用户名: 密码: 验证码:
变体飞行器基础控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,变体飞行器的研究受到了广泛的重视,美欧等国都有各自的相关研究计划;最近几年,我国在变体飞行器方面的研究也开始起步,国家自然科学基金等基金项目专门将其列为资助对象。变体飞行器能够根据飞行环境和任务的变化而连续、光滑与可控地调整外形,以始终保持最优飞行状态,满足大范围多任务飞行的要求。与传统固定布局的飞行器相比,变体飞行器最大的特殊之处在于它具有分布式驱动的变形机构。本文针对变体飞行器的分布式变形机构的控制问题,在基于桁架结构的自适应翼肋的建模与控制、基于智能材料的柔性翼肋的动态形状控制和分布式驱动的变形机翼实验平台的实现等几个方面进行了较深入的研究。
     首先,建立了基于桁架结构的自适应翼肋的动力学模型。针对这种结构复杂、耦合约束多、运动幅度大并具有非线性特性的变形机构,采用了两种方法进行建模,即基于矢量力学的方法和基于分析力学的方法;两种建模方法得到了一致的自适应翼肋非线性关联模型。以这个非线性关联模型为基础,采用Takagi-Sugeno(T-S)模糊逼近理论,建立了自适应翼肋的仿射型T-S模糊关联模型。仿真结果表明仿射型T-S模糊关联模型具有较好的逼近效果。
     随后,研究了非线性自适应翼肋的鲁棒控制问题。基于T-S模糊理论,设计了自适应翼肋的模糊分散控制器;研究了模糊控制器的偏置项的设计方法,将仿射型T-S模糊模型变换为齐次型形式,以避免产生难于求解的双线性矩阵不等式。为了提高这种分布式驱动的自适应翼肋的协调运动能力,设计了满足鲁棒性能指标的基于耦合节点信息和基于虚拟结构的分布式协调控制器。仿真结果表明所设计的自适应翼肋控制器,都能够在外界扰动作用下,使翼肋的形状收敛到期望翼型;所设计的协调控制律使得翼肋在变形过程中能保持光滑连续的外形。
     然后,对压电材料驱动的柔性翼肋的动态形状控制问题展开了研究。用参数化方法拟合翼肋形状,将分布参数模型转化为有限维模型。在此基础上,考虑剩余模态引起的传感信息误差,设计了基于观测器的动态形状控制器和模糊自适应动态形状控制器。仿真结果表明柔性翼肋能够实现动态形状控制,达到期望的形状,并且在变形过程中翼肋振动小。
     最后,研制了基于CAN总线的具有9个驱动单元的变形机翼实验平台,设计了多节点采样控制系统软件;建立了这个实验平台的数学模型,考虑实际系统控制输入的饱和约束以及信息链路的动态拓扑结构,设计了基于Consensus算法的分布式协调控制律,并在实验平台上实现了所设计的控制律,进行了实验。仿真和实验结果都表明所设计的控制器能协调各个驱动单元达到期望位置,验证了变形机翼的分布式控制体系结构的可行性。
At present, researches on morphing aircraft have attracted extensive research interests. There are many relative research programs in both America and Europe. Recently, in China, researches on morphing aircraft have also been launched, and many national foundations, such as National Natural Science Foundation of China, start to support this kind of researches. In response to the change of fight environment and missions, a morphing aircraft can change its shape in a continuous, smooth and controlled way, in order to always keep optimal flight status and meet the requirement of enlarging flight envelope and carrying out multi-missions. Compared with traditional fixed-configuration aircraft, the most special part of a morphing aircraft is the shape-change structures with distributed actuators. This dissertation is focused on distributed shape control problems of morphing aircraft, including modeling and control of adaptive ribs with truss structures, dynamic shape control of flexible ribs actuated by smart material, and the realization of a distributively actuated morphing wing experimental platform.
     First of all, a dynamic model of adaptive ribs with truss structures is constructed. To model the mechanism with complex structures, a lot of coupling constraints, large stroke and highly nonlinearity, two modeling methods are used: the method based on vector mechanics and the method based on analytical mechanics. Both methods acquire the same nonlinear interconnected model of adaptive ribs. Based on this nonlinear interconnected model, by using T-S fuzzy approximation theory, the affine T-S fuzzy interconnected model of adaptive ribs is presented. Simulation results show that the fuzzy model has good approximation performance.
     Next, the robust control of nonlinear adaptive ribs is studied. Based on T-S fuzzy theory, the decentralized fuzzy controller of adaptive ribs is designed. The bias term of fuzzy controller is designed to transform the affine T-S fuzzy model into homogeneous T-S fuzzy model, which avoids bilinear matrix inequalities. To increase the cooperative capacity of distributed-actuated adaptive ribs, two kinds of performance-guaranteed, distributed cooperative control laws are presented, which are based on neighbor information and virtual structure respectively. Simulation results show that by using the presented controllers, the rib can achieve desired airfoils under external disturbances, and during the control process the rib shape is kept smooth and continuous under the control of cooperative control laws.
     The next, the dynamic shape control problem of the flexible rib actuated by piezoelectric materials is studied. The airfoil is parameterized, and the distributed parameter model is transformed into a finite-dimensional model. Then, considering the sensor information error caused by residual modes, the observer-based dynamic shape controller and the fuzzy adaptive dynamic shape controller are designed. Simulation results show that the dynamic shape control of flexible rib is realized, the desired shape is achieved, and the rib vibration during the morphing process is slight.
     Finally, a morphing wing experiment platform with 9 actuating units connected by CAN field bus is developed, and the software for the multiple node sampled control system is designed. The mathematical model of the morphing wing platform is established. Considering the control input constraints in the real system and the dynamic topological structures of the cooperation information links, the distributed cooperative controller based on Consensus algorithm is proposed. The designed controller is implemented on the experiment platform, and experiments are carried out. Simulation and experiment results show that the controller can make all the actuating units cooperatively achieve the desired positions, which demonstrates the feasibility of the distributed control architecture for morphing wings.
引文
[1] Smita B. Optimal structural design of a morphing aircraft wing, [博士学位论文]. Pennsylvania: The Pennsylvania State University, 2007.
    [2] Howoong N. Airfoil optimization for morphing aircraft, [博士学位论文]. Indiana: Purdue University, 2005.
    [3] McGowan A. R., Anthony E. W., Lucas G. H., et al. Recent results from NASA’s morphing project. McGowan A. R., Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, SPIE, 2002: 97~111.
    [4] Mujiahid A. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft, [博士学位论文]. Florida: University of Florida, 2007.
    [5] Bowman, J., Sanders, B., Weisshaar, T. Evaluating the impact of morphing technologies on aircraft performance, AIAA 2002~1631, 2002.
    [6] Abdulrahim, M., and Lind, R. Flight testing and response characteristics of a variable gull-wing morphing aircraft. Proceedings of Guidance, Navigation, and Control Conference and Exhibit, AIAA 2004-5113, 2004.
    [7] Thomas M. S., David A. N., Jae-Sung B., et al. Modeling and flight control of large-scale morphing aircraft. Journal of Aircraft, 2007, 44(4): 1077~1087.
    [8] Neha G, A., Jeffrey M. Intelligent control of a morphing aircraft. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2007-1716, 2007.
    [9]崔尔杰,白鹏,杨基明.智能变形飞行器的发展道路.航空制造技术, 2007, (8): 38~41.
    [10] Jayanth, A. K., Kudva J. N. Morphing aircraft concepts, classifications and challenges. Eric H. Anderson, Smart Structures and Materials 2004: Proceedings of SPIE Vol. 5388, Bellingham: SPIE, 2004: 213~224.
    [11] Armando R. R. Morphing aircraft technology survey. AIAA 2007-1258, 2007.
    [12] Adam M. W., Ephrahim G. Optimization of perching maneuvers through vehicle morphing. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 815~823.
    [13] Gamboa P., Vale J., Lau F., et al. Optimization of a morphing wing based on coupled aerodynamic and structural constraints. AIAA Journal, 2009, 47(9): 2087~2104.
    [14] Sanders, B., Eastep, F. E., Forster, E. Aerodynamic and aeroelastic characteristics of wings withconformal control surfaces for morphing aircraft. Journal of Aircraft, 2003, 40(1): 94~99.
    [15] Gern, F. H., Inman, D. J., Kapania, R. K. Sructural and aroelastic modeling of general planform wings with morphing airfoils. AIAA Journal, 2002, 40(4): 628~637.
    [16] Ricci, S., Terraneo, M. Conceptual design of an adaptive wing for a three-surfaces airplane. Proceedings of 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2005-1959, 2005.
    [17] Monner, H. P. Realization of an optimized wing camber by using formvariable flap structures. Aerospace Science and Technology, 2001, 5(7): 445~455.
    [18] Diaconu, C. G., Weaver, P. M., Mattioni, F. Solutions for morphing airfoil sections using bi-stable laminated composite structures. Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2007-1719, 2007.
    [19]黄杰,葛文杰,杨方.实现机翼前缘形状连续变化柔性机构的拓扑优化.航空学报, 2007, 28(4): 987~992.
    [20]陆宇平,何真.变体飞行器控制系统综述.航空学报, 2009, 30(10): 1912~1917.
    [21]杨士斌,徐敏.智能蒙皮飞行器的飞行控制研究.飞行力学, 2007, 25(1): 39~42.
    [22]倪云华,杨爱明,翁培奋.低雷诺数下微型飞行器主动变形机翼非定常气动特性数值分析.空气动力学学报, 2006, 24(3): 307~313.
    [23] Renken J. H. Mission adaptive wing camber control systems for transport aircraft. AIAA 1985-5006, 1985.
    [24] Seigler T. M. Dynamics and control of morphing aircraft, [博士学位论文]. Virginia: Virginia Polytechnic Institute and State University, 2005.
    [25] Gern F. H., Inman D. J., Kapania R. K. Computation of actuation power requirements for smart wings with morphing airfoils. AIAA 2002-1629, 2002.
    [26] Jason B., Brian S., Bryan C. Development of Next Generation morphing aircraft structures. AIAA 2007-1730, 2007.
    [27] Flanagan, J. S., Strutzenberg, R. C., Myers, R. B., et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA2007-1707, 2007.
    [28] Thomas G. I., Robert C. S., Michael H. L., et al. Validation of the Lockheed Martin morphing concept with wind tunnel testing. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2007-2235, 2007.
    [29] Derek R. Bye, Paul D., McClure. Design of a morphing vehicle. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2007-1728, 2007.
    [30] Lee, D. H., Weisshaar, T. A. Aeroelastic studies on a folding wing configuration. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2005-1996, 2005.
    [31] Snyder, M. P., Sanders, B., Estep, F. E., et al. Vibration and flutter characteristics of a folding wing. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2005-1994, 2005.
    [32] Love, M. H., Zink, P. S., Stroud, R. L., et al. Demonstration of morphing technology through ground and wind tunnel tests. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2007-1729, 2007.
    [33]方宝瑞.飞机气动布局设计.北京:航空工业出版社, 1997.
    [34]顾诵芬.飞机总体设计.北京:北京航空航天大学出版社, 2001.
    [35] Hubbard J E. Dynamic shape control of a morphing airfoil using spatially distributed transducers. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 612~616.
    [36] David L R, Raymond C M, Green L L. Flight control using distributed shape-change effector arrays. AIAA 2000-1560, 2000.
    [37] William W G. Development of a mission adaptive wing system for a tactical aircraft. AIAA 80-1886, 1980.
    [38] Fred A. Shape control of an adaptive wing for transonic drag reduction. Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures, Bellingham: SPIE, 1995:45~55.
    [39] James J. J., Brian S., Terrence J., et al. Optimal actuator location within a morphing wing scissor mechanism configuration. Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, Bellingham: SPIE, 2006: 31~43.
    [40] David L. R., Randolph H. C., Adam R. S. Wind tunnel test of an RPV with shape-change control effector and sensor arrays. AIAA 2004-5114, 2004.
    [41] Jennifer P. F., Alpheus W. B., Gary A. F. Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/Northrop Grumman Smart Wing Program. AIAA 2003-1961, 2003.
    [42] Deepak S. R., George A. L., Mary F., et al. Aircraft structural morphing using tendon-actuated compliant cellular trusses. Journal of Aircraft, 2005, 42(6): 1614~1620.
    [43] Keith W. M., Hilary B. S. The analysis of tensegrity structures for the design of a morphing wing. Smart Structures and Materials 2005: Smart Structures and Integrated Systems, Bellingham:SPIE, 2005: 253~261.
    [44] Austin F., Rossi M. J., Nostrand W. V., et al. Static shape control for adaptive wings. AIAA Journal, 1994, 32(9): 1895~1901.
    [45] Monish D., Jie R., John V. Preliminary results of adaptive-reinforcement learning control for morphing aircraft. AIAA 2004-5358, 2004.
    [46] Christopher E. W., Atul G. K. Robust control of a morphing airfoil structure. Proceedings of the 2005 American Control Conference, Portland: IEEE, 2005: 2863~2868.
    [47] Anders S. W. Modelling and control of tensegrity structures, [博士学位论文]. Norwegian: Norwegian University of Science and Technology, 2007.
    [48] Mujahid A., Rick L. Control and simulation of a multi-role morphing micro air vehicle. AIAA 2005-6481, 2005.
    [49] Thomas M. S., David A. N., Daniel J. I. Dynamic modeling of large-scale morphing aircraft, AIAA 2006-1893, 2006.
    [50] Seung K. K., Rama K. Y. New modeling and control design techniques for smart deformable aircraft structures. Journal of Guidance, Control, and Dynamics, 2001, 24(4): 805~815.
    [51] Manoranjan M,, John L. J. Robust control of redundantly actuated dynamical systems. AIAA 2006-6235, 2006.
    [52] Puneet S., John L. J. A hierarchical control distribution approach for large scale over actuated systems. Proceedings of the 2007 American Control Conference. New York: IEEE, 2007: 1227~1232.
    [53] Scotti S., Terraneo M. Design, manufacturing and preliminary test results of an adaptive wing camber model. AIAA 2006-2043, 2006.
    [54] Julie B. S., Darry J. P. Design and testing of a pneumatic telescopic wing for unmanned aerial vehicles. Journal of Aircraft, 2007, 44(4): 1088~1099.
    [55] Siclari M. J., Nostrand W. V., Austin F. The design of transonic airfoil sections for an adaptive wing concept using a stochastic optimization method. AIAA 1996-0329: 1996.
    [56] Icardi U., Ferrero L. Preliminary study of an adaptive wing with shape memory alloy torsion actuators. Materials and Design, 2009, 30:4200~4210.
    [57] Perkins, D. A., Reed, J. L., Jr., Havens, E. Morphing wing structures for loitering air vehicles. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2004-1888, 2004.
    [58] Moniz, P. A. A. Adaptive aeroelastic aircraft structures, [博士学位论文]. Lisbon: Univ. Técnicade Lisboa, 2005.
    [59] Thill, C., Etches, J., Bond, I., et al. Morphing skins. Aeronautical Journal, 2008, 112(11): 117~139.
    [60] Tobushi, H., Hara, H., Yamada, E., et al. Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Materials and Structures, 1996, 4(5): 483–491.
    [61] Murray, G., Gandhi, F., Bakis, C. Flexible matrix composite skins for one-dimensional wing morphing. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2007-1737, 2007.
    [62] Reich, G. W., Sanders, B., Joo, J. J. Development of skins for morphing aircraft applications via topology optimization. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2007-1738, 2007.
    [63] Andersen, G. R., Cowan, D. L., Piatak, D. J. Aeroelastic Modeling, analysis and testing of a morphing wing structure. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2007-1734, 2007.
    [64] Yu Dong, Zhang Boming, Liang Jun. A changeable aerofoil actuated by shape memory alloy springs. Materials Science and Engineering, 2008, 48(5): 243–250.
    [65] Roelof V., Roeland D. B., Ron B., et al. Morphing wing flight control via postbuckled precompressed piezoelectric actuators. Journal of Aircraft, 2007, 44(4): 1060~1068.
    [66] Pritpal D., Frank L. L., Kamesh S., et al. Shape control of flexible structure using potential field method. Proceedings of 17th IEEE International Conference on Control Applications Part of 2008 IEEE Multi-conference on Systems and Control, San Antonio: IEEE, 2008: 540~546.
    [67]哈尔滨工业大学理论力学教研室.理论力学(第六版).北京:高等教育出版社, 2002.
    [68] Kim E., Lee C. H., Cho Y. W. Analysis and design of an affine fuzzy system via bilinear matrix inequality. IEEE Transaction on Fuzzy Systems, 2005, 13(1): 115~123.
    [69] Zhang T. J., Feng G., Lu J. H., et al. Robust constrained fuzzy affine model predictive control with application to a fluidized bed combustion plant. IEEE Transactions on Control Systems Technology, 2008, 16(5): 1047~1056.
    [70] Kung C. C., Su J. Y. Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion. IET Control Theory Appl., 2007, 1(5): 1255~1265.
    [71] Ying H. General Takagi-Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters. Journal of Information Sciences, 1998, 108(1): 91~107.
    [72] Ying H. General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Trans. on Fuzzy Systems, 1998, 6(4): 582~587.
    [73] Wang L. X. Universal approximation by hierarchical fuzzy systems. Fuzzy Sets and Systems, 1998, 93(3): 223~230.
    [74] Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transaction on Systems, Man and Cybernetics, 1985, 15(1): 116~132.
    [75] Tanaka K., Ikeda T., Wang H. O. Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞control theory, and linear matrix inequalities. IEEE Transactions on Fuzzy Systems, 1996, 4(1): 1~13.
    [76] Taniguchi T., Tanaka K., Ohtake H., et al. Model construction, rule reduction, and robust compensation for generalized form of Takagi–Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems, 2001, 9(4): 525~538.
    [77] Tanaka K., Hori T., Wang H. O. A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems, 2003, 11(4): 582~589.
    [78] Lin C., Wang Q. G., Lee T. H. Fuzzy descriptor systems and nonlinear model following control. IEEE Transactions on Fuzzy Systems, 2006, 14(4): 542~551.
    [79] Wei X. J., Jing Y. W. A novel design of fuzzy tracking control for nonlinear time-delay systems. Proceedings of 2004 IEEE World Automation Congress, IEEE, 2004: 263~268.
    [80] Tseng C. S. Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay. IEEE Transactions on Fuzzy Systems, 2006, 14(1): 58~70.
    [81] Marcelo C. M., Stanislaw H. Z. Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Trans. on Fuzzy Systems, 1999, 7(2): 133~142.
    [82] Song B, Ma G F, Li C J, Robust fuzzy controller design for a rigid spacecraft attitude regulation system. Proceedings of 1st International Symposium on Systems and Control in Aerospace and Astronautics, New York: IEEE, 2006: 424~429.
    [83] Chang W. J., Chang W. Model-based fuzzy controller design for time-delay affine Takagi-Sugeno fuzzy models via ILMI algorithm. Journal of Intelligent & Fuzzy Systems, 2006, 17(6): 633~647.
    [84] Hsiao F. H., Hwang J. D., Chen C. W., et al. Robust stabilization of nonlinear multiple time delay large scale systems via decentralized fuzzy control. IEEE Trans. on Fuzzy Systems, 2001,
    [85] Tseng C. S., Chen B. S. H∞decentralized fuzzy model reference tracking control design for nonlinear interconnected systems. IEEE Transaction on Fuzzy Systems, 2001, 9(6): 795~809.
    [86] Tong S. C., Shi P., Al-Madfai H. Robust fuzzy decentralized control for nonlinear large-scale systems with parametric uncertainties. Journal of Intelligent and Fuzzy Systems, 2008, 19(2): 85~101.
    [87]姬长荣.关于矩阵的积与和的秩的进一步讨论.山西师范大学学报(自然科学版), 1999, 13(4): 23~26.
    [88]倪国熙.常用的矩阵理论和方法.上海:科学技术出版社, 1984年: 20~40.
    [89]俞立.鲁棒控制——线性矩阵不等式处理方法.北京:清华大学出版社, 2002.
    [90] Petersen I. R. A stabilization algorithm for a class of uncertain linear systems. Systems & Control Letters, 1987, 8(4): 351~357.
    [91] D’Andrea R., Dullerud G. E. Distributed control design for spatially interconnected systems. IEEE Transactions on Automatic Control, 2003, 48(9): 1478~1495.
    [92] Langbort C., Chandra R. S., D’Andrea R. Distributed control design for systems interconnected over an arbitrary graph. IEEE Transactions on Automatic Control, 2004, 49(9): 1502~1519.
    [93] Recht B., R. D’Andrea. Distributed control of systems over discrete groups. IEEE Transactions on Automatic Control, 2004, 49(9): 1446~1452.
    [94] Jonathan R. T., Randal W., Brett J. A decentralized approach to formation maneuvers. IEEE trans. on Robotics and Automation, 2003, 19(6): 933~941.
    [95] Wei Ren, Randal W. Beard. Decentralized scheme for spacecraft formation flying via the virtual structure approach. Journal of Guidance, Control, and Dynamics, 2004, 27(1): 73~82.
    [96] Myung H. K., Daniel J. I. Reduction of observation spillover in vibration suppression using a sliding mode observer. Journal of Vibration and Control, 2001, 7: 1087~1105.
    [97] Kao C. K., Sinha A. Coupled modal sliding mode control of vibration in flexible structures. Journal of Guidance, 1992, 15(1): 65~72.
    [98] Pai M. C., Sinha A. Sliding mode control of vibration in a flexible structure via estimated states and H∞/μtechniques. Proceedings of the 2000 American Control Conference, Chicago, 2000: 1118~1123.
    [99] Pai M. C., Sinha A. Sliding mode output feedback control of vibration in a flexible structure. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(11): 851~855.
    [100]林西强,任钧国.含压电片梁的振动控制.国防科技大学学报, 1999, 21(2): 25~28.
    [101] Hicks, R. M., Henne P. A. Wing design by numerical optimization. AIAA Journal of Aircraft, 1978, 15(7): 407~412.
    [102] Inman D. J. Vibration with control, measurement, and stability. New Jersey: Prentice-Hall, 1989.
    [103]王东平,程从菊.关于冲激函数导数的两个性质.电气电子教学学报, 2001, 23(2): 29~47.
    [104] Wu H. N., Li H. X. H∞fuzzy observer-based control for a class of nonlinear distributed parameter systems with control constraints. IEEE Trans. on Fuzzy Systems, 2008, 16(2): 502~516.
    [105] Yuan K., Li H. X., Cao J. Robust stabilization of the distributed parameter system with time delay via fuzzy control. IEEE Trans. on Fuzzy Systems, 2008, 16(3): 567~583.
    [106]王立新.模糊系统与模糊控制教程(王迎军).北京:清华大学出版社, 2003.
    [107]刘艳军.非线性系统自适应模糊控制算法的研究, [博士学位论文].大连:大连理工大学, 2007.
    [108]曾光,李东旭.空间智能桁架自适应模糊振动控制.上海航天, 2007, 4: 1~6.
    [109] Tong S. C., Li Y. M. Direct adaptive fuzzy backstepping control for a class of nonlinear systems. Int. J. Innovative Computing, Information and Control, 2007, 3(4): 887~896.
    [110] Chan P. T., Rad A. B., Wang J. Indirect adaptive fuzzy sliding mode control: Part II: parameter projection and supervisory control. Fuzzy Sets and Systems, 2001, 122(1): 31~43.
    [111] Wei R., Randal W. B. Distributed consensus in multi-vehicle cooperative control. London: Springer, 2008: 3~22.
    [112] Reza O., J. Alex F., Richard M. M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215~233.
    [113] Ren, W., Beard, R.W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans. on Automatic Control, 2005, 50(5): 655~661.
    [114] Xie, G., Wang, L. Consensus control for networks of dynamic agents via active switching topology. Lecture Notes in Comput. Sci., 2005, 36(12): 424~433.
    [115] F. Xiao, L. Wang. Consensus problems for high-dimensional multi-agent systems. IET Control Theory Appl., 2007, 1(3): 830~837.
    [116] Lin P., Jia Y., Li L. Distributed robust H∞consensus control in directed networks of agents with time-delay. Systems & Control Letters, 2008, 57(8): 643~653.
    [117]陈伟.步进电动机失步原因分析及解决方法.电气传动自动化, 2009, 31(5): 55~56.
    [118] Peng Lin, Yingmin Jia. Consensus of second-order discrete-time multi-agent systems withnon-uniform time-delays and dynamically changing topologies. Automatica, 2009, 45(7): 2154~2158.
    [119] Wei Ren. On consensus algorithms for double-integrator dynamics. Proceedings of the 46th IEEE Conf. on Decision and Control, New Orleans: IEEE, 2007: 2295~2300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700