清岩工具设计流场计算[D].东营:中国石油大学(华东),2008.
    [3] Bradley W B, Jarman D, Plott R S, et al. A Task Force Approach to Reducing Stuck PipeCosts [C]. SPE21999,1991.
    [4]左建平,谢和平,等.温度压力耦合作用下的岩石屈服破坏研究[J].岩石力学与工程学报,2005,24(16):2917-2920.
    [5]何满潮,谢和平等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2811.
    [6]周宏伟,谢和平等.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91–99.
    [7]王大勋,刘洪等.深部岩石力学与深井钻井技术研究[J].钻采工艺,2006,29(3):6-10.
    [8]易先中,王利成等.钻井岩屑粒径分布规律的研究[J].石油机械,2007,35(12):1-4.
    [9]高子佩,张海山等.大庆调整井刮刀钻头优选参数钻井技术[J].石油钻探技术,1994,22(1):6-8.
    [10]许刘万,史兵言等.大直径钻孔用刮刀钻头的设计与应用[J].探矿工程(岩土钻掘工程),2001(增刊):152-156.
    [11]周龙昌,陈洪兵,等.新型刮刀钻头的设计及现场试验研究[J].石油钻探技术,2003,31(05):39-40.
    [12]王国荣,刘清友等.盘式单牙轮钻头破岩机理试验研究[J].石油机械,2003,31(11):1-2.
    [13]胡琴,刘清友等.复合齿形牙轮钻头及其破岩机理研究[J].天然气工业,2008,26(4):77-79.
    [14]李玮,张方玉等.牙轮钻头的岩屑破碎机理及可钻性的分形法[J].石油钻采工艺,2007,29(02):27-30.
    [15]李玮,闫铁等.压差下实钻岩石可钻性模型及破岩机理分析[J].天然气工业,2008,28(10):70-72.
    [16]李士斌.深井岩石破碎规律及破碎的分形机理研究[D].大庆:东北石油大学,2006.
    [17]李富强.浅析PDC钻头地质录井措施[J].工业技术,2013(2):104.
    [18]李田军.PDC钻头破碎岩石的力学分析与机理研究[D].北京:中国地质大学(北京),2012.
    [19]贾世亮,孙玉华等.PDC钻头地质录井方法探讨[J].录井技术,2002,12:18-22.
    [20]王红波,段隆臣等.适用于硬岩的PDC全面钻头特点分析[J].矿山机械,2009,37(17):20-22.
    [21]韦忠良,吴鹏.高硬度高研磨地层高速钻探用PDC钻头研究.金刚石与磨料磨具工程,2012,32(191):62-66.
    [22]贾发敬,刘国宏.细小岩屑成因实例分析及其对策[J].录井工程,2002,13(4):45-50.
    [23]王佑宁,惠卓雄等.PDC钻头条件下岩性识别新技术探讨[J].录井工程,2003,14(4):1-7.
    [24]李世忠,李震等.金刚石钻进原理及其发展途径[J].地球科学,1982,18(3):319-327.
    [25]汤凤林.复合体碎岩机理及孔底过程[J].煤田地质与勘探,1984(2):76-80.
    [26]贾美玲,欧阳志勇等.深孔钻探金刚石钻头技术研究[J].探矿工程(岩土钻掘工程),2010,37(12):71-73.
    [27]马杰,隆威等.中硬岩层钻进孕镶金刚石复合片钻头的研究与应用[J].探矿工程(岩土钻掘工程),2009,36(10):73-77.
    [28]杨道合.科学超深钻井过程中碎岩方法与孕镶金刚石取心钻头的预研究[D].北京,中国地质大学(北京),2012.
    [29]李爱民,车晓峰等.金刚石钻头岩屑录井效果分析及录井方法探讨[J].钻采工艺,1995,2(4):13-17.
    [30]杨迎新,张先普等.牙轮钻头破岩机理的探讨和各齿圈载荷的预测[J].石油机械,1991,19(12):19-24.
    [31] Rishi B, Adari, Stefan Miska, et al. Selecting Drilling Fluid Properties and Flow RatesFor Effective Hole Cleaning in High-Angle and Horizontal Wells [C]. SPE AnnualTechnical Conference andExhibition, Dallas, Texas, SPE63050,2000.
    [32] Tomren P H, Iyoho A W, Azar J J. An Experimental Study of Cuttings Transport inDirectional Wells [C]. SPE12123,1986.
    [33] A. A. Pilevhavari, J. J. Azar, and S. A. Shirazi. State-of-the-art cuttings transport inhorizontal wellores [J]. SPE Drilling&Completion,1999,14(3):196-200.
    [34] Y. Masuda, Q. Doan, M. Ogutoreli, S. Nagawa, T. Yonezawa, A. Kobayashi, and A.Kamp. Critical Cuttings Transport Velocity in Inclined Annulus: Experimental Studiesand Numerical Simulation [C]. SPE/Petroleum Society of CIM International Conference,Calgary, Alberta, Canada, SPE65502,2000.
    [35] Li J, Walker S. Sensitivity Analysis of Hole Cleaning Parameters in Directional Wells[C]. Proceedings of the SPE/ICoTA Coiled Tubing Roundtable Conference, Houston,Texas, SPE54498,1999.
    [36] Ozbayoglu E M, Saasen A, Sorgun M. Effect of Pipe Rotation on Hole Cleaning forWater Based Drilling Fluids in Horizontal and Deviated Wells [C]. IADC/SPE AsiaPacific Drilling Technology Conference and Exhibition. Jakarta, Indonesia, SPE114965,2008.
    [37] Z.S. Qiu, J.F. Xv, W.A. Huang, L. Jiang, and L.X. Yu, The Experimental Facility ofCuttings Transport and Borehole Stability in Deep Water Drilling, China Patent200910250325.4, December4,2009.
    [38] S.G. Valluri, S.Z. Miska, R. Ahmed, M. Yu, and N.E. Takach. Experimental Study ofEffective Hole Cleaning Using Sweeps in Horizontal Wellbores [C]. SPE AnnualTechnical Conference and Exhibition, San Antonio, Texas, SPE101220,2006.
    [39] R.M. Ahmed, and N.E. Takach, Fiber sweeps for hole cleaning [J]. SPE Drilling&Completion.2009,24(4):564-572.
    [40] E. Cheung, N. Takach, E. Ozbayoglu, R. Majidi, and B. Bloys. Improvement of HoleCleaning Through Fiber Sweeps [C]. SPE Deepwater Drilling and CompletionsConference, Galveston, Texas, SPE154759,2012.
    [41]张振兴,李清,阎宏博.“两速”对大斜度井井眼清洁的影响[J].石油化工应用,2010,29(2-3):90-94.
    [42]陈俊,刘希圣,丁岗.水平井段环空携岩的实验研[J].石油大学学报,1992,16(4):23-26.
    [43] Ozbayoglu E M, Sorgun M, Saasen A, et al. Hole Cleaning Performance of Light-WeightDrilling Fluids During Horizontal Underbalnced Drilling[J]. JCPT,2010,49(4):21-26.
    [44]汪志明,张政.水平井两层稳定岩屑传输规律研究[J].石油大学学报(自然科学版),2004,28(4):63-66.
    [45] Zamora M, Hanson P. Rules of Thumb to Improve High-Angle Hole Cleaning [J].Petroleum Engineer International,1991:44-51.
    [46] Ozbayoglu E M, Sorgun M. Frictional Pressure Loss Estimation of Water-Based DrillingFluids at Horizontal and Inclined Drilling With Pipe Rotation and Presence of Cuttings
    [C]. SPE Oil and Gas India Conference and Exhibition. Mumbai, India, SPE127300,2010.
    [47]王爱宽,高虎,邵晓伟等.一种保持大斜度井定向井井眼清洁的有效技术[J].断块油气田,2003,10(5):77-79.
    [48] Bassal A A. The Effect of Drillpipe Rotation on Cuttings in Inclined Wellbores [D]. Tusla:University of Tulsa,1996.
    [49] Sanchez R A, Azar J A, Bassal A A, et al. Effect of Drillpipe Rotation on Hole CleaningDuring Directional-Well Drilling [J]. SPE Journal,1999,4(2):101-108.
    [50] Saasen A. Hole Cleaning During Deviated Drilling-The Effects of Pump Rate andRheology [C]. SPE European Petroleum Conference. Hague, Netherlands, SPE50582,1998.
    [51]李明,汪志明,郝炳英等.钻柱旋转对大位移井井眼净化影响规律的研究[J].石油机械,2009,37(12):34-37.
    [52] Walker S, Li J. The Effects of Particle Size, Fluid Rheology, and Pipe Eccentricity onCuttings Transport [C]. SPE/ICoTA Coiled Tubing Roundtable. Houston, Texas, SPE60755,2000.
    [53] Okrajni S O, Azar J J. The Effects of Mud Rheology on Annular Hole Cleaning inDirectional Wells [J]. SPE Drilling Engineering,1986,1(4):297-308.
    [54] A.L. Martins, C.H.M. Sa, A.M.F. Lourenco, and W. Campos. Optimizing CuttingsCirculation in Horizontal Drilling [C]. Proceedings of the SPE International PetroleumConference&Exhibition, Wllahermosa, Mexico, SPE35341,1996.
    [55] Okranji S O. Mud Cuttings Transport Study in Directional Well Drilling. Final Reportfor Amoco Production Company [D]. Tusla: University of Tulsa,1981.
    [56] Brown N P, Bern P A, Weaver A. Cleaning Deviated Holes: New Experimental andTheoretical Studies [C]. SPE/IADC Drilling Conference. New Orleans, Louieiana, SPE18636,1989.
    [57] M.Q. Duan, S. Miska, M.J. Yu, N. Takach, and R. Ahmed, Transport of small cuttings inextended reach drilling. SPE Drilling&Completion,2008,23(3):258-265.
    [58]刘希圣,郑新权,丁岗.大斜度井中岩屑床厚度模式的研究[J].石油大学学报(自然科学版),1991,15(2):28-35.
    [59]周风山,蒲春生.水平井偏心环空中岩屑床厚度预测研究[J].石油钻探技术,1998,26(4):17-19.
    [60] Ozbayoglu E M, Sorgun M, Saasen A, et al. Hole Cleaning Performance of Light-WeightDrilling Fluids During Horizontal Underbalanced Drilling [J]. Journal of CanadianPetroleum Technology,2010,49(4):21-26.
    [61]汪海阁,刘希圣,丁岗.水平井段岩屑床厚度模式的建立[J].石油大学学报(自然科学版),1993,17(3):25-32.
    [62] Gavlgnet A A, Sobey I J. Model Aids Cuttings Transport Prediction [J]. JPT,1989,41(9):916-921.
    [63] Dukler A E. Modelling Two Phase Flow and Heat Transfer [C]. KS-11,1978.
    [64] Martins A L, Petrobras, Santana C C. Evaluation of Cuttings Transport in Horizontal andNear Horizontal Wells-A Dimensionless Approach [C]. SPE23643,1992.
    [65]汪志明,张政.大斜度井两层稳定模型岩屑传输规律研究[J].石油钻采工艺,2003,25(4):8-11.
    [66] Santana M, Martins A L, Sales JR A. Advances in the Modeling of the Stratified Flow ofDrilled Cuttings in High Angle and Horizontal Wells [C]. international PetroleumConference and Exhibition. Villahermosa, Mextco, SPE39890,1998.
    [67] Doron P, Barnea D. Effect of the No-Slip Assumption on the Prediction of Solid-LiquidFlow Characteristics [J]. International Journal of Multiphase Flow,1992,18(4):617-622.
    [68] Kamp A M, Rivero M. Layer Modeling for Cuttings Transport in Highly InclinedWellbores [C]. SPE Latin American and Caribbean Petroleum Engineering Conference,Caracas, Venezuela, SPE53942,1999.
    [69] Espinosa-Paredes G, Salazar-Mendoza R, Cazarez-Candia O. Averaging Model forCuttings Transport in Horizontal Wellbores [J]. Petroleum Science and Engineering,2007,55(3-4):301–316.
    [70] Espinosa-Paredes G, Cazarez-Candia O. Two-Region Average Model for CuttingsTransport in Horizontal Wellbores I: Transport Equations [J]. Petroleum Science andTechnology,2011,29(13):1366–1376
    [71] Espinosa-Paredes G, Cazarez-Candia O. Two-Region Average Model for CuttingsTransport in Horizontal Wellbores II: Interregion Conditions [J]. Petroleum Science andTechnology,2011,29(13):1377–1386.
    [72] Martins A L, Santana M L, Campos W, et al. Evaluating the Transport of SolidsGenerated by Shale Instabilities in ERW Drilling[J]. SPE Drilling&Completion,1999,14(4):254-259.
    [73]汪志明,张政.大位移水平井两层不稳定岩屑传输模型研究[J].水动力学研究与进展,2004,19(5):677-681.
    [74] Suzana S C, Sidney S, Sergio A B, et al. Simulation of Transient Cuttings Transportationand ECD in Wellbore Drilling [C]. SPE Europec/EAGE Annual Conference andExhibition held, Rome, Italy, SPE113893,2008.
    [75] Sharma M P. Cuttings transport in Inclined Boreholes [C]. OSEA90159,1990.
    [76] Desmond Nguyen, Rahman S S. A Three-Layer Hydraulic Program for EffectiveCuttings Transport and Hole Cleaning in Highly Deviated and Horizontal Wells [C].IADC/SPE Asia Pacific Drilling Technology, Kuala Lumpur, Malaysia, SPE36383,1996.
    [77] Wilson K C. Analysis of Bed-Load Motion at High Shear Stress [J]. Journal of HydraulicEngineering,113(1):1:97-103.
    [78] Cho H, Shah S N, Osisanya S O. A Three-Layer Modeling for Cuttings Transport withCoiled Tubing Horizontal Drilling [C]. SPE Annual Technical Conference andExhibition, Dallas, Texas, SPE63269,2000.
    [79] Cho H, Shah S N, Osisanya S O. A Three-Segment Hydraulic Model for CuttingsTransport in Coiled Tubing Horizontal and Deviated Drilling [J]. Journal of CanadianPetroleum Technology,2002,41(6):32-39.
    [80] Doron P, Barnea D. Flow of Solid-Liquid Mixtures in Inclined Pipes [J]. Int. J.Multiphase Flow,1997,23(2):313.
    [81]郭晓乐,汪志明,龙芝辉.大位移井全井段岩屑动态运移规律[J].中国石油大学学报(自然科学版),2011,35(1):72-76.
    [82] M.Q. Duan, S. Miska, M.J. Yu, N. Takach, R. Ahmed, and C. Zettner. Critical conditionsfor effective sand-sized solids transport in horizontal and high-angle wells [J]. SPEDrilling&Completion,2009,24(2):229-238.
    [83]李洪乾,刘希圣.水平井钻井合理环空返速的确定方法[J].石油大学学报(自然科学版),1994,18(5):27-31.
    [84]李洪乾,呆传良,任耀秀等.水平井钻井第二洗井区环空止动返速的计算[J].石油钻探技术,1995,23(增刊):27-29.
    [85] Ahmed R, Sagheer M, Takach N, et al. Experimental Studies on the Effect of MechanicalCleaning Devices on Annular Cuttings Concentration and Applications for OptimizingERD Systems[C]. SPE Annual Technical Conference and Exhibition, Florence, Italy,SPE134269,2010.
    [86]孙浩玉.岩屑床清除器设计与其流场仿真研究[J].石油机械,2009,37(12):38-41.
    [87] Rodman D, Wong T, Chong A C. Steerable Hole Enlargement Technology in Complex3D Directional Wells [C]. SPE Asia Pacific Oil and Gas Conference and Exhibition,Jakarta, Indonesia, SPE80476,2003.
    [88] Swielik G. Cutting bed impeller [P]. U. S. Patent006223840B1,2001.
    [89] Barnett R. Cuttings Bed Removal Tool[P]. U. S. Patent2007278011A1,2007.
    [90] Swielik G. Cutting bed impeller [P]. U. S. Patent005937957A,1999.
    [91] Puymbroeck LV, Williams H, Bayne C. Increasing drilling performance for ERD wellsusing new generation hydro-mechanical drill pipe[C].2013AADE National TechnicalConference and Exhzibition, Cox Convention Center, Oklahoma,2013.
    [92]杨伦,谢一华.气力输送工程[D].北京,机械工业出版社.2006.
    [93]赵春芳.不同方法测试粒度分布的比较研究[J].中国粉体技术,2004(2):22-24.
    [94] Corey A. Influence of the shape on the fall velocity of sand grains [D]. Fort Collins:Colorado A&M College,1949.
    [95] Chhabra RP. Motion of spheres in power law (viscoinelastic) fluids at intermediateReynolds numbers: a unified approach [J]. Chemical engineering and processing,1990,28,89-94.
    [96] George Gabriel Stokes. On the Effect of the Internal Friction of fluids on the Motion ofPendulums [J/OL].1850, Section IV:38.
    [97]钱宁,万兆惠.泥沙运动学[M].北京:科学出版社,2003.
    [98] Schiller L, Naumann Z. Uber die grundlegenden berechnungen bei derschwerkraftaufbereitung [J]. Zeitschrift des Vereines Deutscher Ingenieure,1933,77(12):318–338.
    [99] Morsi SA, Alexander AJ. An Investigation of Particle Trajectories in Two-Phase FlowSystems [J]. J. Fluid Mech.1972,55(2):193–208.
    [100] Cheng, N. S.. Simplified settling velocity formula for sediment particle.[J]. Journal ofHydraulic Engineering,1997,123(2):149–152.
    [101] Arkhangel’skii BV. Experimental study of accuracy ofhydraulic coarseness scale ofparticles[C]. Izv. NIIG, Moscow,1935(in Russian).
    [102] Ibad-zade YA. Movement of sediment in open channels[C]. Russian Translations Series(Translated by Ghosh SP), Moscow,1992.
    [103] Sarkisyan AA. Deposition of sediment in a turbulent stream[C]. Izd. AN SSSR, Moscow,1958(in Russian).
    [104] Zegzhda AP. Settlement of sand gravelparticles in still water[C]. Izv. NIIG, Moscow,1934(in Russian).
    [105] Dallavalle J. Micrometrics, The technology of fine particles [M]. London: Pitman,1948.
    [106] Julien P. Erosion and sedimentation. Cambridge [M]. Cambridge: Cambridge University,Press,1995.
    [107] Soulsby R. Dynamics of marine sands, a manual for practical applications [M]. London:Thomas Telford,1997.
    [108] Guo Junke. Logarithmic matching and its applications in computational hydraulics andsediment transport [J]. Journal of Hydraulic Research,2002,45(2):555-565
    [109] Williams G. Particle roundness and surface texture effects on fall velocity [J]. Journal ofSedimentary Petrology,1966,36(1):255–259.
    [110] Camenen B. Simple and general formula for the settling velocity of particles [J]. Journalof Hydraulic Engineering,2007,133(2):229–233.
    [111] Dietrich W. Settling velocities of natural particles [J]. Water Resource Research,1982,18(6):1615–1626.
    [112] Peden JM, Luo YJ. Settling velocity of variously shaped particles in drilling andfracturing fluids[C]. SPE16243,1987.
    [113] Ezekiel EE. Experimental study of drilling mud rheology and its effect on cuttingstransport [D]. Trondheim: Norwegian University of Science and Technology,2012.
    [114] Zhou L. Hole cleaning during underbalanced drilling in horizontal and inclined wellbore[J]. SPE Drilling Completion,23:267-273.
    [115] McNown JS, Lee HM, McPherson MB, Engez SM. Influence of boundary proximity onthe drag of sphere[C].7th International Congress for Applied Mech., London,1948.
    [116] McNown JS, Newlin JT. Drag of spheres within cylindrical boundaries[C].1st Congressfor Applied Mech., London,1951.
    [117] Frisch HL, Simha R. The Velosity of Colloidal Suspensions and MacromolecularSolutions, in Rheology. Theory and Applications [M]. London: Academic Press Inc.,1956.
    [118] Richardson JF, Zaki WN. Sedimentation and Fluidisation [J]. Part I, Trans., Inst. ChemEngrs.,1954,32(1):35~53.
    [119]费祥俊.泥沙的群体沉速-两种典型情况下非均匀沙沉速计算[J].泥沙研究.1992(3):11-20.
    [120] Schenkel J H, Kitchener J A. A test of the Derjaguin-Verwey-Overbeek theory with acolloidal suspension [A]. Journal of the Chemical Society, Faraday Transactions,1960,56:161-173.
    [121]陈家琅,刘永建.钻井液流动原理[M].北京:石油工业出版社,1997.
    [122] Graham DI, Jones TER. Settling and transport of spherical particles in power-law fluidsat finite Reynolds number [J]. Journal of Non-Newtonian Fluid Mechanics,1994,54:465-488.
    [123] Kurose R. Komori S. Drag and lift forces on a rotating sphere in a linear shear flow [J].Journal of Fluid Mechanics,1999,384:183-206.
    [124] Liang SC, Hong T, Fan LS. Effect of particle arrangement on the drag force of a particle[J]. International Journal of Multiphase Flow,1996,22:285-306.
    [125] Saffman PG. The lift on small sphere in a slow shear flow [J].Journal of Fluid Mechanics,1965,22(2):385-400.
    [126] Duan MQ, Miska S, Yu MJ, et al. Critical conditions for effective sand-sized-solidstransport in horizontal and high-angle wells [J]. SPE Drilling&Completion,2009,24(2):229-238.
    [127] Bourgoyne AT, Millheim KK, Chenvert ME, et al. Applied drilling engineering [M].Richardson: SPE Text book,1991.
    [128] Bobok E. Fluid mechanics for petroleum engineers [M]. Amsterdam: Elsevier SciencePublisher B.V.,1991.
    [129] Escudier MP, Presti F, Smith S. Drag reduction in the turbulent pipe flow of polymers [J].J. Non-Newton. Fluid Mech.,1999,81:197–213.
    [130] Schlichting H. Boundary layer theory (8st)[M]. Berlin: Springer-Verlag,1955.
    [131] Dodge DW, Metzner AB. Turbulent Flow of Non-Newtonian Systems [J]. AIChE Journal,1959,5(2):189-204.
    [132] Kallio GA, Reeks MW. A numerical simulation of particle deposition in turbulentboundary layer [J]. International Journal of Multiphase Flow,1989,15(3):433-446.
    [133] Gerhart P M, Gross R J, Hochstein J I. Fundamental of fluid mechanics [M]. New York:Addison Wesley PublishingCompany,1992.
    [134] White FM. Viscous fuid fow (2nd)[M]. NewYork: McGraw-Hill,1991.
    [135] Ramadana A, Skallea P, Johansenb S T. A mechanistic model to determine the criticallow velocity required to initiate the movement of spherical bedparticles in inclinedchannels [J]. Chemical Engineering Science,2003,58(2003):2153-2163.
    [136] Rudi Rubiandini RS. Equation for estimating mud minimum rate for cuttings transport inan inclined-until-horizontal well[C]. SPE/IADC Middle East Drilling TechnologyConference, Abu Dhabi, UAE, SPE57541,1999.
    [137] Larsen TI, Pilehvari AA, et al. Development of a new cuttings transport model for high-angle wellbores including horizontal wells [J]. SPE Drilling&Completion,1997,12(2):129-136.
    [138] Shadizadeh SR, Zoveidavianpoor M. An experimental modeling of cuttings transport foran Iranian directional and horizontal well drilling [J]. Petroleum Science and Technology,2012,30:786-799.
    [139] Li J, Wilde G. Effect of particle density and size on solids transport and hole cleaningwith coiled tubing[C]. SPE/ICoTA Coiled Tubing Conference and Exhibition,Woodlands, Texas, SPE94187,2005.
    [140] Clark R K, Bickham K L. A mechanistic model for cuttings transportation[C]. SPE28306.
    [141] Ozbayoglu EM, Miska SZ, Takach N, et al. Sensitivity analysis of major drillingparameters on cuttings transport during drilling highly-inclined wells[J]. PetroleumSicence and Technology,2009,27:122-133.
    [142] Shih TH, Liou WW, Shabbir A, et al. A new k eddy viscosity model for highReynolds number turbulent flows [J]. Computers&Fluids,1995,24(3):227-238.
    [143] Syamlal M, O’Brien TJ. Computer simulation of bubbles in a fluidized bed [J]. AIChESymp. Series.,1989,85:22-31.
    [144] Dalla Valle JM. Micromeritics [M]. London: Pitman,1948.
    [145] Garside J, Al-Dibouni M R. Velocity-voidage relationships for fluidization andsedimentation [J]. I&EC Process Des. Dev.,1977,16:206–214.
    [146] Syamlal M, Rogers W, O’Brien TJ. MFIX Documentation: Volume1, Theory Guide [E].National Technical Information Service, Springfield, VA. DOE/METC-9411004,NTIS/DE94000871993.
    [147] Wen CY, Yu YH. Mechanics of Fluidization [A]. Chem. Eng. Prog. Symp. Series.1966,62:100-111.
    [148] Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds, kinetictheory approach[C].7th Engineering Foundation Conference on Fluidization, Brisbane,1992.
    [149] Ergun S. Fluid flow through packed columns [J]. Chem.Eng. Prog.,1952,48(2):89–94.
    [150] Ozbayoglu M E, Saasen A, Sorgun M, et al. Effect of pipe rotation on hole cleaning forwater-based drilling fluids in horizontal and deviated wells [C]. IADC/SPE Asia PacificDrilling Technology Conference and Exhibition, Jakarta, Indonesia, SPE114965,2008.
    [151]陈庭根,管志川.钻井工程理论与技术[M].东营:石油大学出版社,2000.
    [152]苏义脑.油气直井防斜打快技术-理论与实践[M].北京:石油工业出版社,2003.
    [153]闫铁,邵帅,孙晓峰等.井眼清洁工具作用的岩屑颗粒运动规律研究[J].石油钻采工艺,2013,35(3):1-4.
    [154]盛振邦,刘应中.船舶原理(下册)[M].上海:上海交通大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700