用户名: 密码: 验证码:
三峡库区堆积层滑坡稳定性与预测预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是地质灾害发育最严重的国家之一,主要类型有滑坡、崩塌、泥石流、地面塌陷、地裂缝、地面沉陷等六类。中国地调局统计数据显示,仅在2012年八月,全国共发生地质灾害5752起,其中滑坡4841起、崩塌412起、泥石流415起、地面塌陷56起、地裂缝25起、地面沉降3起;造成人员伤亡的地质灾害26起,共造成53人死亡、25人失踪、75人受伤,直接经济损失32.3亿元。根据国土资源部中国地质调查局官方网站全国地质灾害通报的数据,2004年-2011年期间地质灾害六类地质灾害每年造成直接经济损失超过17亿元,伤亡人数超过400人,且在六类地质灾害中,滑坡灾害发育最为广泛,比例高达50.60%~86.11%,占全年地质灾害一半以上。
     中国每年因滑坡灾害造成的经济损失就在10亿美元以上,依据中国地调局地质灾害通报数据,2009仅全国特大型和大型滑坡灾害共发生16起,直接经济损失达到1.90亿元人民币;2011年死亡失踪10人以上或直接经济损失1亿元以上的重大灾害发生7起,直接经济损失5.99亿元人民币。滑坡灾害不仅造成巨大的经济损失,还严重危害人民的生命安全,1963年的意大利瓦依昂滑坡造成2600多人的死亡;1983年甘肃省东乡县洒勒山滑坡摧毁四个村,死亡220人,重伤22人;据印度报道2000年西藏易贡藏布高速巨型滑坡共造成印度30人死亡,100多人失踪,50,000人无家可归;2003年湖北秭归千将坪滑坡造成24人死亡,1100多人无家可归;2005年菲律宾南莱特省滑坡灾难造成1800多人伤亡
     堆积层滑坡是滑坡中分布最为广泛、规模大、暴发频率高、突发性强、持续危害性较大的一类致灾体,该类滑坡通常发生在第四系及近代松散堆积层中,其滑体物质一般由次生堆积体,如崩积物、崩坡积物及冲积与崩坡积混合物堆积而成,滑动面一般为堆积层与下覆基岩的接触面,分布于长江三峡、黄河中上游、及香港、广东、福建等地,以长江三峡发育最广泛。根据《滑坡防治工程勘察规范》(DZ/T0218-2006),堆积层滑坡包括滑坡堆积体滑坡、崩塌堆积体滑坡、崩滑堆积体滑坡、黄土滑坡、粘土滑坡、残坡积层滑坡、人工填土滑坡,对于三峡库区,堆积层滑坡主要发育滑坡堆积体滑坡、崩塌堆积体滑坡、崩滑堆积体滑坡、残坡积层滑坡四类。
     三峡库区因其独特的地质构造作用及地质环境特征导致滑坡大量发育,拒不完全统计,仅在长江上游地区100万km2范围内,就发育滑坡1736个,其中64%为堆积层滑坡,而在三峡库区二、三期治理和监测的崩塌滑坡灾害点中,堆积层滑坡点约占80%。根据统计分析,这些堆积层滑坡在降雨及三峡库区库水位调度作用下大部分目前处于潜在不稳定状态,在降雨和库水位持续作用下其发展趋势为不稳定状态。对于三峡库区来说,滑坡失稳破坏不仅造成滑坡体上人员财产损失,同时会堵塞航道,更重要的是其次生涌浪灾害造成的危害,意大利瓦依昂滑坡就是最好的证明。因此,三峡库区堆积层滑坡的稳定直接关系到库区人员的生命财产安全和水库的正常运营,三峡库区堆积层滑坡的稳定性与预测预报研究具有重要的理论和实际意义。
     本论文以三峡库区堆积层滑坡为研究对象,在统计分析三峡库区堆积层滑坡发育规律的基础上,利用室内试验、推广Bayes方法、深部位移监测数据定量分析、数值模拟与位移监测反分析、神经网络模型等方法对滑坡抗剪强度参数的选取和预测进行研究,同时采用强度折减法、Rosenblueth计算方法以及点安全系数法运用FLAC3D数值模拟软件对滑坡的整体与局部稳定性进行了探讨,在此基础上采用滑坡GPS专业监测、滑坡深部位移监测、数值分析模型和非线性模型等研究考虑库水位和降雨等外界因素影响的滑坡位移预测模型、滑坡时间预报模型和判据。通过以上研究,最终得到以下结论:
     (1)统计分析得到了三峡库区堆积层滑坡的分布规律、发育特征及变形破坏特征。
     三峡库区堆积层滑坡主要发育在三叠系中统巴东组泥岩和侏罗系中统沙溪庙组泥岩和砂岩互层等易滑地层中,在秭归、巴东、巫山、奉节、云阳、万州六个区县分布最广,主要为特大型和大型滑坡,其中大型滑坡最为发育,且大部分为中深层滑坡,顺向坡最为发育,剖面形态多为凸形,且主要发育在中倾坡(10°~40°)中,其物质组成以残积(Qe1)、坡积(Qdl)、崩积(Qcol)、滑坡堆积(Qdel)的第四系粉质粘土夹碎石为主,滑坡前缘发育在200m高程以下,后缘发育在725m高程以下,三峡库区堆积层滑坡地表累积位移曲线形态主要有稳定型、匀速型、收敛型、加速型、阶跃型和回落型六类,深部位移曲线主要有“V”型、“D”型、“B”型、“r”型、“钟摆”型和“复合”型六类,主要存在蠕滑-拉裂、滑移-隆起-整体下滑、滑移-拉裂-剪断三种变形破坏模式。
     (2)建立了三峡库区堆积层滑坡抗剪强度参数选取和预测的方法。
     通过对滑坡抗剪强度参数室内试验、推广bayes方法反分析方法、数值方法与位移监测反分析方法、滑坡深部位移监测数据定量分析基础上的滑坡抗剪强度参数反分析方法、滑坡抗剪强度参数BP神经网络预测方法的研究,并以滑坡实例验证,得到了三峡库区堆积层滑坡抗剪强度参数选取和预测方法的原理及适用条件:
     ①室内试验因取样扰动、试验条件、试验误差以及滑坡空间差异性等原因导致试验结果存在很大的不确定性,其可靠性受到很大影响,且对于三峡库区堆积层滑坡来说,滑坡抗剪参数一般处于峰值强度和残余强度之间、饱和与天然状态并存,试验结果不能直接应用于滑坡稳定性分析等领域,一般作为反分析方法的基础数据。
     ②推广bayes方法反分析滑坡抗剪强度参数的分布形式重点在于先验函数的选取,目前一般以区域统计规律作为先验函数,主要适用于滑坡滑带土室内试验组数较少的滑坡,反分析结果主要用于计算滑坡的破坏概率,对滑坡稳定性进行定量评价。
     ③滑坡抗剪强度参数数值方法与位移监测反分析方法是以滑坡室内试验数据或区域统计规律为基础,以滑坡监测位移及其位移趋势为判断依据,采用数值模拟手段选择滑坡最优抗剪强度参数组合。该方法能够应用于三峡库区大量未进行详细勘察仅进行专业监测的滑坡,但其结果易受数值模拟方法软件缺陷、滑坡专业监测结果准确性的影响。
     ④滑坡深部位移监测数据定量分析基础上的滑坡抗剪强度参数反分析方法将滑坡滑带从完整到完全破坏的过程视为滑坡抗剪强度从峰值强度变为残余强度的过程,并采用内聚力和内摩擦角等比例折减。该方法主要适用于进行深部位移监测且位移监测曲线具有典型曲线特征的滑坡,同时需以室内试验数据或区域统计规律为基础。
     ⑤滑坡抗剪强度参数预测是以区域统计规律建立的抗剪强度参数与滑坡基本物理力学参数之间的关系为基础,采用神经网络模型建立滑坡抗剪强度参数的预测模型。该方法适用于仅进行滑坡基本物理力学试验而未进行滑坡抗剪强度参数试验的滑坡,特别是由于时间、试验设备等原因而未进行残余强度试验的滑坡。
     (3)以三峡库区典型堆积层滑坡为例,建立了三峡库区堆积层滑坡整体与局部稳定性评价方法。
     以三峡库区典型堆积层滑坡-重庆市万州区塘角1号滑坡为例,首先通过滑坡现场调查及专业监测成果分析确定滑坡的变形情况,同时建立滑坡三维地质模型。然后采用强度折减法和Rosenblueth计算方法对滑坡三维整体稳定性系数和三维破坏概率进行了研究,同时将其结果与二维稳定性系数和二维破坏概率进行了对比分析,从定性和定量的角度综合分析滑坡的整体稳定性。最后采用数值分析及点安全系数法对滑坡各部位的稳定性系数分布、滑坡位移场、滑坡应力应变场、滑坡塑性区分布进行分析研究,并将其研究结果与现场专业监测和宏观变形调查进行对比验证,以此研究滑坡的局部稳定性。
     滑坡实例研究结果表明:滑坡三维稳定性计算结果比二维计算结果大,滑坡三维破坏概率比二维破坏概率要小;滑坡计算主剖面不能代表滑坡整体,在滑坡整体稳定性评价时宜采用三维计算方法;滑坡整体稳定性和局部稳定性差别很大,在滑坡稳定性评价中不仅要计算滑坡整体稳定性,而且还要根据现场调查及滑坡专业监测的分析结果对滑坡的局部稳定性进行评价,特别是对于大型堆积层滑坡。
     (4)从考虑库水位、降雨等外界因素的角度,建立了三峡库区堆积层滑坡位移预测、时间预报模型和方法。
     以考虑三峡库区堆积层滑坡主要外界影响因素-降雨和库水位为出发点,以滑坡整体与局部稳定性评价结果为依据,以数学力学分析、数值模拟等为手段,以R/S分析方法、加卸载响应比理论等为研究方法,建立了三峡库区堆积层滑坡位移预测、时间预报模型和方法:
     ①以R/S分析方法中赫斯特指数H偏离0.5的程度来确定滑坡位移时间序列中趋势项位移和周期项位移的比例,然后采用神经网络模型和多项式拟合来分别预测滑坡的趋势项位移和周期项位移。该方法充分考虑了降雨和库水位对滑坡位移的影响,适用于三峡库区堆积层滑坡的位移预测。
     ②以相邻时刻的库水位差值为加卸载增量,以对应滑坡累积位移加速度相邻时刻的差值为加卸载响应增量,以加卸载响应比与1的大小对滑坡失稳破坏时间进行预报的滑坡加卸载响应比时间预报模型重点考虑了三峡库区特殊的人类工程活动-库水位调度,对研究三峡库区堆积层滑坡时间预报具有重要意义。
     ③将三峡库区堆积层滑坡简化为单一直线形滑动面滑坡,运用前述滑坡抗剪强度参数与滑坡滑带完整性指标的关系,采用剩余推力法建立滑坡稳定性系数与滑带完整性指标之间的关系,以滑坡稳定性系数等于1时的滑带完整性指标作为滑坡时间预报判据,该方法考虑了滑坡抗剪强度随滑坡变形不断变化的特征,经滑坡实例验证,可作为一种有效的预报方法进行进一步探讨。
     ④采用数值模拟手段,以滑坡有限元计算不收敛、滑坡塑性区贯通及滑坡关键位移监测点位移发生突变为滑坡失稳破坏判据,以滑坡失稳破坏时滑坡关键位移监测点的位移和滑坡极端工况条件下降雨量大小作为滑坡失稳破坏判据的数值分析滑坡时间预报判据研究方法,充分考虑了降雨和库水位对滑坡的影响,为滑坡时间预报判据研究提供了一种新的思路,但由于数值模拟手段中本构模型、滑坡边界条件、滑坡计算参数等与滑坡实际情况存在一定的差别,导致滑坡模拟结果与滑坡实际情况存在一定的出入,所以对于该方法的实用性,还需进行不断探索。
China is one of the most serious countries, which develops six main types geological disasters including landslide, collapse, debris flow, ground collapse, ground crack and ground subsidence. Statistics data of China Geological Survey shows that only in August2012, the national total of geological disasters is5752, including4841landslides,412collapse,415debris flow,56ground collapse,25ground crack and3ground subsidence,twenty six of which caused casualties,containing that53people were killed,25people were missed,75people were injured, and direct economic loss was3.23billion yuan. According to the national geological disaster data in the official website of China geological survey, Ministry of Land and Resources, during the period from2004to2011, the main six types geological disaster every year caused a direct economic loss more than$1.7billion, casualties more than400people, and in the six kinds of geological disaster, landslide was developed most widely, whose proportion was as high as50.60%~86.11%, accounted for more than half of the geological disasters.
     Annual economic loss caused by landslide disasters in China is more than$1billion, according to the eological hazard reporting data of China Geological Survey, only in2009,16oversize and large landslide disasters were developed, and the direct economic loss was190million yuan, and in2011the major disasters which caused more than10people killed and missed or the direct economic loss exceed100million yuan were7, and the direct economic loss was599million yuan. Landslide disasters not only cause huge economic losses, but also cause serious damage to people's life safety, in1963Vajont landslide in Italian killed more than2600people, in1983Sa Leshan landslide in Dongxiang county in Gansu province destroyed four village, killed220people and injured22people, India reported in2000YiGongCangBu high-speed giant landslide in Tibet were killed30people, more than100people were missed and caused50000homeless in India, in2003Qian Jiangping landslide in Zigui country in Hubei province killed24people and caused more than1100homeless, in2005Southern Leyte landslide disaster in Philippines caused casualties more than1800people.
     The colluvial landslide is a kind of hazard-affected body which is the most widely distributed and large scale developed, whose outbreak frequency is high, abruptness is strong and continuous harm is large. This kind of landslide always happens in the quaternary and modern loose accumulation, whose sliding body material is composed with the secondary deposit, such as colluvial, colluvial deposit, alluvial deposit and colluvial deposit, whose sliding surface is the contact surface between accumulation and bedrock, which distributes in the Yangtze three gorges, the Yellow River shelter-forest, and Hong Kong, Guangdong, Fujian and other places, and the most widely in the three gorges of Yangtze river. In accordance with Landslide control engineering survey specification (DZ/T0218-2006), the colluvial landslide contians landslide deposit landslide, collapse deposit landslide, avalanche deposit landslide, loess landslide, clay landslide, the diluvial layer landslide, and artificial filled soil landslide. For the three gorges reservoir area, the colluvial landslide mainly develops landslide deposit landslide, collapse deposit landslide, avalanche deposit landslide, and the diluvial layer landslide.
     Because of its unique geological tectonics and geological environment characteristics,a large number of landslides are developed in the Three gorges reservoir area. According to incomplete count, only in the upper Yangtze river area of one million kilometer, there has developed one thousand,seven hundred and thirty six landslides, sixty four of which are colluvial landslides, and in two and three stage control and monitoring landslides disaster or collapses in the Three gorges reservoir area, the rate of colluvial landslides is about80%. According to the statistical analysis, recently most of colluvial landslides lie a potential unstable state under rainfall and reservoir water level scheduled, and they will trend to a unstable state with time. For the three gorges reservoir area, landslide instability and failure not only causes loss of life and property, at the same time it will jam channel, more important is the damage of secondary surge disaster, Vajont landslide in Italy is the best proof. Therefore, the stability of colluvial landslides in the three gorges reservoir directly relates to the people's life and property safety and normal operation of the reservoir,studying on the stability and prediction of colluvial landslides in the Three gorges reservoir area has an important theoretical and practical significance.
     This paper takes colluvial landslides in the Three gorges reservoir area as the research object, uses laboratory test, the promotion of Bayes method, deep displacement monitoring data quantitative analysis, numerical simulation and displacement monitoring back analysis, the neural network model to study selecting and predicting landslide shear strength parameters based on the statistical analysis to development law of colluvial landslides in the Three gorges reservoir area. At the same time, adopts the shear strength reduction method, Rosenblueth calculation method and Unit safety method to discuss whole and local stability of landslides by FLAC3D numerical simulation software, then employs the landslide GPS professional monitoring, landslide deep displacement monitoring, numerical analysis model and a nonlinear model to research landslide displacement prediction model, landslide time prediction model and the criterion considering he reservoir level and rainfall. Through the above research, finally get the following conclusion:
     (1) Get the distribution law, development characteristics and deformation failure characteristics of colluvial landslides in the Three gorges reservoir area by the statistical analysis.
     Colluvial landslides in the Three gorges reservoir area are developed in easy sliding formation such as mudstones of badong group in the middle Triassic and mudstone and sandstone interbedding of shaximiao group in the middle Jurassic, widely distributed in six districts and counties, zigui, badong, wushan and fengjie, YunYang and wanzhou. Most of the colluvial landslides is the super large, large landslides and deep landslides, whose profile form is convex and composition is silty clay containing gravel of residual deposit(Qel),slope deposit(Qdl), colluvial deposit(Qcol) and landslide accumulation (Qdcl) in Quaternary, and the large-scale landslide, dip slope and middle pour slope (10°~40°) is the most developed. The front and rear edge of colluvial landslides is200m elevation and725m elevation. The landslide surface cumulative displacement tracing patterns have six type, stable type, uniform type, convergence speed type, acceleration type, step type and back type, and deep displacement curves mainly contain "V" type,"D" type,"B" type,"r" type,"pendulum" type and "composite" type including three deformation failure modes,the creep-rip, slip-uplift-the overall downturn, slip-rip-cut.
     (2) Set up the selection and prediction methods of shear strength parameters for colluvial landslides in the Three gorges reservoir area.
     Through studying laboratory test, the promotion of Bayes method, numerical simulation and displacement monitoring back analysis method, deep displacement monitoring data quantitative analysis method and the BP neural network prediction method for the landslide shear strength parameters, taking typic colluvial landslides in the Three gorges reservoir area as examples, obtain the principle and applicable condition of selection and prediction methods for colluvial landslide shear strength parameters in the three gorges reservoir area:
     ①as the result of sampling disturbance, test conditions, test error and landslide space diversity or other reasons, laboratory test results has a lot of uncertainty and its reliability has a tremendous influence, and for colluvial landslides in the three gorges reservoir area, landslide shear parameters are generally between the peak strength and residual strength, saturation and natural state coexist, test results cannot be directly applied to the landslide stability analysis etc, generally as a back analysis method based data.
     ②the key point for the promotion of Bayes method back analyzing the distribution form of landslide shear strength parameters lies in the selection of a Prior function which generally take regional statistical rules as, and this method is mainly suitable for the landslides that lack of enough laboratory test group, and the analysis results are used to calculate the landslide failure probability for the landslide stability quantitative evaluation.
     ③the numerical simulation and the displacement monitoring back analysis method for landslide shear strength parameters takes the laboratory test data or regional statistical rule as the foundation and the landslide monitoring displacement and displacement trend as judgment basis, and adopts the numerical simulation method to select the optimal combination of landslide shear strength parameters. This method can be applied to a large number of landslides in the three gorges reservoir area which lack of a detailed survey just have a professional monitoring, but the result is susceptible to be affected by numerical simulation software defect and the accuracy of landslide professional monitoring results.
     ④the landslide shear strength parameter back analysis method based on quantitative analysis to the landslide deep displacement monitoring data,takes the process of landslide slip zone from full to complete destruction as the process of landslide shear strength from the peak strength to residual strength, and uses a proportional reduction for cohesion and internal friction angle. This method is mainly suitable for landslides which have a deep displacement monitoring and whose displacement monitoring curves have a typical curve characteristics, taking laboratory test data or regional statistical rule as the foundation.
     ⑤landslide shear strength parameter prediction is a method applying the neural network model to predict landslide shear strength parameters, based on the relationship between shear strength parameters and landslide basic physical and mechanical parameters by regional statistical rule. This method is only applicable for landslides which have basic physical and mechanical test but lack of shear strength parameters test, especially for the landslides not conducting residual strength tests because of the time, test equipment and other reasons.
     (3) Establish a whole and local stability evaluation method for colluvial landslides taking typic ones as examples in the Three gorges reservoir area.
     Taking TangJiao NO.1landslide which is a typic colluvial landslide of three gorges reservoir area in WanZhou district ChongQing province as an example, firstly determine the deformation of the landslide through the landslide site investigation and professional monitoring results analysis. and establish the landslide three-dimensional geological model. Secondly adopt the shear strength reduction method and Rosenblueth calculation method to study the3-d whole stability coefficient and failure probability stability for the landslide, and compare the results with2-d stability coefficient and failure probability results to comprehensively analyze the whole stability for the landslide from the point of qualitative and quantitative view. Finally, apply numerical analysis and unit safety method to analyze and research stability coefficient distribution, displacement field, stress and strain field, and plastic zone distribution of the landslide, and make a comparison validation with field professional monitoring and macroscopic deformation survey to study the local stability of the landslide.
     Landslide case study results show that landslide3-d stability calculation result is bigger than those of2-d calculation results, but landslide3-d failure probability is smaller than those of2-d calculation results; Landslide calculation main section does not represent the whole landslide, and it is better to use3-d calculation method for landslide whole stability evaluation; Landslide whole stability has a big difference with local stability, the landslide stability evaluation not only has to calculate the integral stability of the landslide, but also assess landslide local stability according to analysis results of the field investigation and landslide professional monitoring, especially for large colluvial landslide.
     (4) From the view of considering reservoir level, rainfall or other external factors, set up the displacement prediction, time prediction model and method for colluvial landslides in the three gorges reservoir area.
     Taking considering the mainly external influence factors rainfall and reservoir water level of colluvial landslides in the three gorges reservoir area as a starting point, landslide whole and local stability evaluation results as a judgement, mathematical mechanics analysis and numerical simulation as a means, R/S analysis method, loading and unloading response ratio theory as the research method, establish the displacement prediction, time prediction model and method for colluvial landslides in the three gorges reservoir area:
     ①confirm the proportion of trend displacement and cycle displacement in landslide displacement time series according to the deviation degree between Hurst index contained by R/S analysis method and0.5, then use the neural network model and polynomial fitting to predict landslide trend displacement and cycle displacement separately. This method fully consider the influence of rainfall and reservoir water level,and is suitable for predicting displacement of colluvial landslides in the three gorges reservoir area.
     ②the landslide loading and unloading response ratio time prediction model forecasts landslide instability and failure time based on the relative size between loading and unloading response ratio and1, taking reservoir water level difference between adjacent time for the loading and unloading increment, corresponding landslide cumulative displacement acceleration difference between adjacent time for the loading and unloading response increment. This method fully considers the special human engineering activities in the three gorges reservoir area-reservior level scheduling, which has a great significance for colluvial landslide time prediction in the three gorges reservoir area.
     ③simplify the colluvial landslide in the three gorges reservoir area as a single linear sliding surface landslide, utilize the above-mentioned relationship between landslide shear strength parameters and slip zone integrity index, adopt he residual thrust method to establish the relationship between the landslide stability coefficient and slip zone integrity index, and take slip zone integrity index while the landslide stability coefficient is equal to1as a landslide time prediction criterion. According to landslide examples test, this method considers the changing characteristics of landslide shear strength with landslide deformation and can be further discussed as an effective prediction method.
     ④the landslide time prediction criterion research methods by numerical analysis takes the finite element calculation misconvergence, landslide plastic area cutthrough and displacement mutations of displacement monitoring key point as the landslide instability and failure criterion, and takes the landslide displacement of displacement monitoring key point when landslide is at an instability and failure state, and the rainfall size under extreme working condition as landslide instability and failure criterion, applying the numerical simulation means. This method fully considers the influence of rainfall and reservoir water level for landslides and provides a new idea to study landslide time prediction criterion. However, as a result of the certain difference among constitutive model, landslide boundary conditions, and landslide calculation parameters in numerical simulation means with landslide actual situation, lead to exist a certain access between landslides simulation results and the actual situation. Therefore, it need to discuss continuously for the practicability of this method.
引文
[1]刘贵应.库水位变化对三峡库区堆积层滑坡稳定性的影响[J].安全与环境工程,2011,18(5):26-28.
    [2]夏金梧,郭厚桢.长江上游地区滑坡分布特征及主要控制因素探讨[J].水文地质工程地质,1997,(1):19-22.
    [3]温永高,杨应敏,欧阳文.三峡工程重庆库区人口计生工作现状、问题及对策研究[J].人口与计划生育,2005(5):30-31.
    [4]李远耀.三峡库区渐进式库岸滑坡的预测预报研究[D].武汉:中国地质大学(武汉)2010.
    [5]任光明,聂德新.滑带土结构强度再生研究[J].地质灾害与环境保护.1996,7(3):7-12.
    [6]任光明,聂德新.大型滑坡滑带土结构强度再生特征及其机理探讨[J].水文地质工程地质.1997,24(3):28-31.
    [7]NAKAMURA SHIN'YA, GIBO SEIICHI, EGASHIRA KAZUHIKO, YOSHINAGA ANSHUN. Recovered Strength of Landslide Soils and its Relationship with Mineralogical Composition[J]. Landslides,2000,37(3):0-17.
    [8]Toni G, Rizzo V. Kinematic evolution and shear strength in the complex landslides of the Maratea valley (PZ, Italy)[J]. Physics and Chemistry of the Earth, Part C:Solar, Terrestrial & Planetary Science.2001,26(9):677-681.
    [9]Gibo, S., Egashira, K.., Ohtsubo, M.,Nakamura, S. Strength recovery from residual state in reactivated landslides[J]. Geotechnique,2002,52(9) 683-686.
    [10]Yongshan Wan, Kwong J. Shear strength of soils containing amorphous clay-size materials in a slow-moving landslide[J]. Engineering Geology.2002,65(4):293-303.
    [11]Sam Frydman a, Mark Talesnick, Samuel Geffen, Asia Shvarzman. Landslides and residual strength in marl profiles in Israel[J]. Engineering Geology,2007(89):36-46.
    [12]张芳枝,陈晓平,吴煌峰,等.东深供水工程风化泥质软岩残余强度特性研究[J].工程地质学报.2003,11(1):54-57.
    [13]米海珍,王昊,高春,等.灰土的浸水强度及残余强度的试验研究[J].岩土力学.2010,31(9):2781-2785.
    [14]郭富利,张顶立,苏洁,等.围压和地下水对软岩残余强度及峰后体积变化影响的试验研究[J].岩石力学与工程学报.2009,28(A01):2644-2650.
    [15]王水林,王威,吴振君.岩土材料峰值后区强度参数演化与应力-应变曲线关系研究[J].岩石力学与工程学报.2010(08).
    [16]王瑞红,李建林,蒋昱州,等.循环加卸载对岩体残余强度影响的试验研究[J].岩石力学与工程学报.2010,29(10):2103-2109.
    [17]韩爱果,聂德新,任光明,等.大型滑坡滑带土剪切流变特性研究[J].工程地质学报.2001,9(4):345-348.
    [18]程东幸,刘大安,丁恩保,等.滑带土长期强度参数的衰减特性研究[J].岩石力学与工程学报.2005,24(A02):5827-5834.
    [19]汪斌,朱杰兵,唐辉明,等.黄土坡滑坡滑带土的蠕变特性研究[J].长江科学院院报.2008,25(1):49-52.
    [20]严绍军,项伟,唐辉明,等.大岩淌滑坡滑带土蠕变性质研究[J].岩土力学.2008,29(1):58-62.68.
    [21]Soonkie Nam, Marte Gutierrez,Panayiotis Diplas, John Petrie. Determination of the shear strength of unsaturated soils using the multistage directshear test[J]. Engineering Geology, 2011(122):272-280.
    [22]吴迪,简文彬,徐超.残积土抗剪强度的环剪试验研究[J].岩土力学.2011,32(7):2045-2050.
    [23]Hartge, K.H.,Bachmann. In situ evaluation of the soil consolidation state by using penetration resistance data[J]. J. Plant Nutr. Soil Sci,2004(167):304-308.
    [24]黄志全,王安明,姜彤.膨胀土的现场抗剪试验研究[J].工程地质学报.2005,13(3):361-366.
    [25]J. Bachmann, K. Contreras, K.H. Hartge, R. MacDonald. Comparison of soil strength data obtained in situ with penetrometer and with vane shear test[J].Soil & Tillage Research, 2006(87):112-118.
    [26]程圣国,傅又群,罗先启.滑坡滑带土原位直剪试验应用研究[J].路基工程.2008(2):10-11.
    [27]张玉成,杨光华,苏卜坤,曾进群.土质边坡土体抗剪强度室内外试验研究[J].湖南科技大学学报(自然科学版),2007.22(3):45-49.
    [28]罗丽娟,赵法锁,陈新建,等.巨型黄土滑坡剪出口滑带土的原位剪切试验研究[J].西安科技大学学报.2009,29(4):459-464.
    [29]Tatsuro Nishiyama, Takashi Hasegawa. Finite element analysis for the shear strength appearing in in situ rock shear tests[J].IOP Conf. Series:Materials Science and Engineering, 2010(10):1-10.
    [30]胡增辉,李家奇,李晓昭,等.利用标准贯入试验确定粘性土的不排水抗剪强度[J].地下空间与工程学报.2011(S2):1577-1582.
    [31]王玉杰,赵宇飞,曾祥喜,等.岩体抗剪强度参数现场测试新方法及工程应用[J].岩土力学.2011,32(S1):779-786.
    [32]H. H. VAZIRI, X. WANG, I. D. PALMERS, M. KHODAVERDIAN, J. McLENNAN. Back Analysis of Coalbed Strength Properties from Field Measurements of Wellbore Cavitation and Methane Production[J]. Int. J. Rock Mech. Min. Sci,1997,34(6)963-978.
    [33]郑明新.论滑带土强度特征及强度参数的反算法[J].岩土力学.2003,24(4):528-532.
    [34]Binod Tiwari, Thomas L. Brandon, Hideaki Marui, Gyanu Ratna Tuladhar. Comparison of Residual Shear Strengths from Back Analysis and Ring Shear Tests on Undisturbed and Remolded Specimens[J].JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING,2005(131):1071-1079.
    [35]李宁,段小强,陈方方,等.围岩松动圈的弹塑性位移反分析方法探索[J].岩石力学与工程学报.2006,25(7):1304-1308.
    [36]Rick Deschamps, Greg Yankey. Limitations in the Back-Analysis of Strength from Failures[J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING,2006(132):532-536.
    [37]程媛彩,戴自航.多剖面反算滑带土抗剪强度指标的研究[J].岩土力学.2006,27(10):1811-1814.
    [38]M. Cai, H. Moriokab P.K. Kaiser,Y. Tasaka, H. Kurose, M. Minami, T. Maejima. Back-analysis of rock mass strength parameters using AE monitoring data[J]. International Journal of Rock Mechanics & Mining Sciences,2007(44):538-549.
    [39]Jing-Cai Jiang, Takuo Yamagami. A new back analysis of strength parameters from single slips[J]. Technical Communication,2008(35):286-291.
    [40]卢坤林,朱大勇,许强,等.滑带土抗剪强度参数的三维反分析[J].岩土力学.2010,31(10):3319-3323.
    [41]陈方方,李宁,张志强.一种洞室围岩强度参数的反演方法及其验证[J].岩石力学与工程学报.2010(1):97-103.
    [42]詹良通,管仁秋,陈云敏,等.某填埋场垃圾堆体边坡失稳过程监测与反分析[J].岩石力学与工程学报.2010,29(8):1697-1705.
    [43]石崇,张玉,孙怀昆,等.争岗滑坡堆积体滑面强度参数反演分析[J].岩石力学与工程学报.2010,29(A02):3728-3734.
    [44]周葆春,孔令伟,陈伟,等.荆门膨胀土土-水特征曲线特征参数分析与非饱和抗剪强度预测[J].岩石力学与工程学报.2010,29(5):1052-105.
    [45]彭瑞华.基于BP神经网络的土体抗剪强度参数的预测[J].山西建筑.2011,37(5):131-132.
    [46]Jian-Hong Wu a, Pai-Hsiang Tsai. New dynamic procedure for back-calculating the shear strength parameters of large landslides[J]. Engineering Geology,2011 (123):129-147.
    [47]汤罗圣,殷坤龙,刘艺梁.基于因子分析和BP神经网络的滑坡抗剪强度参数取值[J].灾害学,2012,27(4):17-21.
    [48]Bin Li, Taiyue Qi, Wang Zhengzheng, Longwei Yang. Back analysis of grouted rock bolt pullout strength parameters from field tests[J]. Tunnelling and Underground Space Technology,2012(28):345-349.
    [49]罗冲,殷坤龙,陈丽霞,等.万州区滑坡滑带土抗剪强度参数概率分布拟合及其优化[J].岩石力学与工程学报.2005,24(9):1588-1593.
    [50]B. Vasarhelyi. Statistical Analysis of the Influence of Water Content on the Strength of the Miocene Limestone[J]. Rock Mech. Rock Engng,2005,38(l):69-76.
    [51]夏元友,蒋超.云南祥临公路滑坡滑带土抗剪强度指标的统计分析[J].岩土力学.2006,27(6):920-924.
    [52]程圣国,方坤河,罗先启,等.三峡库区新生型滑坡滑带土抗剪强度确定概率方法[J].岩石力学与工程学报.2007,26(4):840-845.
    [53]袁晓蕾.黄土滑坡的滑带土强度试验参数统计及可靠性研究[D].长安大学,2007.
    [54]A. Burak Goktepe, Selim Altun,(?) Gokhan Altintas, Ozcan Tan. Shear strength estimation of plastic clays with statistical and neural approaches[J]. Building and Environment, 2008(43):849-860.
    [55]李远耀,殷坤龙,柴波,等.三峡库区滑带土抗剪强度参数的统计规律研究[J].岩土力学.2008,29(5):1419-1424.
    [56]Petri Valasti. Improved Soil Stabilization by Geoelectrical Water Content Determination and Statistical Shear Strength Models[J]. JEEG,2010,15(4):233-241.
    [57]魏应乐,刘丽云,戈海玉.边坡岩体抗剪强度参数的非线性确定方法[J].岩土力学.2012(2):395-401.
    [58]袁天华,席福来,努尔哈斯木.新疆某水利枢纽工程软弱结构面抗剪强度参数的试验研究[J].岩土力学.2003(S1):223-226.
    [59]张昆,郭菊彬.滑带土残余强度参数试验研究[J].铁道工程学报.2007,24(8):13-15.
    [60]赵翔,康景文,蒋进,等.膨胀土地区某滑坡滑带土强度指标确定方法的研究[z].中国四川成都:中国地质学会工程地质专业委员会、中国岩石力学与工程学会、中国建筑学会工程勘察分会、中国土木工程学会土力学及岩土工程分会,2009.
    [61]王周萼,栾约生.大园包崩滑体滑带土抗剪强度指标研究[J].资源环境与工程.2009,23(z2):126-128,141.
    [62]李治广,董听,马健.反分析法与室内试验法确定岩质边坡结构面抗剪强度对比研究——以西柏坡纪念馆不稳定斜坡为例[J].工程地质学报.2009,17(4):569-573.
    [63]邓宇.滑坡稳定性评价方法的研究现状综述[J].山西建筑.2008,34(26):129-130.
    [64]郑榕明,朱禄娟,谷兆祺.非对称旋转破坏的三维Bishop边坡稳定算法[J].岩土工程学报.2002,24(6):706-709.
    [65]郑颖人,时卫民,杨明成.不平衡推力法与Sarma法的讨论[J].岩石力学与工程学报.2004(3):3030-3036.
    [66]Wanwen, Caoping. ELASTO-PLASTIC LIMIT EQUILIBRIUM ANALYSIS FOR A COMPLEX ROCK SLOPE[J]. Int. J. Rock Mech. Min. Sci.,2004,41 (3):1-6.
    [67]张鲁渝,郑颖人,时卫民.边坡稳定分析中关于不平衡推力法的讨论[J].岩石力学与工程学报.2005,24(1):177-182.
    [68]赵广春,徐光黎,苏爱军,等.传递系数法在滑坡稳定性评价中的几个问题探讨[J].地球与环境.2005,33(z1):7-11.
    [69]张嘎,张建民.基于瑞典条分法的应变软化边坡稳定性评价方法[J].岩土力学.2007,28(1):12-16.
    [70]方玉树.滑坡稳定分析传递系数法若干问题探讨[J].工程地质学报.2007,15(5):607-611.
    [71]鲁晓兵,张旭辉,王淑云,等.一种改进的用于滑坡分析的极限平衡方法[Z].乌鲁木齐:2007554-557.
    [72]ATAEIM, BODAGHABADI S. Comprehensive analysis of slope stability and determination of stable slopes in the Chador-Malu iron ore mine using numerical and limit equilibrium methods[J]. J China Univ Mining & Technol,2008(18):488-493.
    [73]李亮,杨小礼,褚雪松,等.基于Bishop法假定的边坡临界滑动场方法及应用[J].中南大学学报(自然科学版).2011,42(9):2848-2852.
    [74]Y.M. Cheng, D.Z. Li, L. Li, Y.J. Sun, R. Baker, Y. Yang. Limit equilibrium method based on an approximate lower bound method with a variable factor of safety that can consider residual strength[J]. Computers and Geotechnics,2011(38):623-637.
    [75]G.R. Dodagoudar, G. Venkatachalam. Reliability analysis of slopes using fuzzy sets theory[J]. Computers and Geotechnics,2000(27):101-115.
    [76]G. Auvinet, J.L. GonzaA lez. Three-dimensional reliability analysis of earth slopes[J]. Computers and Geotechnics,2000(26):247-261.
    [77]陈昌富,龚晓南.露天矿边坡破坏概率计算混合遗传算法[J].工程地质学报.2002,10(3):305-308.
    [78]G. Bhattacharya, D. Jana, S. Ojha, S. Chakraborty. Direct search for minimum reliability index of earth slopes[J]. Computers and Geotechnics,2003(30):455-462.
    [79]R. Jimenez-Rodriguez, N. Sitar, J. Chacon. System reliability approach to rock slope stability[J]. International Journal of Rock Mechanics & Mining Sciences, 2006(43):847-859.
    [80]王建华,易朋莹,邓继辉,等.滑坡稳定性可靠度分析[J].地下空间与工程学报.2007,3(4):668-672.
    [81]B.K. Low. Reliability analysis of rock slopes involving correlated nonnormals[J]. International Journal of Rock Mechanics & Mining Sciences,2007(44):922-935.
    [82]尹小涛,王水林.基于可靠度理论的滑坡稳定性及其影响因素分析[J].岩土力学.2008,29(6):1551-1556.
    [83]谢桂华,张家生,李继祥.基于改进遗传算法的边坡可靠度分析[J].岩土力学.2009,30(6):1815-1820.
    [84]高荣雄,龚文惠,王元汉,等.顺层边坡稳定性及可靠度的随机有限元分析法[J].岩土力学.2009,30(4):1165-1169.
    [85]YANG Kun, WANG Tongxu, MA Zhitao. Application of cusp catastrophe theory toreliability analysis of slopes in open-pit mines[J]. Mining Science and Technology, 2010(20):71-75.
    [86]吴振君,王水林,葛修润.LHS方法在边坡可靠度分析中的应用[J].岩土力学.2010,31(4):1047-1054.
    [87]彭振斌,李俊,彭文祥.基于Bishop条分法的边坡可靠度应用研究[J].中南大学学报(自然科学版).2010,41(2):668-672.
    [88]唐小松,李典庆,周创兵.基于认知聚类分区方法的边坡可靠度分析[J].岩土力学.2011,32(2):571-578.
    [89]马栋和,王常明,杨树才,等.两种Rosenblueth改进法分析边坡稳定可靠度[J].吉林大学学报(地球科学版).2011(S1):195-200.
    [90]苏永华,王奇山,梁斌.基于七点估计法的边坡稳定可靠度求解[J].郑州大学学报(工学版).2010,31(6):14-18.
    [91]张亚国,张波,李萍,等.基于点估计法的黄土边坡可靠度研究[J].工程地质学报.2011,19(4):615-619.
    [92]王宇,曹强,李晓,等.边坡渐进破坏的模糊随机可靠性研究[J].工程地质学报.2011,19(6):852-858.
    [93]Dianqing Li, Yifeng Chen, Wenbo Lu, Chuangbing Zhou. Stochastic response surface method for reliability analysis of rock slopesinvolving correlated non-normal variables[J]. Computers and Geotechnics,2011(38):58-68.
    [94]苏国韶,肖义龙.边坡可靠度分析的高斯过程方法[J].岩土工程学报.2011(6):916-920.
    [95]B.K. Low a, J. Zhang, Wilson H. Tang. Efficient system reliability analysis illustrated for a retaining wall and a soil slope[J]. Computers and Geotechnics,2011(38):196-204.
    [96]张曼,唐小松,李典庆.含相关非正态变量边坡可靠度分析的子集模拟方法[J].武汉大学学报(工学版).2012(1):41-45.
    [97]J. Ji, H.J. Liao, B.K. Low. Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations[J]. Computers and Geotechnics,2012(40):135-146.
    [98]Johari, A.A. Javadi. Reliability assessment of infinite slope stability using the jointly distributed random variables method[J]. Sharif University of Technology Scientia Iranica Transactions A:Civil Engineering,2012:1-7.
    [99]张鲁渝,郑颖人,赵尚毅,等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报.2003(1):21-27.
    [100]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报.2004,26(1):42-46.
    [101]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报.2003,23(3):1-8.
    [102]刘金龙,栾茂田,赵少飞,等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学.2005,26(8):1345-1348.
    [103]张鹏,郭海庆.基于强度折减的岩质边坡失稳判据的探讨[J].水电能源科学.2012(9):99-102.
    [104]雷远见,王水林.基于离散元的强度折减法分析岩质边坡稳定性[J].岩土力学.2006,27(10):1693-1698.
    [105]吴顺川,金爱兵,高永涛.基于广义Hoek-Brown准则的边坡稳定性强度折减法数值分析[J].岩土工程学报.2006,28(11):1975-1980.
    [106]刘明维,郑颖人.基于有限元强度折减法确定滑坡多滑动面方法[J].岩石力学与工程学报.2006,25(8):1544-1549.
    [107]唐芬,郑颖人,赵尚毅.土坡渐进破坏的双安全系数讨论[J].岩石力学与工程学报.2007,26(7):1402-1407.
    [108]陈新泽,唐辉明,杨有成,等.基于FLAC3D强度折减法滑坡三维稳定性研究以三峡库区白果树古滑坡群为例[J].水文地质工程地质.2008,35(2):24-29.
    [109]Maosong Huang, Cang-Qin Jia. Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage[J]. Computers and Geotechnics,2009(36):93-1
    [110]杨光华,张玉成,张有样.变模量弹塑性强度折减法及其在边坡稳定分析中的应用[J].岩石力学与工程学报.2009,28(7):1506-1512.
    [111]Qianjun Xu, Honglei Yin, Xianfeng Cao, Zhongkui Li. A temperature-driven strength reduction method for slope stability analysis[J]. Mechanics Research Communications, 2009(36):224:231.
    [112]JIANG Qing-qing. Strength reduction method for slope based on a ubiquitous-joint criterion and its application[J]. Mining Science and Technology,2009(19):452-456.
    [113]W.B. Wei, Y.M. Cheng, L. Li. Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods[J]. Computers and Geotechnics,2009(36):70-80.
    [114]W.B. Wei, Y.M. Cheng. Soil nailed slope by strength reduction and limit equilibrium methods[J]. Computers and Geotechnics,2010(37):602-618.
    [115]L.R. Alejano, A.M.Ferrero, P.Rami'rez-Oyanguren, M.I.A'lvarez Ferna'ndez. Comparison of limit-equilibrium,numerical and physical models of wallslopestability[J]. International Journal of Rock Mechanics&Mining Sciences,2011(48):16-26.
    [116]杨光华,钟志辉,张玉成,等.用局部强度折减法进行边坡稳定性分析[J].岩土力学.2010,31(S2):53-58.
    [117]Wenxi Fu, Yi Liao. Non-linear shear strength reduction technique in slope stability calculation[J]. Computers and Geotechnics,2010(37):288-298.
    [118]Niu Zhiguo, You ri, Lu Jun. The Dike Stability Analysis based on Strength Reduction Method[J]. Procedia Engineering,2012(28):560-563.
    [119]李宁,许建聪.基于场变量的边坡稳定分析有限元强度折减法[J].岩土力学.2012,33(1):314-318.
    [120]李思平,孙连英.基于非线性理论的边坡稳定性评价模型[J].水文地质工程地质.2002,29(2):11-14.
    [121]于子国,杨子荣,宋国新.基于遗传-神经网络的边坡稳定性评价模型[J].辽宁工程技术大学学报(自然科学版).2005,24(z1):23-25.
    [122]郭瑞清,木合塔尔·扎日,刘新喜.基于自适应神经元模糊推理系统的岩质边坡稳定性评价方法[J].岩石力学与工程学报.2006,25(z1):2785-2789.
    [123]周宁,傅鹤林,袁勇.基于模糊神经网络的边坡稳定性评价方法[J].地下空间与工程学报.2009,5(S2):1826-1832.
    [124]曾斌,项伟.人工神经网络在石佛寺滑坡稳定性评价中的应用[J].工程地质学报,2007,15(s1):379-385.
    [125]薛新华,张我华,刘红军.基于SOFM神经网络的边坡稳定性评价[J].岩土力学.2008,29(8):2236-2240.
    [126]贺可强,王荣鲁,李新志,等.堆积层滑坡的地下水加卸载动力作用规律及其位移动力学预测---以三峡库区八字门滑坡分析为例[J].岩石力学与工程学报,2008,27(08):1644-1650.
    [127]黄泽军,肖炀燚.模糊数学在某滑坡稳定性评价中的应用[J].山西建筑.2009,35(9):133-135.
    [128]S.M. Brooks, M.J. Crozier, N.J. Preston, M.G. Anderson. Regolith stripping and the control of shallow translational hillslope failure:application of a two-dimensional coupled soil hydrology-slope stability model, Hawke's Bay, New Zealand[J]. Geomorphology, 2002(45):165-179.
    [129]黄涛,罗喜元,邬强,等.地表水入渗环境下边坡稳定性的模型试验研究[J].岩石力学与工程学报.2004,23(16):2671-2675.
    [130]胡修文,唐辉明,刘佑荣.三峡库区赵树岭滑坡稳定性物理模拟试验研究[J].岩石力学与工程学报.2005,24(12):2089-2095.
    [131]王国利,陈生水,徐光明.干湿循环下膨胀土边坡稳定性的离心模型试验[J].水利水运工程学报.2005(4):6-10.
    [132]冯君,周德培,李安洪.顺层岩质边坡开挖模型试验及稳定性影响因素分析[J].工程地质学报.2005,13(3):294-299.
    [133]卢增木,陈从新,左保成,等.对影响逆倾层状边坡稳定性因素的模型试验研究[J].岩土力学.2006,27(4):629-632,647.
    [134]陈安敏,顾欣,顾雷雨,等.锚固边坡楔体稳定性地质力学模型试验研究[J].岩石力学与工程学报.2006,25(10):2092-2101.
    [135]陈从新,黄平路,卢增木.岩层倾角影响顺层岩石边坡稳定性的模型试验研究[J].岩土力学.2007,28(3):476-481,486.
    [136]许明,唐树名,李强,等.单锚及群锚失效对边坡稳定性影响的模型试验研究[J].岩石力学与工程学报.2007,26(z1):2755-2760.
    [137]A.N. Sommers, B.V.S. Viswanadham. Centrifuge model tests on the behavior of strip footing on geotextile-reinforced slopes[J]. Geotextiles and Geomembranes, 2009(27):497-505.
    [138]姜海西,沈明荣,程石,等.水下岩质边坡稳定性的模型试验研究[J].岩土力学.2009,30(7):1993-1999.
    [139]Lee Min Lee, Azman Kassim, Nurly Gofar. Performances of two instrumented laboratory models for the study of rainfall infiltration into unsaturated soils[J]. Engineering Geology,2011(117):78-89.
    [140]宋克志,王梦怒,宋克勇.边坡位移预测的神经网络模型研究[J].岩石力学与工程学报.2003,22(z1):2382-2385.
    [141]刘明贵,杨永波.边坡位移预测组合灰色神经网络方法[J].中国地质灾害与防治学报.2006,17(2):74-78.
    [142]刘先珊,武丽.改进的滑坡位移预测模型研究[J].地下空间与工程学报.2006,2(6):993-996.
    [143]潘平.基于小波神经网络理论的边坡位移预测[J].成都理工大学学报(自然科学版).2006,33(2):176-180.
    [144]沈强,陈从新,汪稔.边坡位移预测的RBF神经网络方法[J].岩石力学与工程学报.2006,25(S1):2882-2887.
    [145]张卓,练继建.混沌神经网络综合法在边坡位移预测中的应用[J].哈尔滨工业大学学报.2009(4):210-211.
    [146]陈卫兵,李端有.基于非线性动力学的滑坡位移预测[J].长江科学院院报.2006,23(2):28-30,34.
    [147]董辉,傅鹤林,冷伍明,等.Boosting集成支持向量回归机的滑坡位移预测[J].湖南大学学报(自然科学版).2007,34(9):6-10.
    [148]李克钢,张重庆.基于时间序列的神经网络建模及边坡位移预测[J].地下空间与工程学报.2009,5(S1):1418-1421.
    [149]马文涛.基于小波变换和GALSSVM的边坡位移预测[J].岩土力学.2009,30(S2):394-398.
    [150]杜娟,殷坤龙,柴波.基于诱发因素响应分析的滑坡位移预测模型研究[J].岩石力学与工程学报.2009,28(9):1783-1789.
    [151]刘湘平,谢学斌,罗一忠.边坡非线性位移预测的动力系统自记忆模型[J].岩土工程学报.2010(10):1535-1542.
    [152]徐峰,汪洋,杜娟,等.基于时间序列分析的滑坡位移预测模型研究[J].岩石力学与工程学报.2011,30(4):746-751.
    [153]许强,黄润秋,李秀珍.滑坡时间预测预报研究进展.地球科学进展,2004,19(3):478-483.
    [154]Satio M. Forecasting the time fo occurrence of a slope failure[J].Proc.6th Int.Conf. S.M.F.E,Montreal,1965(2):537-541.
    [155]Kennedy BA, Niermeyer KE, Fahm BA. A major slope failure at the Chuquicamata Mine, Chile[J]. Min Eng AIME,1969,12(12):60.
    [156]Suwa H. Visually observed failure of a rock slope in Japan[J]. Landslide News,1991,5:8-10.
    [157]Yamaguchi S.Some notices of countermeasure for landslide and slope failure[J]. Landslides Prev Slope Stab Sogo Doboku Lab,1978,2:14-24 (In Japanese).
    [158]Cruden DM, Masoumzadeh S. Accelerating creep of the slopes of a coal mine[J]. Rock Mech Rock Eng,1987,20:123-135.
    [159]Azimi C, Biarez J, Desvarreux P, Keime F. Forecasting time of failure for a rockslide in gypsum[C]. In:Proceedings of 5th international symposium on landslides, Lausanne, 1988:531-536.
    [160]Fukuzono T.A new method for predicting the failure time of a slope[C]. In:Proceedings of 4th international conference and field workshop on landslides, Tokyo,1985:145-150.
    [161]Fukuzono T. A simple method for predicting the failure time of slope using reciprocal of velocity[J]. Technol Disaster Prev Sci Technol Agency Jpn Int Coop Agency,1989,13:111-128.
    [162]Voight B. A method for prediction of volcanic eruptions.Nature,1988,332:125-130.
    [163]Voight B. Materials science law applies to time forecasts of slope failure[C]. In: Proceedings of 5th international symposium on landslides, Lausanne,1988:1471-1472.
    [164]Voight B. Materials science law applies to time forecasts of slope failure[J]. Landslide News,1989,3:8-11.
    [165]Picarelli L, Urciuoli G, Russo C. Mechanics of slope deformation and failure in stiff clays and clay shales as a consequence of pore pressure fluctuation[C]. In:Proceedings of 8th international symposium on landslides, Cardiff,2000,4:34.
    [166]王建锋.两类经典滑坡发生时间预报模型的理论分析[J].地质力学学报,2004,10(1):40-50.
    [167]薛果夫,吕贵芳,任江.新滩滑坡研究.见:中国岩石力学与工程学会地面岩石工程专业委员会,中国地质学会工程地质专业委员会编.中国典型滑坡.北京:科学出版社1988,200~210.
    [168]刘大勇,王恩德,宋建潮,张承帅.抚顺西露天煤矿滑坡与降雨的关系及预报方法[J].灾害性,2008,23(2):50-54.
    [169]Calvello M, Cascini L, Sorbino G.A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfaces[J].International Journal for Numerical and Analytical Methods in Geomechanics,2008,32,327-351.
    [170]徐帮树.滑坡预测的水文-力学耦合模型研究[D].华东师范大学,2006.
    [171]廖小平.滑坡破坏时间预报新理论探讨[J].地质灾害与环境保护,1994,5(3):25-29.
    [172]徐峻龄,廖小平,李荷生.黄茨大型滑坡的预报及其理论和方法[J].中国地质灾害与防治学报,1996,7(3):18-25.
    [173]周创兵,张辉,彭玉环.蠕变-样条联合模型及其在滑坡时间预报中的应用[J].自然灾害学报,1996,5(4):60-67.
    [174]晏同珍.滑坡统计预测方法[A].滑坡文集[C].北京:中国铁道出版社,1988.
    [175]龙万学,林剑,许湘华,廖秀英,彭小平.Verhulst反函数模型滑坡起始预测时刻的选择[J].岩石力学与工程学报,2008,27(增1):3298-3304.
    [176]魏小楠.曲线回归分析模型在滑坡预测中的应用[J].华东公路.2008(3):65-67.
    [177]陈明东,王兰生.新滩滑坡的灰色预报分析[C].新滩滑坡讨论会文集,1986.
    [178]王朝阳,许强,范宣梅,曾金华.灰色新陈代谢GM(1,1)模型在滑坡变形预测中的应用[J].水文地质工程地质,2009,(2):108-111.
    [179]陈飞.三次指数平滑法在古滑坡复活预报中的应用[J].水电能源科学.2010(9).
    [180]缪海波,殷坤龙,柴波,等.基于非平稳时间序列分析的滑坡变形预测[J].地质科技情报,2009,28(4):107-111.
    [181]黄国明,苏文智.斜坡蠕滑预报的相空间理论[J].水文地质工程地质.1996,23(4):1-4.
    [182]刘晓,曾祥虎,刘春宇.边坡非线性位移的神经网络-时间序列分析[J].岩石力学与工程学报,2005,24(19):3499-3503.
    [183]周小平,钱七虎,张永兴,等.基于突变理论的滑坡时间预测模型[J].工程力学.2011,28(2):165-174.
    [184]秦四清.非线性工程地质学导引[M].成都:西南交通大学出版社,1993.83-90.
    [185]尹彦波,李爱兵,刘正宇.岩石失稳的非线性动力学预测分析[J].矿业研究与开发,2007,27(3):14-17.
    [186]黄志全,张长存,姜彤,等.滑坡预报的协同-分岔模型及其应用[J].岩石力学与工程学报.2002,21(4):498-501.
    [187]黄润秋,许强.斜坡失稳时间的协同预测模型[J].山地研究,1997,15(1):7-12.
    [188]张扬,郭亮.基于修正残差的协同预测模型边坡失稳预测应用[J].科学技术与工程,2011,11(26):6424-6429.
    [189]贺可强,阳吉宝,王思敬.堆积层边坡表层位移矢量角及其在稳定性预测中的作用与意义[J].岩石力学与工程学报,2003,22(12):1976-1983.
    [190]张文杰,陈云敏,贺可强.加卸载响应比理论应用于堆积层滑坡预报[J].自然灾害学报.2005,14(5):79-83.
    [191]李新志.降雨诱发堆积层滑坡加卸载响应比规律的物理模型试验及其破坏机理研究[D].青岛:青岛理工大学,2008.
    [192]冯利坡.黄腊石滑坡加卸载响应比与稳定系数定量关系及其优化排水治理研究[D].青岛:青岛理工大学,2009.
    [193]邬凯,盛谦,张勇慧.基于加卸载响应比理论的降雨型滑坡预警研究[J].防灾减灾工程学报,2011,31(6):632-636.
    [194]陈小亮.基于混沌非线性时间序列的滑坡预测预报研究[D].广西大学,2008.
    [195]李东山,黄润秋,许强,等.三峡库区滑坡综合预报系统的设计与实现[J].中国地质灾害与防治学报,,2003,14(2):24-27.
    [196]刘少军,何政伟,黄润秋,等.利用ArcGIS中VBA开发滑坡阶段综合预报功能[J].桂林工学院学报.2004,24(3):315-318.
    [197]万全,范书龙,林炎.滑坡的多模型综合预测预报研究[J].水土保持研究,2005,12(5):181~185.
    [198]孔纪名,李秀珍,刘正梁,等.滑坡综合预报方法研究[J].山地学报.2009,27(4):471-477.
    [199]缪海波,殷坤龙,徐峰,等.基于因子分析的滑坡位移多模型预测综合评判[J].武汉理工大学学报.2010(19):65-70.
    [200]王尚庆,等.长江三峡滑坡监测预报[M].北京:地质出版社,1998.
    [201]侯殿英.声发射技术在观音山高边坡稳定性评价中的运用[J].路基工程.1989(3):34-39.
    [202]万志军,周楚良,马文顶,等.边坡稳定声发射监测的实验研究[J].岩土力学.2003(S2):627-629.
    [203]易武,孟召平.岩质边坡声发射特征及失稳预报判据研究[J].岩土力学.2007,28(12):2529-2533.2538.
    [204]凌荣华,陈月娥.塑性应变与塑性应变率意义下的滑坡判据研究[J].工程地质学报,1997,5(4):346-350.
    [205]胡高社,门玉明,刘玉海,等.新滩滑坡预报判据研究[J].中国地质灾害与防治学报,1996,7(增刊):67-72.
    [206]李秀珍,许强.滑坡预报模型和预报判据[J].灾害学,2003,18(4);71-78.
    [207]吴树仁,石玲,谭成轩,等.长江三峡黄腊石和黄土坡滑坡分形分维分析[J].地球科学—中国地质大学学报,2000,25(1):61-65.
    [208]吴树仁,韩金良,石菊松,张永双,何锋,董诚.三峡库区巴东县城附近主要滑坡边界轨迹分形分维特征与滑坡稳定性关系[J].地球学报,2005,26(5):71-76.
    [209]Guidicini G, Iwasa Y.1977. Tentative correlation between rainfall and landslides in a humid tropical enviroment, Bulletin of IAEG, Prague, No 16.
    [210]F.C. Dai, C.F. Lee. Frequency±volume relation and prediction of rainfall-induced[J]. Engineering Geology,2001(59):253-266.
    [211]Ching-Chuan Huang, She-Chieh Yuin. Experimental investigation of rainfall criteria for shallow slope failures[J].Geomorphology,2010(120):326-338.
    [212]D.F. Macfarlane. Observations and predictions of the behaviour of large, slow-moving landslides in schist, Clyde Dam reservoir, New Zealand[J]. Engineering Geology,2009(109):5-15.
    [213]阳吉宝.堆积层滑坡临滑预报的新判据[J].工程地质学报,1995,3(2):70-73.
    [214]阳吉宝,钟正雄.滑坡时间预报的双参数判据.中国地质灾害与防治学报,1996,7(增刊):61~66.
    [215]贺可强,阳吉宝,王思敬.堆积层边坡表层位移矢量角及其在稳定性预测中的作用与意义[J].岩石力学与工程学报,2003,22(12):1976-1983.
    [216]刘文军,贺可强.堆积层滑坡位移矢量角的R/S分析—以新滩滑坡分析为例[J].青岛大学理工学报,2006,27(1):32~35.
    [217]贺可强,王荣鲁,李新志,等.堆积层滑坡的地下水加卸载动力作用规律及其位移动力学预测---以三峡库区八字门滑坡分析为例[J].岩石力学与工程学报,2008,27(08):1644-1650.
    [218]李秀珍,许强,黄润秋,汤明高.滑坡预报判据研究.中国地质灾害与防治学报,2003,14(4):5~10.
    [219]廖巍,刘新喜.三峡库区滑坡稳定性评价研究[J].中国安全科学学报.2004,14(9):104-107.
    [220]王荣鲁,王启胜,陈淑奎,等.长江三峡区八字门滑坡稳定性分析与评价[J].青岛理工大学学报.2007,28(5):9-13.
    [221]帅红岩.三峡库区晒盐坝滑坡在暴雨与库水位下降条件下稳定性影响分析[D].成都理工大学,2010.
    [222]陈萍,许江,刘玉洪,等.三峡库区名山滑坡稳定性的计算分析[J].重庆大学学报(自然科学版).2002,25(12):134-136,140.
    [223]许江,李树春,杨红伟,等.三峡库区消落带滑坡稳定性分析中的力学问题[J].中国科技论文在线.2008,3(11):819-824.
    [224]李英,晏鄂川,李作成.三峡库区巴东红石包滑坡稳定性动态分析[J].岩土力学.2008,29(z1):412-416.
    [225]谭建民,韩会卿,伏永朋.库水位升降条件下滑坡的稳定性极小状态——以三峡库区为例[J].工程勘察,2012(4):42-46.
    [226]许国敏,赵其华,徐华辉.三峡库区甘家院子滑坡稳定性预测与验算[J].水土保持研究.2007(3):105-108.
    [227]乔娟,罗先启,张立仁,等.三峡库区水环境对库岸斜坡失稳的作用机理探讨[J].水科学与工程技术.2005(6):22-25.
    [228]汪发武,彭轩明,霍志涛,等.三峡库区千将坪滑坡的高速远程滑动机理与库水位变动条件下树坪滑坡的变形模式[Z].上海:2008536-541.
    [229]秦洪斌.三峡库区库水与降雨诱发滑坡机理及复活判据研究[D].三峡大学,2011.
    [230]柴军瑞,李守义.三峡库区泄滩滑坡的水力学特性[J].水力发电学报.2003(2):46-52.
    [231]王锦国,周云,黄勇.三峡库区猴子石滑坡地下水动力场分析[J].岩石力学与工程学报.2006,25(z1):2757-2762.
    [232]王锦国,盛立云.三峡库区奉节县新城植物油厂滑坡地下水动力场分析[J].水电能源科学,2009,27(4):61-63.
    [233]朱海生,秦邦民,王锦国.三峡库区老房子滑坡地下水动力场分析[J].勘察科学技术.2008(6):42-45,58.
    [234]汪发武,张业明,王功辉,等.三峡库区树坪滑坡受库水位变化产生的变形特征(英文)[J].岩石力学与工程学报.2007(3):509-517.
    [235]易庆林,易武,尚敏.三峡库区某滑坡变形影响因素分析[J].中国水土保持.2009(7):32-34.
    [236]易庆林,曾怀恩,黄海峰.基于GPS监测数据的某滑坡变形分析[J].地质科技情报.2010,29(6):106-109.
    [237]高连通,易夏玮,李喜,等.三峡库区典型滑坡变形与高水位涨落关系研究[J].地质科技情报.2011,30(4):132-136.
    [238]彭令,牛瑞卿.三峡库区白家包滑坡变形特征与影响因素分析[J].中国地质灾害与防治学报.2011,22(4):1-7.
    [239]丁岩.三峡库区八字门滑坡预报判据研究[D].长安大学,2008.
    [240]熊小波.三峡库区五尺坝滑坡物理模拟及预报模型研究[D].成都理工大学,2011.
    [241]李旭.三峡库区四方碑滑坡预报判据研究[D].成都理工大学,2010.
    [242]肖先煊.三峡库区塘角村1号滑坡模拟试验及预报判据研究[D].成都理工大学,2011.
    [243]李德营.三峡库区具台阶状位移特征的滑坡预测预报研究[D].中国地质大学,2010.
    [244]李会中,周云,潘玉珍.三峡库区猴子石滑坡稳定性分析与防治措施研究[J].湖北地矿.2002,16(4):97-104.
    [245]谭桔红,晏鄂川.三峡库区巴东县谭家坪滑坡防治工程研究[J].防灾减灾工程学报.2004,24(3):293-296.
    [246]张常亮,李同录.三峡库区滑坡治理设计中主要问题的探讨[Z].乌鲁木齐:2007170-175.
    [247]雷光宇.三峡库区涉水土质滑坡稳定性分析及处治技术研究[D].中国矿业大学,2009.
    [248]乔建平,吴彩燕,田宏岭.三峡库区云阳-巫山段坡形因素对滑坡发育的贡献率研究[J].工程地质学报,2006(1):18-22.
    [249]柴波.巴东新城区库岸斜坡岩体结构系统研翘[D].武汉:中国地质大学,2008.
    [250]许强,汤明高等.滑坡时空演化规律及预警预报研究[J]岩石力学与工程学报,2008,27(6):1104-1112.
    [251]曾裕平.重大突发性滑坡灾害预测预报研[D].成都:成都理工大学,2009.
    [252]靳晓光,李晓红,王兰生,王小群.滑坡深部位移曲线特征及稳定性判识[J].山地学报,2000,18(5):440-444.
    [253]铁道部科学研究院西北研究所.滑坡滑带土在不同物理状态下的残余抗剪强度[c].滑坡文集.中国铁道出版社,1976.
    [254]殷坤龙,汪洋,吴益平,等.三峡库区三期地质灾害防治监测预警工程专业监测崩塌滑坡灾害点涌浪分析与危害评估研究报告[R].2008.
    [255]Ang A H-S, Tang W H. Probability Concepts in Engineering Planning and Design.John Wiley and Sons.Inc.1984,1:329-353.
    [256]张广文,刘令瑶.确定随机变量概率分布参数的推广Byes法[J].岩土工程学报,1995,5(3).:91-94.
    [257]李天斌,陈明东.滑坡预报的几个基本问题[J].工程地质学报,1999,7(3):200-206.
    [258]祝辉,唐红梅,叶四桥.基于稳定现状的滑坡滑带土强度参数反分析[J].路基工程,2007,135(6):7-9.
    [259]徐汉斌,王军.反算法中滑坡稳定系数的取值问题[J].四川地质学报,1999,19(1):86-89.
    [260]李迪,张漫,李亦明,等.堆积体滑坡稳定性的实时定量评价法[J].岩石力学与工程学报.2008,27(10):2146-2152.
    [261]李迪,马水山,张保军,等.工程岩体变形与安全监测[M].武汉:长江出版社,2006.
    [262]殷坤龙.滑坡灾害预测预报[M].武汉:中国地质大学出版社.2003.
    [263]郭晶,孙伟娟.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
    [264]罗文强,龚珏Rosenblueth方法在斜坡稳定性概率评价中的应用[J].岩石力学与工程学报,2003,22(2):232~235
    [265]黄超,王水林.基于不平衡推力法的边坡可靠度分析[J].岩土力学,2007,28:613-615.
    [266]Evert Hoek,John Bray. Rock Slope Engineering:Published for the Institution of Mining and Metallurgy [M].Institution of Mining and Metallurgy,1981.
    [267]中国电力企业联合会标准化部.电力工业标准汇编水电卷-水工(上册)[M].北京:水利电力出版社,1995:89.
    [268]沈可,张仲卿.三维抗滑稳定分析中的点安全系数法[J].人民珠江,2003(2):21-22.
    [269]蓝航.节理岩体采动损伤本构模型及其在露井联采工程中的应用[D].:煤炭科学研究总院,2007.
    [270]Andreev G. Brittle failure of rock materials:test results and constitutive models[M].Rotterdam:A. A. Balkema,1995:152
    [271]Paul B. Modification of the Coulomb-Mohr theory of fracture[J]. J.Appl. Mech.,1961:28.
    [272]Sheoryey P R. Empirical rock failure criteria[M]. Rotterdam:A. A. Balkerma,1997:35.
    [273]吕杰堂,朱继永,李钟.边坡破坏概率分析及其在渔洞河古滑坡稳定评价中的应用[J].岩土工程技术.2000,(4):195-199.
    [274]刘文军,贺可强.堆积层滑坡位移矢量角的R/S分析--以新滩滑坡分析为例[J].青岛理工大学学报,2006,27(1):32-35,67.
    [275]樊晓一,乔建平.三峡水库区滑坡时间记录的R/S分析[J].中国地质灾害与防治学报,2006,17(2):99-101.
    [276]李远耀,殷坤龙,程温鸣.R/S分析在滑坡变形趋势预测中的应用[J].岩土工程学报,2010(8):1291-1296.
    [277]贺可强,孙林娜,王思敬.滑坡位移分形参数Hurst指数及其在堆积层滑坡预报中的应用[J].岩石力学与工程学报,2009,28(6):1107-1115.
    [278]贺可强,周敦云,王思敬.降雨型堆积层滑坡的加卸载响应比特征及其预测作用与意义[J].岩石力学与工程学报,2004,23(16):2665-2670.
    [279]贺可强,李相然,孙林娜,等.水诱发堆积层滑坡位移动力学参数及其在稳定性评价中的应用——以三峡库区黄腊石滑坡分析为例[J].岩土力学,2008,29(11):2983-2989.
    [280]许强,黄润秋.用加卸载响应比理论探讨斜坡失稳前兆[J].中国地质灾害与防治学报,1995,6(2):25-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700