用户名: 密码: 验证码:
磷酸镁水泥固化中低放射性废物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥固化技术运用在中低放射性废物的处理有着明显的优势,固化处理工艺和设备简单,处理费用低廉,固化体安全耐久,因此在中低放射性废物的固化和储存运输方面,均得到广泛应用。采用普通硅酸盐水泥和高铝水泥等的传统水泥处理技术存在水灰比高、核素浸出率高和固化体强度低等不足,而且放射性废物的pH值必须在一定范围,否则需进行预处理,同时放射性废物中PO43-, BO33-, Zn,Sn等离子影响水泥凝结时间和强度发展,特别是传统水泥固化体包容量小,固化体的储存或运输材料体积过大,一些情况下对于中低放射性废物的固化受到空间限制。因此,有必要从胶凝材料体系上选择新的水泥类型用于中低放射性废物固化,改善水泥固化体性能、提高固化体包容量,以及提高水泥固化速度和固化体安全耐久,促进水泥固化技术在核废料处理和处置领域应用。考虑磷酸镁水泥所具有的特点,本文研究选用磷酸镁水泥作为固化基材,将磷酸镁水泥用于固化中低放射性废物,包括用于处理中低放射性焚烧灰。
     首先,从有利于中低放射性废物固化角度,研究磷酸镁水泥有关性能。对常用的三种磷酸盐分别制备的磷酸镁水泥强度以及配比对强度的影响进行研究,以便从中选择适宜的固化基材配方。同时考虑到磷酸镁水泥固化体在制备、储存和运输过程中可能受到温度变化的影响,研究了磷酸镁水泥在-20℃条件下养护强度发展趋势以及在经历高温后性能的变化情况。材料的耐久性也是重要的指标,因此对磷酸镁水泥的抗冻融性能和抗浸泡性能进行研究。结果显示采用磷酸二氢铵制备的磷酸镁水泥强度最大,磷酸二氢钾次之,磷酸氢二铵强度最低。配比对性能的影响,M/P比在其中起到关键作用,其次是硼砂的影响,氧化镁细度影响最小。磷酸镁水泥在低温条件下强度仍能实现较大的增长,而经历高温后,强度有所降低,但经历了1400℃处理后仍能保持结构的完整。而耐久性的研究也表明磷酸镁水泥具有较好的抗冻融循环和抗浸泡性能。通过对强度、温度对基材性能的影响以及耐久性的研究分析,表明磷酸镁水泥是一种理想的固化基材。
     由于Cs和Sr是中低放射性废物中最常见且危害最大的两种放射性核素,通过掺加Cs和Sr研究了Cs和Sr对磷酸镁水泥水化和硬化的影响,磷酸镁水泥对Cs和Sr的吸附性能、含核素固化体的浸出率以及耐久性、以及Cs和Sr在磷酸镁水泥中的存在状态。掺加Cs和Sr均对磷酸镁水泥的抗压强度造成影响,造成了磷酸镁水泥强度的下降。磷酸镁水泥对Cs和Sr均具有较好的吸附性能,尤其对Sr吸附率高达97.72%。掺加Cs的固化体42d浸出率和累计浸出分数低至5.47×10-5cm·d-1和2.81×10-3cm,而掺加Sr的固化体Sr的42d浸出率和累计浸出分数可达2.85×10~(-5)cm·d~(-1)和5.92×10~(-3)cm。Cs对磷酸镁水泥早期水化影响较小,而Sr的影响较大,Sr的掺入降低了磷酸镁水泥的水化热,延缓了水化。Cs和Sr在固化体中主要以难溶的MgCsPO4·6H_2O和SrHPO_4形式存在,使其固化体浸出率大幅降低。
     放射性焚烧灰是目前固化处理的难点。本文采用磷酸镁水泥固化模拟放射性焚烧灰。首先进行包容量研究,其次是对固化体的性能进行分析。通过强度分析,磷酸镁水泥对模拟焚烧灰的最大包容量可以达到60wt%。水化热分析表明模拟放射性焚烧灰掺量越大,固化体的水化热越低,导致水化进程有较大延缓。固化体Cs的浸出率为1.7×10-4cm·d~(-1),累计浸出分数为0.15cm;Sr的浸出率为1.1×10-4cm·d~(-1),累计浸出分数为0.015cm。对固化体的流动度,抗冲击性能、抗冻融性能和抗浸泡性能研究也表明了其完全满足固化体性能指标要求。
     本研究表明,磷酸镁水泥对于中低放射性废物具有良好的固化性能。主要原因是由于核素与其它反应物形成了难溶的磷酸盐矿物,同时辅以磷酸镁水泥水化物的包裹作用,可快速将核素固定在固化体中,具有较大的废物包容量。因此磷酸镁水泥是一种理想的中低放射性废物固化基材。
Cement solidification process has significant advantage when applied in thedisposal of medium and low level radioactive wastes. Compared with othersolidification process, technology and equipment for cement solidification process isvery simple and low cost, solidified form also has good durability. So, cementsolidification process has been widely applied in storage and transportation of mediumand low level radioactive wastes. Traditional cement solidification technology hasmany disadvantages, such as high water to cement ratio, high nuclei leaching rate, lowsolidified form strength and etc. Traditional cement must cure under high pH valueenvironment,wastes need treatment previously. The setting time and strength ofcement may affected by PO43-, BO33-, Zn, Sn. Due to the disadvantages above,traditional cement solidification process has low wastes loading, which means morespace must remain to the storage, and the transportation of wastes is also a big problem.Therefore, the selection of new type cement for medium and low level radioactivewastes is necessary,the target of selection is improve the performance of the solidifiedform, improve the loading capacity and speed the solidification process, and finally getsolidified form with better durability, promote cement solidification process in the fieldof treatment and disposal of nuclear waste. Considering the characteristics ofmagnesium phosphate cement (MPC), magnesium phosphate cement was selected asmatrix material in this study for solidifying medium and low level radioactive waste,and solification of medium and low level radioactive incineration ash was also studied.
     First of all, the related performances of magnesium phosphate cement which infavor of medium and low level radioactive wastes solidification were studied. In orderto select suitable matrix material, three kinds of phosphate were chose to preparationmagnesium phosphate cement; the effects of mix ration to the strength were alsostudied. Considering the preparation of solidified form of magnesium phosphatecement may be affected by the very low temperature, the strength development ofMPC was studied by curing under-20℃.The properties of MPC after various hightemperature treatments were also studied. Durability is also an important factor ofsolidified form, freezing and thawing test and soaking test were used to investigate thedurability of samples. Results show MPC prepared by ammonium dihydrogenphosphate has highest strength, the latter is MPC prepared by potassium dihydrogen phosphate, diammonium hydrogen phosphate is the worst. M/P plays a key role to thestrength of MPC, followed by effects of borax, particle size of magnesium oxide hasminimal effection. Strength of magnesium phosphate cement has been able to achievegrowth under low temperature conditions. Magnesium phosphate cement-basedmaterials have superior high-temperature performance, the structure of cement stillmaintain integrity even at up to1400℃, volume of samples will reduce under differenttemperature treatment, structural collapse did not occur whthin the full temperaturerange. Durability studies show that magnesium phosphate cement has good resistanceto freeze-thaw and soaking test. The results indicate magnesium phosphate cement isan ideal matrix material.
     Secondly, because Cs and Sr are two of the most common and dangerest nuclei ofmedium and low level radioactive wastes, the solidification performance of MPC byadding Cs and Sr was studied. The affections of Sr and Cs addition to the strength ofMPC were studied, as well the hydration of MPC. The adsorption performance ofmagnesium phosphate cement to Cs, Sr was also studied. The durability and theexistence state of Cs and Sr in MPC were also investigated. Adding Cs and Sr causethe decline in the strength of MPC. Magnesium phosphate cement have betterperformance on adsorption Sr, absorption rate for Sr is up to97.72%. The42d leachingrates and cumulative leaching factor of solidified form with Cs are5.47x10-5cm·d-1and2.81x10-3cm respectively, and those of Sr are2.85x10-5cm·d-1and5.92x10-3cmrespectively. Sr addition reduces the hydration heat of hydration of magnesiumphosphate cement, slow hydration process, but those of Cs is not so significant.Cs andSr are mainly as MgCsPO4·6H2O and SrHPO4existed in the solidified form, so theleaching rates are significantly lower than other cement system,especially at the earlyleaching test.
     Immobilization of radioactive incineration ash is a difficult in wastes diaposal.Magnesium phosphate cement was chosed to immbilizaton for simulated radioactiveincineration ash. The loading capacity of solidified form was studied, and theperformance of solidified form was also investigated. Through analysis of compressivestrength, maximum loading capacity of solidified form can reach60wt%. Hydrationheat analysis indicates with higher simulated radioactive incineration ash, the lowerhydration heat of solidified form can be found, caused the hydration process delay. Theleaching rate and cumulative leaching rate of solidified form can reach1.7×10-4cm·d-1and0.15cm for Cs,1.1×10-4cm·d~(-1)and0.015cm for Sr. fluidity of pastes, impact resistance, freezing and thawing resistance and anti soaking are fully met performancerequirements of solidified form.
     This study showed that magnesium phosphate cement has good performance forsolidification of medium and low level radioactive waste. With the formation ofinsoluble phosphate mineral, and encapsulating with the hydration products of MPC,radioactive ions can be quickly fixed in the solidified form, and the final form has gooddurability. MPC is an ideal matrix material for medium and lowlevel radioactivewastes solidification.
引文
[1]伍浩松,王海丹.世界核电现状[J].国外核新闻,2011,7:7-10.
    [2]温鸿钧.我国核电发展的重要里程碑-浅析《核电中长期发展规划(2005~2020年)》的发布[J].中国核工业,2008,1:17-18.
    [3]罗上庚.放射性废物处理与处置[M].北京:中国环境科学出版社,2007.
    [4]许玲.任重道远-我国核电站放射性废物处理和处置综述[J].国防科技工业,2011,5:35-37
    [5]孙奇娜,李俊峰,王建龙.放射性废物水泥固化研究进展[J].原子能科学技术,2010,44(12):1427-1435.
    [6]金承黎,易发成,李玉香.碱矿渣水泥固化核废物研究现状[J].核科学与工程,2004,24(1):27-30.
    [7] Pan L. K., Chang B. D., Chou D. S. Optimization for solidification of low-level-radioactiveresin using Taguchi analysis [J]. Waste Management,2001,21(8):767-772.
    [8]李全伟,张东,李帆.沸石用于放射性废树脂水泥固化的试验研究[J].非金属矿,2005,28(5):42-44.
    [9] Plecas I., Dimovic S.. Influence of natural sorbents on the immobilization of spent ion exchangeresins in cement[J]. Journal of Radioanalytical and Nuclear Chemistry,2006,269(1):181-185.
    [10]谭宏斌,李玉香.硅灰对铀(Ⅵ)与硅酸盐水泥反应产物的影响[J].核技术,2005,28(10):779-782.
    [11]王志雄,周宏春.放射性废物处理概论[M].北京:科学出版社,1996.
    [12]闵茂中.放射性废物处置原理[M].北京:原子能出版社,1998.
    [13]许明霞.解读IAEA新放射性废物分类草案[J].核安全,2008,1:37-44.
    [14]陈式.放射性废物安全的主题分类和部分成果评介[J].辐射防护通讯,2007,27(2):1-7,23.
    [15]国家环境保护局.放射性废物的分类[S].GB9113-1995.
    [16]国家技术监督局.放射性废物管理规定[S]. GB14500-93.
    [17]车春霞,滕元成,桂强.放射性废物固化处理的研究及应用现状[J].材料导报,2006,20(2):94-97,101
    [18]丁庆军,张立华,胡曙光,等.防辐射混凝土及核固化材料研究现状与发展[J].武汉理工大学学报,2002,24(2):16-19
    [19]罗上庚.玻璃固化国际现状及发展前景[J].硅酸盐通报,2003,1:42-49.
    [20]王承遇,陶瑛.玻璃材料手册[M].北京市:化学工业出版社,2008,736-743.
    [21]盛嘉伟,罗上庚,汤宝龙,等.90-19/U模拟高放玻璃固化体的浸出性能评价[J].核化学与放射化学,1995,17(1):1-6.
    [22]盛嘉伟,罗上庚,汤宝龙,等.90-19/U模拟高放玻璃固化体表面性能的研究[J].辐射防护,1996,16(2):114-120.
    [23] Day D E, Kim D S, Schweiger M J. Iron Phosphate Glass as an Alternative Waste-Form forHanford LAW [R]. Pacific Northwest National Laboratory, US,2003.
    [24]黄文旵,周蔡, Day D E, et al.磷酸盐玻璃固化体化学耐蚀性研究[J].硅酸盐学报,2004,32(4):460-470.
    [25]黄文旵,周萘, Day D E, et al.高放射性核废料玻璃固化体结构与化学稳定性[J].同济大学学报,2005,33(5):664-658.
    [26] Ringwood A E, Kesson S E. Synroc in Radioctive Waste Farm for the Future[M]. eds: Lutze W,Ewing R C, North-Holland,1988,233.
    [27]赵伟,滕元成,曾冲盛,等.固相反应合成锆英石[J].硅酸盐学报,2009,37(10):1660-1664.
    [28]赵伟,滕元成,李玉香,等.铈在榍石固溶体中的固溶量[J].原子能科学技术,2010,44(10):1173-1178.
    [29]曾冲盛,滕元成,李玉香,等.榍石基人造岩石固溶钕[J]..硅酸盐学报,2009,37(3):470-475.
    [30]曾冲盛,滕元成,齐晓敏,等.高温固相反应合成榍石的工艺研究[J]..辐射防护,2008,28(3):145-154.
    [31] Roy D M. Binding materials in nuclear waste management. In: Proc9th Int Cong chem., VolVI,New Delhi, India,1992:88.
    [32]高波,刘淑玲,王敏,等.危险废物水泥固化工艺的工程设计与探讨[J].环境工程,2010,28(6):95-98.
    [33]蒋建国,王伟.危险废物稳定化/固化技术的现状与发展[J].环境科学进展,1998,6(1):58-60.
    [34] Glasser F.P.. Progress in the immobilization of radioactive wastes in cement[J]. Cement andConcrete Research,1992,22(2/3):201-216.
    [35]沈晓冬,严生,吴学权,等.放射性废物水化固化体的理论基础、研究现状及对水泥化学研究的思考[J].硅酸盐学报,1994,22(2):181-187.
    [36]李洪辉,范智文.核电站放射性废物水泥固化处理[J].辐射防护通讯,2010,30(3):34-38.
    [37]郭志敏.放射性固体废物处理技术[M].北京:原子能出版社,2007:144.
    [38] Gougar M. L. D., Scheetz B. E., D. M. Roy. Ettringite and C-S-H Portland cement phases forwaste ion immobilization: a review[J]. Waste Management,1996,16(4):295-303.
    [39] Sakr K., Sayed M. S., Hafez N. Comparison studies between cement and cement-kaoliniteproperties for incorporation of low-level radioactive wastes [J]. Cement and ConcreteResearch,1997,27(12):1919-1926.
    [40]李玉香,钱光人,易发成,等.碱矿渣复合水泥-放射性废物固化胶凝材料力学性能的研究(一)[J].新世纪水泥导报,1999.(4):21.
    [41]李玉香,等.碱矿渣复合水泥-放射性废物固化胶凝材料力学性能的研究(二)[J].新世纪水泥导报,1999.(5):23-24.
    [42]李玉香,易发成,谭宏斌,等.富铝碱矿渣粘土矿物复合胶凝材料基模拟放射性泥浆固化体的性能研究[J].辐射防护,2005,25(2):102-108.
    [43]李玉香,钱光人,等.放射性废物固化材料-富铝碱矿渣粘土矿物胶凝材料的研究[J].核科学与工程,1999.19(4):379-383.
    [44]赵怀红,严生.大体积浇注碱矿渣水泥中低放废液固化研究[J].南京工业大学学报,2002,24(6):20-25.
    [45]赵怀红,严生.放射性废物水泥固化体铯固化机理研究[J].江苏大学学报(自然科学版,2002,23(6):41-45.
    [46]赵怀红,严生.非α中低放废液碱激发胶凝材料固化体性能研究[J].江苏大学学报(自然科学版),2002,23(4):60-63.
    [47]赵怀红.中低放废液大体积浇注水泥固化及铯固化机理[D].南京大学,2002.
    [48]石拥军.低碱度碱矿渣水泥固化放射性废物性能研究[D].重庆大学,2007.
    [49] Davidovits J., Geopolymers: Inorganic polymeric new materials [J].Journal of MaterialsEducation,1994,16:91-139.
    [50] Davidovits J., Geopolymer chemistry and properties, Geopolymer&First EuropeanConference on Soft Mineralurgy,1., Compiegne, France,1988:25-48
    [51] Davidovits J., J. L. Sawyer, Early high-strength mineral polymer, U.S. Patent no.4,509,985,1985.
    [52]陈松,李玉香.模拟含碱高放废液“碱-偏高岭土-矿渣”固化性能研究[J].硅酸盐通报,2006,25(3):42-47.
    [53]陈松,李玉香,郭怀仁.碱-偏高岭土-矿渣水合陶瓷力学性能研究[J].武汉理工大学学报,2006,28(10):31-34.
    [54] Qian Guangren, Li Yuxiang, et al. Improvement of metakaolin on radioactive Sr and Csimmobilization of alkali-activated slag matrix [J].Journal of Hazardous Materials,2002,92(3):289-300.
    [55]谢吉星,印杰,陈俊静,徐建中.地聚合材料固化处理垃圾焚烧飞灰[J].环境工程学报,2010,4(4):935-939.
    [56] Xu J.Z., Zhou Y.L., Chang Q., Qu H.Q., Study on the factors of affecting the immobilization ofheavy metals in fly ash-based geopolymers[J].Materials Letters,2006,60:820-822.
    [57] Phair J. W., Smith J. D., J. S. J. van Deventer, Characteristics of aluminosilicate hydrogelsrelated to commercial Geopolymers [J]. Materials Letters,2003,57:4356-4367.
    [58] J.G.S. Van Jaarsveld, and J.S.J. Van Deventer, The effect of metal contaminants on theformation and properties of waste-based geopolymers[J].Cement and Concrete Research,1999,29:1189-1200.
    [59] J.G.S. Van Jaarsveld, J. S. J. van Deventer and L. Lorenzen. Factors affecting theimmobilization of metals in geopolymerized flyash[J].Metallurgical and MaterialsTransactions B: Process Metallurgy and Materials Processing Science,1998,29:283-291.
    [60] J. G. S. Van Jaarsveld, J. S. J. Van Derventer and L. Lorenzen. The potentiall use ofgeopolymeric materials to immobolise toxic metals: Part Ι Theory and applications [J].Minerals Engineering,1997,10:659-669.
    [61] J.G.S. Van Jaarsveld, J.S.J. Van Derventer, G.C. Lukey. The effect of composition andtemperature on the properties of fly ashand kaolinite-based geopolymers [J].ChemicalEngineering Journal,2002,89:63-73.
    [62] Dan S. Perera, Zaynab Aly, Eric R. Vance and et al. Immobilizationn of Pb in a geopolymermartrix [J]. Journal of American Ceramic Society,2005,88(9):2586-2588.
    [63] Shaobin Wang, Application of Solid Ash Based Catalysts in Heterogeneous Catalysis [J].Environmental Science and Technology,2008,42:7055–7063.
    [64] Phair J. W., J. S. J. van Deventer. Effect of the silicate activator pH on the microstructuralcharacteristics of waste-based geopolymers[J]. International Journal of Mineral Processing,2002,66:121-143.
    [65] Bakharev T., Thermal behaviour of geopolymers prepared using class F fly ash and elevatedtemperature curing [J]. Cement and Concrete Research,2006,36:1134-1147.
    [66] Wagh A S, Strain R, Jeong S Y, et al, Stabilization of rocky flats pu-contaminated ash withinchemically bonded phosphate ceramics[J]. Nuclear Materials,1999,265:295-307.
    [67]刘凯,李东旭.磷酸镁水泥的研究与应用进展[J].材料导报A:综述篇,2011,25(7):97-100.
    [68]杜磊,严云,胡志华.化学结合磷酸镁胶凝材料的研究及应用现状[J].水泥,2007,5:23~25.
    [69] Soudée E, Péra J. Influence of magnesia surface on the setting time of magnesia-phosphatecement[J]. Cement and Concrete Research,2002,32:153-157.
    [70]杨建明,钱春香,张青行,等.原料粒度对磷酸镁水泥水化硬化特性的影响[J].东南大学学报,2010,40(2):374-379.
    [71]袁大伟,利用硼泥制备磷酸镁水泥[D].大连理工大学,2008.
    [72]杨建明,钱春香,焦宝祥,等.缓凝剂硼砂对磷酸镁水泥水化硬化特性的影响[J].材料科学与工程学报,2010,28(1):31-35,75.
    [73]丁铸,李宗津.早强磷酸盐水泥的制备和性能[J].材料研究学报,2006,4:141~147.
    [74]汪宏涛,曹巨辉.磷酸盐水泥凝结时间研究[J].后勤工程学院学报,2007,23(2):84-87.
    [75]陈兵,吴震,吴雪萍.磷酸镁水泥改性试验研究[J].武汉理工大学学报,2011,33(4):29-34.
    [76]汪宏涛,钱觉时,曹巨辉,等.粉煤灰对磷酸盐水泥基修补材料性能的影响[J].新型建筑材料,2005(12):41-43.
    [77]汪宏涛,钱觉时,曹巨辉.磷酸镁水泥基材料复合减水剂的应用研究[J].建筑材料学报,2007,10(1):71-76.
    [78]张思宇,施惠生.粉煤灰改性磷酸镁水泥基材料的性能与应用[J].粉煤灰综合利用,2009(1):54-56.
    [79]梁波.超早强磷酸镁水泥的实验研究[J].河北理工大学学报(自然科学版),2010,32(3):75-78.
    [80]姜洪义,张联盟.磷酸镁水泥的研究[J].武汉理工大学学报,2001,23(4):32-34.
    [81]林玮,孙伟,李宗津.磷酸镁水泥砂浆的干燥收缩性能[J].工业建筑,2011,41(4):75-78,84.
    [82] Sugama T., Kukacka L.E.. Magnesium monophosphate cements derived from diammoniumphosphate solutions [J]. Cement and Concrete Research,1983,13:407–416.
    [83] Sugama T., Carciello N.. Hydrothermally synthesized aluminum phosphate cements [J].Advance Cement Resarch,1993,5(17):31–40.
    [84] T Sugama., Hot alkali carbonation of sodium metaphosphate modified fly ash/calciumaluminate blend ydrothermal cements [J]. Cement and Concrete Research,1996,26(11):1661–1672.
    [85] Abdelrazig B.E.I., Sharp J.H., El-Jazairi B. Microstructure and mechanical properties ofmortars made from magnesia-phosphate cement [J]. Cement and Concrete Research,1989,19:228–247.
    [86] Abdelrazig B.E.I., Sharp J.H., El-Jazairi B.. The chemical composition of mortars made frommagnesia-phosphate cement [J]. Cement and Concrete Research,1988,18:415–425.
    [87] Abdelrazig B.E.I., Sharp J.H., Siddy P.A., El-Jazairi B..Chemical reactions in magnesia-phosphate cement [J]. Proceedings of the British Ceramic Society,1984,35:141–154.
    [88] Popovics S., Rajendran N., Penko M.. Rapid hardening cements for repair of concrete[J]. ACIMaterials Journal,1987,84:64–73.
    [89]雒亚莉,陈兵.磷酸镁水泥的研究和工程应用[J].水泥,2009,(9):16-18.
    [90] Sengupta P., Swihart G., R Dimitrijevic., Hossain M.. The crystal structure of lunebergite [J].American Mineralogist,1991,76:1400–1407.
    [91]赖振宇,钱觉时,卢忠远,等.原料及配比对磷酸镁水泥性能影响的研究[J].武汉理工大学学报.2011,33(10):16-20.
    [92]周启兆,焦宝祥,丁胜,等.磷酸盐水泥基普通混凝土路面修补剂的研究[J].新型建筑材料,2011,(2):25-28.
    [93]杨全兵,张树青,杨钱荣,等.新型超快硬磷酸盐修补材料性能[J].混凝土与水泥制品,2000,(4):8-11.
    [94]雒亚莉.新型早强磷酸镁水泥的试验研究和工程应用[D].上海交通大学,2010.
    [95] Yang Q, Zhu B, Zhang S, et al. Properties and applications of magnesia-phosphate cementmortar for raped repair of concrete[J]. Cement and Concrete Research,2000,30:1807-1813
    [96]李东旭,李鹏晓,冯春花.磷酸镁水泥耐水性的研究[J].建筑材料学报,2009,12(5):505-510.
    [97] Soude E. Mechanism of setting reaction in magnesia-phosphate cements [J].Cement andConcrete Research,2000,30(2):315-321.
    [98] Wagh A S. Chemically bonded phosphate ceramics [M]. Oxford: Elsevier Science Ltd,2004.
    [99]姜洪义,周环,杨慧.超快硬磷酸盐修补水泥水化硬化机理的研究[J].武汉理工大学学报,2002,24(4):18-20.
    [100] Neiman R, Sanna A C. Setting and thermal reactions of phosphate investments [J]. Journal ofDental Research,1980,59(9):1478-1485
    [101] Sarkar A.K.. Phosphate cement-based fast-setting binders [J]. American Ceramic SocietyBulletin,1990,69(2):234–238.
    [102] Sarkar A.K.. Hydration/dehydration characteristics of struvite and dittmarite pertaining tomagnesium ammonium phosphate cement system [J]. Journal of Materials Science,26(1991)2514–2518.
    [103] Sugama T., Kukacka L.E.. Characteristics of magnesium polyphosphate cements derivedfrom ammonium polyphosphate solutions [J]. Cement and Concrete Research,1983,13:499–506.
    [104] Abdelrazig B.E.I., Sharp J.H.. Phase changes on heating ammonium magnesium phosphatehydrates [J]. Thermochimica Acta,19881,29:197–215.
    [105] Chau C. K., Fei Qiao, Zongjin Li. Microstructure of magnesium potassium phosphate cement[J]. Construction and Building Materials,2011,25:2911–2917.
    [106] Qiao F, Chau CK, Li Z. Property evaluation of magnesium phosphate cement mortar as patchrepair material[J]. Construction and Building Materials,2010,24(5):695–700.
    [107] Qiao F, Chau CK, Li Z. Setting and compressive strength characteristics of magnesiumphosphate cement paste [J]. Advance Cement Resarch,2009,21(4):175–80.
    [108] I. Buj, J. Torras, M. Rovira, J. de Pablo.Leaching behavior of magnesium phosphate cementscontaining high quantities of heavy metals[J]. Journal of Hazardous Materials,175(2010)789–794.
    [109] Fei Qiao, C. K. Chau, Zongjin Li. Calorimetric study of magnesium potassium phosphatecement[J]. Materials and Structures,2012,45:447–456.
    [110] Iyengar S R, Al-Tabbaa A. Developmental study of a low pH magnesium phosphate cementfor environmental applications [J]. Environmental technology,2007,28(12):1387–1401.
    [111] Graeser S, Postl W, Bojar HP, et al. Struvite-(K), KMgPO46H2O, the potassium equivalent ofstruvite-a new mineral[J]. European Journal of Mineralogy,2008,20:629–33.
    [112] Gemma Mestres, Maria-Pau Ginebra. Novel magnesium phosphate cements with high earlystrength and antibacterial properties [J]. Acta Biomaterialia,2011,7:1853–1861.
    [113] Quanbing Y, Beirony Z, Shuqing Zh, et al.Poroperties and application of magnesia-phosphatecement mortar for rapid repair of concrete[J].Cement and Concrete Research,2000,30(11):1807-1813.
    [114] Zhu Ding, Zongjin Li.High-Early-Strength magnesium phosphate cement with fly ash[J].ACI Materials Journal,2005.102(6):375-381.
    [115] Seehra SS, Gupta S, Kumar S. Rapid setting magnesium phosphate cement for quick repair ofconcrete pavements-characterization and durability aspects. Cement and Concrete Research,1993,23(2):254–66.
    [116] Jiang H Y, Zhang LM. Investigation of phosphate cement-based binder with super high earlystrength for repair of concrete[J]. Journal of Wuhan University of Technology-MaterialScience Edition.2001,16(3):46–8.
    [117] Yang Q, Zhang S, Wu X. Deicer scaling resistance of phosphate cement-based binder forrapid repair of concrete[J]. Cement and Concrete Research,2002,32(1):165–8.
    [118] Péra J, Ambroise J. Fiber-reinforced magnesia–phosphate cement composites for rapid repair[J]. Cement and Concrete Composites,1998,20(1):31–9.
    [119]曹洋,王红英,王宏杰,等.废弃混凝土粉料在磷酸镁胶凝材料中的应用[J].河南建材,2010,2:76-77.
    [120] Oil-Well Cements [ED/OL]. http://arunwagh.com/Structural/oilwellcements.html.
    [121]陈兵,陈龙珠.用于喷涂的混凝土建筑材料[P].中国, CN200810202644.3,2008.11.13.
    [122] Wagh A., Jeong S., Singh D. Mercury stabilization in chemically bonded phosphateceramics[J].Ceram. Trans.,1998,87:63–73.
    [123] Singh D., Wagh A., Tlustochowicz M., et al. Phosphate ceramic process formacroencapsulationand stabilization of low-level debris waste [J]. Waste Managment,1998,18:135–143.
    [124] Wagh A., Jeong S., Singh D., te al. Stabilization of contaminated soil and wastewater withchemically bonded phosphate ceramics[C].Proceedings of the Waste Management AnnualMeeting, WM’97, eds. R. Post and M. Wacks, Tucson, AZ,1997.
    [125] Wagh A., Maloney M., Thomson G., et al. Investigations in ceramic stabilization of Hanfordtank wastes [C]. Proceedings of the Waste Management Conference2003, eds. R. Post and M.Wacks, Tucson, AZ, February2003.
    [126] Zhongzhe Liu, Guangren Qian, Jizhi Zhou, et.al.. Improvement of ground granulated blastfurnace slag on stabilization/solidification of simulated mercury-doped wastes in chemicallybonded phosphate ceramics [J]. Journal of Hazardous Materials,2008,157(1):146-153
    [127]杜采颐,严云,胡志华.化学结合磷酸盐胶凝材料对Pb(Ⅱ)滞留性的研究[J].安全与环境学报,2008,8(4):45-48.
    [128] Irene Buja, Josep Torrasb, Daniel Casellas, et al. Effect of heavy metals and water content onthe strength of magnesium phosphate cements [J]. Journal of Hazardous Materials,2009,170:345–350.
    [129] Irene Buja, Josep Torrasb, Miquel Rovira, et al. Leaching behaviour of magnesium phosphatecements containing high quantities of heavy metals[J]. Journal of Hazardous Materials,2010,175:789–794.
    [130] Daniel Véras Ribeiro, Marcio Raymundo Morelli. Influence of the addition of grinding dustto a magnesium phosphate cement matrix[J]. Construction and Building Materials,2009,23:3094–3102.
    [131] Josep Torrasa, Irene Buj, Miquel Rovira,et al. Semi-dynamic leaching tests of nickelcontaining wastes stabilized/solidified with magnesium potassium phosphate cements[J].Journal of Hazardous Materials,2011,186:1954-1960.
    [132]马保国,王景然,李相国,等.硝酸铅对磷酸镁水泥水化的影响及浸出毒性[J].武汉理工大学学报,2011,33(10):21-23,29.
    [133] Wagh A.S., Strain R., Jeong S.Y., et al. Stabilization of Rocky Flats Pu contaminated ashwithin chemically bonded phosphate ceramics[J]. Journal of Nuclear Materials,1999,265:295–307.
    [134] Wagh A.S., Singh D., Jeong S.Y.,et al.Demonstration of packaging of Fernald silo I waste inchemically bonded phosphate ceramic[C].Proc. Waste Management99, Conditioning ofOperational and Decommissioning Waste, Tucson, February28–March4,1999.
    [135] Wagh A.S., Maloney M.D., Thomson G.H. Investigations in Ceramicrete stabilization ofHanford tank wastes[C]. Proc. Waste Management’03, Tucson, AZ,2003.
    [136] Singh D., Wagh A.S., Jeong S. Method for producing chemically bonded phosphate ceramicsand for stabilizing contaminants encapsulating therein utilizing reducing agents[P]. USPatent,6133498,2000.
    [137] Singh D., Wagh A., Patel K. Polymer coating for immobilizing soluble ions in a phosphateceramic product[P]. US Patent6153809,2000.
    [138] Langton C., Singh D., Wagh A., et al. Phosphate ceramic solidification and stabilization ofcesium-containing crystalline silicotitanate resins[C].Proc.101st Annual Meeting of theAmer. Ceram. Soc., Indianapolis,1999.
    [139]Bibler N.E., E Orebaugh.G. Radiolytic gas production from tritiated waste forms—gammaand alpha radiolysis studies[R].Report No. DP-1459,Savannah River Laboratory,1977.
    [140] Dole L.R., Friedman H.A. Radiolytic gas generation from cement-based waste hosts for DOElow level radioactive wastes[R].Report No. CONF-860605-14,Oak Ridge NationalLaboratory,1986.
    [141] Siskind B. Gas generation from low-level waste: concerns for disposal[R].Report No.BNL-NUREG-47144,Brookhaven National Laboratory,1992.
    [142] Lichtenwalter J., Seigler R.S. Macroencapsulation of gaseous diffusion plant equipment forburial [C]. Proc. Spectrum Conf., Amer. Nucl. Soc.,2002.
    [143] Covill A., Hyatt N. C., Hill J., et al. Development of magnesium phosphate cements forencapsulation of radioactive waste[J]. Advances in Applied Ceramics,2011,110(3):151-156.
    [144]李长成,姚燕,崔琪,等,改性碱激发水泥固化处置模拟放射性焚烧灰[J].硅酸盐学报,2010,38(7):1215-1219.
    [145]李长成,赵颜红,潘社奇,等.碱矿渣复合水泥固化模拟放射性焚烧灰[J].原子能科学技术,2010,44(4):400–407.
    [146]李长成,姚燕,崔琪,等,改性碱激发水泥固化处置模拟放射性焚烧灰[J].硅酸盐学报,2010,38(7):1215-1219.
    [147]水泥标准稠度用水量、凝结时间、安全性检验方法[S]. GB1346-2001.
    [148]低、中水平放射性废物固化体性能要求-水泥固化[S].GB14569.1-93.
    [149]放射性废物固化体长期浸出试验[S].GB7023-1986.
    [150] Yang Quanbing, Wu Xueli. Factors influencing properties of phosphate cement-based binderfor rapid repair of concrete[J]. Cement and Concrete Research,1999,29(3):389~396.
    [151]丁铸,李宗津.早强磷硅酸盐水泥的制备和性能[J].材料研究学报,2006,20(2):141-147.
    [152]赵发伟.磷铝酸盐水泥及磷铝-磷镁酸盐复合水泥水化硬化机理的研究[D].济南:济南大学,2007.
    [153]刘昌胜,陈飞跃,黄粤,等.原料颗粒对磷酸钙骨水泥水化硬化过程的影响[J].硅酸盐学报,1999,27(2):139-146.
    [154] Hilbertz W.H., Goreau T..Method of enhancing the growth of aquatic organisms, andstructures thereby[P]. US Patent5,543,034,1996.
    [155] Davidovits J. Recent progress in concretes for nuclear waste and uranium waste containment[J]. Concrete International,16[12](1994)53–58.
    [156] Wilson A.D., Nicholson J.W., Acid–Base Cements [M]. Cambridge, Cambridge UniversityPress,1993.
    [157] Wagh A.S., Jeong S.Y.. Chemically bonded phosphate ceramics. Part III: reductionmechanism and its application to iron phosphate ceramics[J]. Journal of American Ceramicsociety,2003,86(11):1850–1855.
    [158]沈威,水泥工艺学[M].武汉:武汉理工大学出版社,2005.
    [159]滕元成,张朝彬,车春霞,等.人造岩石固化掺铀模拟放射性焚烧灰[J].原子能科学技术,2008,42(1):43-48.
    [160]刘志辉,冯声涛,程理,等.焚烧灰造粒水泥玻璃固化配方研究[J].辐射防护,2006,26(1):17-22.
    [161]李延延,滕元成,车春霞,等.锆英石陶瓷固化模拟放射性焚烧灰[J].西南科技大学学报,2007,22(1):6-11.
    [162] Shin H S, Kim I T, Yoo J H, et al. Leaching of glass components and surrogate nuclidesfrom glassy waste forms for radioactive incineration ash [J]. Journal of Radioanalytical andNuclear Chemistry,2002,253(1):1212128.
    [163] Koyama H.., Kobayashi M., Horio M. Volume reduction and stabilization of radioactivewaste incineration ash [J]. Resources Processing,2006,53(2):171-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700