用户名: 密码: 验证码:
固体氧化物燃料电池建筑热电联供系统的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池发电技术是一种先进、清洁的发电技术,其发电机理与传统发电方式不同,其发电效率不受卡诺循环效率的限制,是一种高效的发电设备。将燃料电池作为建筑物热电联供系统的发电装置,是将高效的能源转换方式与高效的能源利用方式的综合,具有一定的研究价值,该领域的研究对提高能源利用率、改善环境质量等方面都具有重要的意义。
     本文首先从热力学角度对燃料电池发电技术进行分析,与传统发电方式进行比较,并且将处于优势地位的两种燃料电池在建筑物中的应用进行对比分析,针对固体氧化物燃料电池( SOFC)在建筑物热电联供系统(BCHP)中的应用这一课题,在以下几个方面进行研究:
     建立以天然气为燃料的直接内部重整固体氧化物燃料电池(DIR-SOFC)电堆模型,求解并验证模型的可用性,该模型是一个可以被灵活运用到不同的电池尺寸和操作条件下的模拟模型。在此基础上,模拟DIR-SOFC电堆的性能,分析其性能规律,确定电堆的合理操作区域。
     综合DIR-SOFC电堆模型与系统中配套的其他辅助设备模型,集成系统,通过对设计工况的模拟,实现SOFC系统的设计;通过对运行工况的模拟,分析系统的运行情况,形成一套适用于SOFC系统的设计思路和模拟方法。
     对SOFC系统的操作参数进行研究,分析预重整操作温度、预重整比率、蒸汽和碳的比率对系统性能的影响,并详细分析控制参数变化对系统性能的影响,提出四种可行的调节控制方法,通过对四种调节控制方法的综合效率、操作区特性、热电调节范围等各项性能指标的分析得出:以电池的操作温度和燃料利用率为控制参数的调节方法和以电池的操作电压和操作温度为控制参数的调节方法更适合用于建筑热电联供系统中。
     对SOFC系统进行优化设计,首先建立一个简化的SOFC系统的经济模型,采用指数缩放法处理经济模型中规模与造价的问题,然后从流程结构、设计参数和操作点三方面对系统进行优化设计:在流程结构的研究中,分别对5种不同流程进行模拟,从系统的热、电效率、热电比、初投资和寿命周期费用等方面进行综合评价;在设计参数的研究中,采用多因素析因试验和多变量方差分析的方法,得出燃料利用率、过量空气比率、燃料和空气进入电堆的设计温度为系统的主要设计参数,并分析各个设计变量对系统的技术和经济性能的影响,得到输出变量关于显著影响因素的回归模型,通过等值线图和响应曲面图描述多个非独立变量的变化情况;在系统操作点的研究中,以系统的主要设计变量为优化对象,以寿命周期费用最小为优化目标,采用有约束优化的方法对系统的操作点进行寻优,并逐一放松约束条件,研究不同电流密度条件下,约束条件对系统最佳操作点的影响趋势。
     对固体氧化物燃料电池建筑热电联供系统(SOFC-BCHP)的设计策略和运行策略进行优化研究,分别提出在高热、电比条件下和高电需求条件下相应的设计策略,特别是应燃料电池发电的特点提出差点设计法的原理,进而提出目前可以适用的电负荷跟随加外电网补充的操作策略。设计SOFC-BCHP系统并进行性能模拟,研究SOFC内部参数变化对系统的影响。针对SOFC-BCHP系统的集成匹配问题,分别从设备容量、设备配置数量、运行操作策略三个层次上以运行费用最小为优化目标,建立匹配问题的优化模型,采用序列二次规划法(SQP)寻优,其中,在对系统配置数量优化的研究中,提出用高频负荷工况的概念来确定设备数量的方法。最终,模拟实例建筑SOFC-BCHP系统的逐时运行匹配模式,并计算系统逐时综合效率、节省费用和CO2减排量,更为详细的分析结果为系统的设计及优化提供重要的理论参考。
     针对SOFC-BCHP系统的部分负荷优势,指出传统的技术评价指标不能体现系统的年运行工况、运行时间的不足,提出动态评价的概念,将传统的静态技术评价指标改进为“动态第一定律效率”和“动态第二定律效率”两类指标,并在此基础上提出“年一次能耗因子”(Annual Primary Energy Gene)和“年二次能耗因子”(Annual Second Energy Gene)两个新的技术评价指标,并通过实例分析证明了新评价指标的合理性,进而指出该系统在负荷需求持续、热电比需求接近1.6、冷电需求接近1的场合更具应用前景。
     随着燃料电池技术的日趋成熟,该系统不但为能源利用率的提高、污染物排放的减少提供了契机,而且具有能广泛应用于能量末端用户中的潜力,本文的研究成果为SOFC-BCHP系统的成功应用奠定了理论基础。
Fuel cell technology based on natural gas is a kind of promising and cleaning energy conversion technology under development for application. The generation mechanism of fuel cell is different from the traditional device,and the efficiency is not restricted to Carnot cycle, therefore, it is almost the highest efficiency generation device. Fuel cell as the motor of building cogeneration system is the integration of high efficiency energy conversion type with high efficiency energy utilization method.The research work has the significance of energy utilization ratio and environment quality improvements.
     In this paper, the thermodynamics comparison of fuel cell technology and the convetional generation technology has been done,and two kind of advantaged fuel cells in building application has been analyzed, and then, solid oxide fuel cell distributed energy systems application has been determined as the research object. The main research work are as followed:
     Firstly,the direct internal reform solid oxide fuel cell(DIR-SOFC) model has been established and validated based on mass and energy balances coupled with appropriate expressions for the reaction kinetics, thermodynamic constants and material properties,and it is a flexible simulation tool, which could easily be adapted to different cell geometries and operation conditions,and then,the fuel cells performance characters have been simulated and analyzed,and the operation region has been determined.
     Secondly,the stack and other components models have been integrated succesfully.The system design has been finished such as stack areas and components capacities determination, and the run condition has been simulated. The design method which is applicable in SOFC systems process design has been formed.
     Thirdly,the operation parameters has been investigated.The performance effects were analyzed under different prereform temperature, prereform ratio,the steam to carbon ratio (STCR), and control parameters variety. Four kinds of feasible modulation methods have been put forwarded,and the comprehensive efficiency, operation region characters,and modulation range of heat and electric have been compared under four methods, and the modulation methods of operation temprature and fuel utilization as control parameters and operation temprature and operation voltage as control parameters have been approved to appropriate for building cogeneration system.
     Fourthly,the process design route of SOFC combined heat and power system has been proposed according to different energy consumption characters. A predigested economic model has been established in which the relation of scale and cost was disposed by index scaling method,and then the system was optimized from the aspects of flow Configuration and parameters.In the first aspects,five flowsheet Configurations were simulated and heat efficiency, electric efficiency, capital cost and life cycle cost was analyzed.In the second aspects,the factorial experiment and multiway analysis of variance were used to distinguish the significant and subordinate variable,and to analyze the variable effects on systems’technic and economic performance,and then the regression model, conour plot, and response surface method were used to indicate the relationship between dependent and independent variable.The optimist operation point was found by constraind optimization model which let the life cycle cost as the optimization object,furthermore,the constrained conditions were relaxed and the constrained condition effects trends on optimist point has been analyzed under two current density levels.
     The design strategy and operation strategy of SOFC building cogeneration system were investigated. The design strategy was proposed under high heat to electric ratio and high electric demand as followed,heat transformation,surplus power utilization,heat utilization deeply,fuel cell modulation, grid suppletion, power transformation, difference point design, and then, indicated that the electric load followed and grid suppletion added is applicable.The integrated dispatch problem was optimized on equipment capacity, quantity, and run strategy, the production cost was as optimization object and the Sequential Quadratic Programming was as the method and the high frequency load condition concept was proposed to determine equipment quantity.At last,an office case was simulated all year, and the comprehensive efficiency, cost save,CO2 emmisions reduction was computed, the detailed results could be the guidline for system design and optimization.
     Lastly,The paper indicated the conventional technical evaluation index’s insufficiency, and proposed the concept of dynamic evaluation method which could describe the fuel cell partload advantage.The conventional index was ameliorated to dynamic first law efficiency and dynamic second law efficiency , and annual primary energy gene and annual second energy gene were defined, and then, the applicability was analyzed in different region and different building type,it is indicated that when the load is durative and heat to electric ratio equal to 1.6 and the cold to electric ratio equal to 1, the SOFC building cogeneration system would be more applicable.
     The system could be the turning point for improvement of energy utilization and reduction of contamination along with the fuel cell technology’s maturity, and have the potential to be used in enduser abroadly.The research conclusions could be the reference for SOFC–BCHP system’s application.
引文
1 刘爱芳, 张彩庆, 段铷.建筑节能评价指标体系的构建.电力需求侧管理.2006, 8(1):39~43
    2 Energy Information Administration. Annual Energy Review 1996.http: //www.eia.doe.gov
    3 刘培琴, 王文生.太阳能利用与建筑节能.煤气与热力.2005,25(11):71~73
    4 徐建中.分布式供电和冷热电联产的前景.节能与环保.2002, (3):10~14
    5 徐二树.分散能源的研究与应用.华北电力大学博士学位论文.2003:14~16
    6 李芳芹, 魏敦崧.天然气热、电、冷三联供的热经济性分析.动力工程.2004, 24(1):143~146
    7 张颖颖, 曹广益, 朱新坚.小规模热电联供(CHP)技术的特点.华东电力.2005, 33(4):3~7
    8 熊霞利.热电冷三联产系统的节能研究.华中科技大学硕士学位论文. 2004:1~3
    9 何 于 涛 , 魏 敦 崧 , 刘 敏 飞 . 天 然 气 空 调 的 技 术 经 济 分 析 . 上 海 煤气.2001,2:14~20
    10 衣宝廉.燃料电池—高效、环境友好的发电方式.北京:化学工业出版社, 2000:1~4
    11 Kalyan Annamalai, Ishwar K.Puri.Advanced Thermodynamics Engineering . Boca Raton : CRC Press,2002:596~597
    12 隋智通 ,隋升 ,罗冬梅编著 .燃料电池及其应用 .北京 :冶金工业出版社,2004:7~8
    13 毛晓峰.以 CH4-H2O、H2-CO 为燃料的固体氧化物燃料电池发电性能研究.大连理工大学硕士学位论文.2004:3~4
    14 U.S. Department of Energy Office of Fossil Energy, National Energy Technology Laboratory.Fuel Cell Handbook.7th ed.EG&G Technical Services, Inc., Morgantown, West Virginia,2004:4~5
    15 韩 敏 芳 . 固 体 氧 化 物 燃 料 电 池 材 料 及 制 备 . 北 京 : 中 国 科 学 出 版社,2004:9~10
    16 管从胜, 杜爱玲, 杨玉国.高能化学电源.北京:化学工业出版社,2005: 105~106
    17 王 丽 , 魏 敦 崧 . 天 然 气 分 布 式 能 源 系 统 的 应 用 . 煤 气 与 热力.2006,26(1):46~48
    18 R. J .Braun, S. A. Klein, D. T. Reindl.Review of State-of-the-Art Fuel Cell Technologies for Distributed Generation.Report 193-2 prepared for the Energy Center of Wisconsin.2000:15~17
    19 A.D.Little. Multi-Fuel Reformers for Fuel Cells Used in Transportation. Final Report Prepared for the U.S. Department of Energy, Office of Transportation Technologies, Report DOE/CE-50343-2 ,1994:5~7
    20 王诚, 毛宗强, 陈荣华,等.小型燃料电池的研究现状与应用前景分析.化学进展.2006,18(1):30~35
    21 N. Bessette, W. Wepfer.Prediction of On-design and Off-design Performance For a Solid Oxide Fuel Cell Power Module.Energy Convers. Mgmt.1996, 37(3): 281~293
    22 迟克彬, 李方伟, 李影辉,等.固体氧化物燃料电池研究进展.天然气化工. 2002, 27(4):37~44
    23 魏丽, 陈诵英, 王琴.中温固体氧化物燃料电池电解质材料的研究进展.稀有金属.2003, 27(2):286~292
    24 隋静 , 黄红良 , 陈红幽 . 我国燃料电池的研究现状 . 电源技术 .2004,
    28(2):125~ 128
    25 黄建兵, 杨立寨, 彭冉冉,等.新型低温固体氧化物燃料电池研究进展.太阳能学报.2005,26(1):134~140
    26 朱新坚.中国燃料电池技术现状与展望.电池.2004,34(3):202~203
    27 鲁德宏.石油天然气利用的新途径-燃料电池.石油与天然气化工.2003, 32(1):10~13
    28 Y. A. Cengel, M. A. Boles.Thermodynamics: An Engineering Approach.3rd Edition. Boston :WCB/McGraw-Hill, 1998:85~87
    29 邱信立, 廉乐明, 李力能.工程热力学.北京:中国建筑工业出版社,1992:39
    30 J. H. Hirschenhofer. Fuel cell handbook.4th Edition.Morgantown ,West Virginia : FETC.,1998:16~19
    31 姜正侯, 郭文博.燃气燃烧与应用.北京:中国建筑工业出版社,1996:12~13
    32 田真.不可逆卡诺热机的效率界限及其比较.暨南大学学报(自然科学版).1997,18(3):52~57
    33 李瑛, 王林山.燃料电池.北京:冶金工业出版社,2002:40~43
    34 G. Gigliucci, L. Petruzzi, E. Cerellic, et al. Demonstration of A Residential CHP System Based on PEM Fuel Cells.Journal of power sources. 2004,131:62~68
    35 孔宪文, 桂敏言, 冯玉全.燃料电池发电技术现状与前景.东北电力技术.2002, (3):28~33
    36 周利, 程谟杰, 衣宝廉.管型固体氧化物燃料电池技术进展.电池.2005, 35(1):63~65
    37 http://www.plugpower.com.
    38 P. F. Vanden Oosterkamp.Critical Issues in Heat Transfer for Fuel Cell Systems. Energy Conversion and Management.2006, 47:3552~3561
    39 蔡惠红.燃料电池模型及其发电系统的研究.四川大学硕士学位论文.2003: 5~13
    40 冯玉全, 杨颖.燃料电池 21 世纪电力行业的主力军—从国家安全及可持续发展出发积极发展燃料电池发电技术.中国能源.1999,(11):21~24
    41 高春梅, 李清.以燃气为燃料的燃料电池及其应用的探讨.城市燃气. 2002,32(10):6~11
    42 卢立宁, 李素芬, 沈胜强.固体氧化物燃料电池与燃气轮机联合发电系统模拟研究.热能动力工程.2004,19(4):358~365
    43 D. Stephenson, I. Ritchey.Parametric Study of Fuel Cell and Gas Turbine Combined Cycle Performance.Proceedings of ASME,97-GT-340,1997.New York,The American Society of Mechanical Engineers, 1997: 5~10
    44 沈培康.加快燃料电池产业化进程的建议.电池.2002,32(3):184~186
    45 K. Johansson, M. Bafalt, J. Palsson.Solid Oxide Fuel Cells in Future Gas Turbine Combined Power Plants.22nd CIMAC International Congress on Combustion Engines, Copenhagen, Denmark,1998
    46 S. Campanari, E. Macchi.Thermodynamic Analysis of Advanced Power Cycles Based on Solid Oxide Fuel Cells, Gas Turbines and Rankine Bottoming Cycles. ASME conference, 98-GT-585, Stockholm, Sweden, 1998:585
    47 N. F. Bessette II, W.J. Wepfer, J. Winnick.A Mathematical Model of A Solid Oxide Fuel Cell. Journal of Electrochem. Soc. 1995,142:3792~3800
    48 P.Costamagna, A. Massardo, P. Bedont.Techno-Economical Analysis of SOFC Reactor-Gas Turbine Combined Plants. Proceedings of the 4thEuropean Solid Oxide Fuel Cell Forum,Lucerne,Switzerland,2000
    49 J. Palsson, A. Selimovic, L.Sjunnesson.Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation. Journal of Power Sources.6th Grove Fuel Cell Symposium. 2000,86:442~448
    50 J. R. Ferguson, J. M. Fiard, R. Herbin.Tree-dimensional Numerical Simulation for Various Geometries of Solid Oxide Fuel Cells. Journal of Power Sources. 1996,58(2): 109~122
    51 N. Autissier, D. Larrain, J. Vanherle, et al.CFD Simulation Tool for Solid Oxide Fuel Cells. Journal of Power Sources. 2004,131(1): 313~319
    52 J. Thijssen, S. Sriramulu.Structural Limitations in the Scale-Up of Anode-Supported SOFCs. Final Report to DOE NETL.Cambridge, Massachusetts, USA.2002
    53 黄镜欢.固体氧化物燃料电池的传热传质数值模拟.南京理工大学硕士学位论文.2004:37~66
    54 R. S.Gemmen. Application of a Computation Fluid Dynamics Code to Fuel Cell-Integrated SOFC Fuel Cell and Post Oxidizer. AFRC International Symposium Newport Beach, CA, USA, 2000
    55 单长吉, 刘祖萍, 卓小军.燃料电池的可视化数值模拟方法应用.四川职业技术学院学报.2003,13(1):78~81
    56 T. Kivisaari, J. R. Selman, I. Uchida,et al.Studies of Natural Fas and Biomass Fuelled MCFC Systems.Proceedings of the Fourth International Symposium on Carbonate Fuel Cell Technology, Pennington.The Electrochemical Society Inc., NJ, 1997, 97-4:179~190
    57 程健, 许世森.高温燃料电池发电系统模拟.热力发电.2004, (7):78~83
    58 程健, 许世森.固体氧化物燃料电池本体模拟研究.热力发电.2004,(12): 13~17
    59 张斌, 李政, 倪维斗.管式固体氧化物燃料电池系统数学模型.天然气工业. 2004,24(6): 103~106
    60 W. Zhang, E. Croiset, P.L. Douglas,et al.Simulation of A Tubular Solid Oxide Fuel Cell Stack Using Aspen Plus Unit Operation Models. Energy Conversion and Management. 2005,46:181~196
    61 D. J. Hall, R.G. Colclaser.Transient Modeling and Simulation of A Tubular Solid Oxide Fuel Cell. IEEE Trans. Energy Conversion.1999,14 (3):749~753
    62 P. Aguiar, D. Chadwick, L. Kershenbaum. Modeling of An Indirect Internal Reforming Solid Oxide Fuel Cell. Chem. Eng. Sci. 2002,57 (10): 1665~1677
    63 E. Achenbach.Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack. Journal of Power Sources. 1994,49: 333~ 348
    64 E. Riensche.Clean Combined-Cycle SOFC Power Plant-Cell Modeling and Process Analysis. Journal of Power Sources. 2000, 86 (1-2): 404~410
    65 S. G. Radall, L. Eric.Development of Dynamic Modeling Tools for Solid and Molten Carbonate Hybrid Fuel Cell Gas Turbine Systems.ASME TURBO EXPO 2000-GT-554,Munich,Germany,2000
    66 E. A. Liese. Technical Development Issues and Dynamic Modeling of Gas Turbine and Fuel Cell Hybrid Systems. Proceedings of the Internal Gas Turbine Institute Meeting, Mtg, 1999.http://www.netl.doe.gov/publications /proceedings / 99 /99fuelcell/fc4-4.pdf
    67 M. D. Lukas, K. Y. Lee, H. Ghezel-Ayagh.An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack IEEE Transactions On Energy Conversation. 1999,14(4): 1651~1657
    68 J. Domergue, A. Rufer, N. Buchheit.Dynamic Model of a Solid Oxide Fuel Cell Stack and Power Converter.Proceedings of the 3th European SOFC Forum. Nantes, France, 1998
    69 S. P. Harvey, H. J. Richter.Gas Turbine Cycles With Solid Oxide Fuel Cells, parts I and II. Journal of Energy Resources Technology.1994:116~120
    70 A. F. Massardo, F. Lubelli. Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles(IRSOFC–GT): Part A—Cell Model and Cycle Thermodynamic Analysis. Journal of Eng. Gas Turbines and Power. 2000,122:27~35
    71 M. Burer, K. Tanaka, D. Favrat,et al.Multi-Criteria Optimization of a District Cogeneration Plant Integrating a Solid Oxide Fuel Cell-Gas Turbine Combined Cycle, Heat Pumps and Chillers. Energy. 2003,28: 497~518
    72 A. Selimovic, J. Palsson. Networked Solid Oxide fuel Cell Stacks Combined with a Gas Turbine Cycle. Journal of Power Sources.2002,106(1):76~82
    73 张斌, 李政, 倪维斗.煤气化固体氧化物燃料电池混合循环系统的分析.动力工程. 2005, 25(3): 443~449
    74 E. Riensche, J. Meusinger, U.stimming,et al. Optimization of 200kW SOFC Cogeneration Power Plant,Part II:Variation of the Flowsheet. Journal of Power Sources.1998, 71:306~314
    75 M. R. Taylor, D. S. Beishon. A Study for a 200kWe System for Power and Heat.Proceedings of the 1st European Solid Oxide Fuel Cell Forum,Lucerne, Switzerland,1994:849~873
    76 E. Fontell.Conceptual study of a 250kW planar SOFC system for CHP application, Journal of Power Sources. 2004, 131(1): 49~56
    77 R. Bolden, K. Foeger, T. Pham.Towards the Development of a 25KW Planar SOFC System. Proc. of 6th International Symposium on Solid Oxide Fuel Cells,(SOFC-VI),Honolulu,HI,PV99-19,The Electrochemical Society, Pennington, NJ, 1999:80~87
    78 M. Pastula. Development of Low Temperature SOFC Systems for Remote Power Applications. Proc. of 4th International Symposium on Solid Oxide Fuel Cells, Lucerne, Switzerland, 2000:123~132
    79 R. T. Leah, N. P. Brandon, P. Aguiar. Modeling of Cells, Stacks and Systems Based Around Metal-supported Planar IT-SOFC Cells with CGO Electrolytes Operating at 500–600 ℃.Journal of Power Sources.2005,145: 336~352
    80 R. J. Gorte, H. Kim, J. M. Vohs. Novel SOFC Anodes for the Direct Electrochemical Oxidation of Hydrocarbon.Journal of Power Sources.2002, 106(1-2):10~15
    81 H. P. He, Y.Y Huang, John M. Vohs, et al.Characterization of YSZ–YST Composites for SOFC Anodes.Solid State Ionics.2004,175(1-4): 171~176
    82 C. S. Song. Fuel Processing for Low-temperature and High-temperature Fuel Cells: Challenges, and Opportunities for Sustainable Development in the 21st Century.Catalysis Today.2002,77(1-2):17~49
    83 R. F. Horng, H.M. Chou, C.H. Lee, et al. Characteristics of Hydrogen Produced by Partial Oxidation and Auto-thermal Reforming in a Small Methanol Reformer.Journal of Power Sources. 2006,161(2):1225~1233
    84 J. R. Selman. Molten-salt Fuel Cells—Technical and Economic Challenges. Journal of Power Sources. 2006,160(2): 852~857
    85 S. H. Clarke, A.L. Dicks, K. Pointon, et al. Catalytic Aspects of the Steam Reforming of Hydrocarbons in Internal Reforming Fuel Cells.Catalysis Today.1997,38(2): 411~423
    86 K. Ahmed, K. Foger. Kinetics of Internal Steam Reforming of Methane on Ni/YSZ-based Anodes for Solid Oxide Fuel Cells.Catalysis Today.2000, 63(2): 479~487
    87 乔金硕, 孙克宁, 张乃庆,等.固体氧化物燃料电池燃料重整技术研究进展. 化工进展.2004, 23 (11):1189~1194
    88 A. L. Dicks. Hydrogen Generation from Natural Gas for the Fuel Cell Systems of Tomorrow. Journal of Power Sources.1996,61(1-2):113~124
    89 M. Krumpelt, T. R. Krause, J. D. Carter, et al.Fuel Processing for Fuel Cell Systems in Transportation and Portable Power Applications.Catalysis Today. 2002, 77(1-2):3~16
    90 S. G. Goebel, D. P. Miller, W.H. Pettit, et al. Fast Starting Fuel Processor for Automotive Fuel Cell systems.International Journal of Hydrogen Energy. 2005, 30(9):953~962
    91 S. K. Kamarudin, W.R.W. Daud, A.M. Som, et al. Design of a Fuel Processor Unit for PEM Fuel Cell via Shortcut Design Method.Chemical Engineering Journal.2004,104(1-3): 7~17
    92 S. K. Kamarudin, W. R. W. Daud, A. M. Som, et al. The Conceptual Design of a PEMFC System via Simulation.Chemical Engineering Journal.2004, 103(1-3): 99~113
    93 D. P. Bloomfield. Hydrocarbon Fuel Processing for Fuel Cell Power Plants. 2000 Fuel Cell Seminar Abstracts, Poland, Oregon, 2000:329~333.
    94 Ballard Transformers Datasheets.http://www.ballard.com/Customdesigned transformerforpv.pdf
    95 T. P. Chen, J. D. Wright, K. Krist. SOFC System Analysis. Proceedings of 5th International Symposium on Solid Fuel Cells(SOFC-V),PV97-18,Gemany, 1997:69~80
    96 E. Riensche, U. Stimming, G. Unverzagt. Optimization of a 200 kW SOFC Cogeneration Power Plant, Part I: Variation of Process Parameters. Journal of Power Sources. 1998, 73: 251~256
    97 A. Khandkar , J. Hartvigsen, S. Elangovan .A techno-economic Model forSOFC Power Systems.Solid State Ionics. 2000,135: 325~330
    98 A. D. Hawkes, P. Aguiar, C. A. Hernandez-Aramburo,et al.Techno-economic Modelling of a Solid Oxide Fuel Cell Stack for Micro combined Heat and Power.Journal of Power Sources.2005,156:321~333
    99 K. Kordesch, G. Simader. Fuel Cells and Their Applications. New York: VCH Publishers, NY,1996:30~42
    100 B. Oyarzabal, M.W.Ellis, M.R.von Spakovsky.Development of Thermodynamic, Geometric,and Economic Models for Use in the Optimal Synthesis/Design of a PEM Fuel Cell Cogeneration System for Multi-Unit Residential Applications. Journal of Energy Resources Technology.2004, 126(3):21~29
    101 B. Oyarzabal, M. W. Ellis, M. R. Von Spakovsky.Optimal Synthesis/Design of a PEM Fuel Cell Cogeneration System for Multi-Unit Residential Applications–Application of a Decomposition Strategy.Journal of Energy Resources Technology.2004,126(3):30~39
    102 P. B. Bos. Commercializing Fuel Cells: Managing risks. Journal of Power Sources. 1996, 61: 21~31
    103 K. Krist, K. J.Gleason. SOFC-based Residential Cogeneration Systems. Electrochemical Society Proceedings.1999,19: 107~115
    104 N. M. Sammes, R. Boersma. Small-Scale Fuel Cell for Residential Applications. Journal of Power Sources.2000,86(1-2):98~110
    105 C. Weber, F. Marechal, D. Favrat, et al. Optimization of an SOFC-based Decentralized Polygeneration System for Providing Energy Services in an Office-building in Tokyo.Applied Thermal Engineering. 2006,26(13):1409 ~1419
    106 J. Silveira, E. M.Leal, L. F. Ragonha. Analysis of a Molten Carbonate Fuel Cell: Cogeneration to Produce Electricity and Cold Water.Energy.2001, (26): 891~904
    107 陈彬剑, 方肇洪.燃料电池技术的发展现状.节能与环保.2004,(8):36~4.
    108 鲁德宏.燃料电池及其在冷热电联供系统中的应用.暖通空调.2003, 33(1):91~102
    109 于泽庭, 韩吉田.燃料电池在家庭中的应用.节能与环保.2004,(9):14~16
    110 国际电力编辑部.燃料电池发电系统及其示范工程.国际电力.2001, (4):23~26
    111 兰丽, 尹应德, 顾登峰.燃料电池与冷热电联产系统.制冷与空调.2005, (3): 58~63
    112 V.哈特科普夫, 潘毅群, 吴刚,等.固体氧化物燃料电池在建筑冷热电联产中的应用.暖通空调.2003,33(1):47~53
    113 江亿, 薛志峰, 曾剑龙,等.清华大学超低能耗示范楼.暖通空调.2004, 34(6):64~66
    114 J. Larminie, A. Dicks. Fuel Cell Systems Explained. Chichester, West Sussex: J. Wiley,2003:166~167
    115 C. Haynes, W. J. Wepfer. Design for Power of a Commercial Grade Tubular Solid Oxide Fuel Cell.Energy Conversion & Management. 2000,41: 1123~1139
    116 S. H. Chan, O. L. Ding. Simulation of A Solid Oxide Fuel Cell Power System Fed by Methane.International Journal of Hydrogen Energy. 2005, 30(2): 167~169
    117 T. Ota, M. Koyama, C. Wen, et al. Object-based Modeling of SOFC System: Dynamic Behavior of Micro-tube SOFC. Journal of Power Sources.2003,118: 430~439
    118 E. Achenbach, E.Riensche. Methane Steam Reforming Kinetics for Solid Oxide Fuel Cells. Journal of Power Source.1994, 52: 283~288
    119 A. Selimovic. On-design and Off-design Performance Prediction of a Planar SOFC. Proccedings of the 4th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, 2000:375~382
    120 H. Y. Zhu, R J. Kee.A General Mathematical Model for Analyzing the Performance of Fuel-cell Membrane-electrode assemblies. Journal of Power Sources.2003,117:61~74
    121 黄镇江, 刘凤君.燃料电池及其应用.北京:电子工业出版社,2005:64~69
    122 J. W. Kim, A.V. Virkar, K. Z. Fung, et al. Polarization Effects in Intermediate Temperature,Anode-supported Solide Oxide Fuel Cell. Journal of Electrochemistry Soc.1999,146:69~70
    123 S. Campanari.Thermodynamic Model and Parametric Analysis of a Tubular SOFC Module. Journal of Power Sources.2001,92:26~34
    124 P. Costamagna, L. Magistri, A. Massardo.Design and Part-load Performanceof a Hybrid System Based on A Solid Oxide Fuel Cell Reactor and A Micro Turbine. Journal of Power Sources.2001,96:352~368
    125 E. Achenbach. SOFC Stack Modeling, Final Report of Activity A2, Annex II: Modeling and Evaluation of Advanced Solid Oxide Fuel Cells, International Energy Agency Program on R, D&D on Advanced Fuel Cells. Juelich(Germany), International Energy Agency,1996
    126 Office of Advanced Automotive Technologies. Fuel Cells for Transportaion Program Contractors’s Annual Progress Report. Washington, D.C, U.S.Department of Energy, 1998
    127 F. Marsano, L. Magistri, A. F. Massardo. Ejector PerformanceInfluence on a Solid Oxide Fuel Cell Anodic Recirculation System. 2004,129: 216~228
    128 O. Ulleberg. Stand-lone Power System for the Future: Optimal Design, Operation,and Control of Solar-hydrogen Energy Systems.Trondheim: Norwegian University of Science and Technology, 1998
    129 李振翔.办公建筑节能设计方法研究.浙江大学硕士学位论文.2004:22~30
    130 M. R. Von Spakovsky, B.Olsommer. Fuel Cell Systems and System Modeling and Analysis Perspectives for Fuel Cell Development. Energy Conversion and Management. 2002,43:1249~1257
    131 F. Calise, M. D. Accadia, L. Vanoli, et al.Full Load Synthesis/Design Optimization of a Hybrid SOFC-GT Power Plant.Energy.2007,32(4): 446~458
    132 R. H. Perry, G. Donald. Perry′s Chemical Engineer′s Handbook. New York: McGraw-Hill Companies, Inc, 2001:121~126
    133 F. Calise, M. D. Accadia, L.Vanoli, et al.Single-level Optimization of a Hybrid SOFC-GT Power Plant. Journal of Power Sources.2006,159: 1169~1185
    134 白玮, 龙惟定.三个城市应用 BCHP 系统的可行性气价分析.暖通空调.2006,36(10): 35~38
    135 王晓瑜, 陈国华, 蒋炎坤.2k 析因试验设计及其在发动机排放中的运用.内燃机工程.2004,25(2):18~22
    136 张志贤, 张瑞镐.两水平析因试验.化工标准化与质量监督.2000,(3):21~23.
    137 王武义.误差原理与数据处理.哈尔滨:哈尔滨工业大学出版社,2001: 137~140
    138 阳明盛, 罗长童.最优化原理、方法及求解软件.北京:科学出版社,2006:81 ~86
    139 车得福, 刘艳华.烟气热能梯级利用.北京:化学工业出版社,2006:100~110
    140 D. F. Che, Y. H. Liu, C .Y. Gao. Evaluation of Retrofitting a Conventional Natural Gas Fired Boiler into a Condensing Boiler.Energy Conversion and Management.2004,45(20):3251~3266
    141 吴畅毅, 叶勇军, 寇广孝,等.冷凝式供热锅炉的节能特性分析及其应用.建筑热能通风空调.2006,25(4):60~63
    142 贾力, 孙金栋, 李孝萍.天然气锅炉烟气冷凝热能回收的研究.节能与环保.2001,(1):31~33
    143 付林, 田贯三, 隋军,等.吸收式热泵在燃气采暖冷凝热回收中的应用.太阳能学报.2003,24(5):620~624
    144 项红卫.流体的热物理化学性质.北京:科学出版社,2003:18~19
    145 刘少平, 刘荡卫.汽化潜热的估算.化工装备技术.1999,20(6):25~27
    146 F. J. Rooijers, A. M. Robert. Static Economic Dispatch for Cogeneration systems. IEEE Transactions on Power Systems.1994,9(3): 1392~1398
    147 T. Guo, M. I. Henwood, M. Van Ooijen. An Algorithm for Combined Heat and Power Economic Dispatch. IEEE Transactions on Power Systems. 1996,11(4): 1778~1784
    148 Y. H. Song, C. S. Chou, T. J. Stonham. Combined Heat and Power Economic Dispatch by Improved Ant Colony Seatch Algorithm. Electric Power Systems Research.1999,(52):115~121
    149 P. B. Eriksen.Economic and Environmental Dispatch of Power/CHP Production Systems.Electric Power Systems Research.2001,57(1): 33~39
    150 M. A. Gonzalez Chapa, J. R. Vega Galaz.An Economic Dispatch Algorithm for Cogeneration Systems.Power Engineering Society General Meeting. 2004,(1):989~994
    151 C. Weber, M. Koyama, S. Kraines. CO2-emission Reduction Potential and Costs of a Decentralized Energy System for Provding Electricity,Cooling and Heating in an Office-building in Tokyo.Energy.2006,31:3041~3061
    152 严俊杰 , 黄锦涛 , 何茂刚 .冷热电联产技术 .北京 :化学工业出版社 , 2006 :169~171
    153 http://www.eere.energy.gov/buildings/energyplus

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700