用户名: 密码: 验证码:
光子晶体光纤陀螺温度效应的机理与抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同所有的干涉仪一样,光纤陀螺对温度敏感,由于其基本的互易结构,即使对较低程度温度,也比大部分干涉仪敏感。在光纤陀螺中,沿光纤敏感环温度的不均匀变化会在输出信号中引入一个漂移,被误认为旋转速率的变化。尽管很多工程方法用来抑制Shupe效应,例如特殊的绕环方案等,但并没有构成一个完美的解决方法,而且还增加了复杂性和成本。这一效应仍然是目前引起光纤陀螺漂移的主要因素,并且其极大地阻碍了光纤陀螺在导航上的应用。因此,我们需要对这一问题做进一步深入分析,从另外的研究方向寻找解决该问题的突破点,并且迫切需要提出一种新的方法来抑制温度效应对光纤陀螺的影响。
     光子晶体光纤的发展,特别是保偏光子晶体光纤的发展与研究为光纤陀螺解决环境适应性问题提供了全新的思想。对比传统光纤,光子晶体光纤具有灵活的设计自由度、低温度和压力敏感性以及低弯曲损耗等特性。光子晶体光纤的发展和应用为光纤陀螺的研究提供了广阔前景,令其在减小光学噪声、进一步缩小陀螺体积、提高陀螺温度稳定性和精度等方面,具备传统光纤陀螺所无法比拟的优越性。论文以光纤陀螺的温度漂移特性问题为切入点,从抑制光纤陀螺温度效应研究课题体系出发,在基础研究层面上,开展光纤陀螺温度效应机理与抑制新方法的研究。主要包括以下几个方面:
     (1)鉴于光子晶体光纤众多优点,论文提出采用光子晶体光纤制作光纤陀螺敏感环用以改善光纤陀螺温度效应的新思想。从温度效应产生机理出发,深入、细致的分析了光纤中的Shupe效应。理论推导了光场在光子晶体光纤中的传输模型,分析了温度场对实芯光子晶体光纤的影响。并对光纤敏感环温度分布模型和光纤陀螺温度噪声进行了深入分析与研究。
     (2)针对光纤陀螺发展中遇到的问题,论文分析并给出了光纤陀螺对保偏光纤的性能要求。通过对保偏光子晶体光纤的各类性能的细致分析,充分验证了保偏光子晶体光纤在解决光纤陀螺环境适应性问题上的优势。鉴于光纤陀螺对光纤性能的不同需求,论文提出光子晶体光纤模场、非线性、有效折射率和双折射等性能的优化设计方法,并对这些方法进行了分析与论证。
     (3)光纤敏感环是光纤陀螺最重要的光学器件之一,也是受温度效应影响最大的器件,因此,论文深入剖析了温度梯度、压力、电磁干扰等对光纤敏感环性能的影响,探讨了光子晶体光纤敏感环缠绕方式,分析并给出了非理想绕制过程中引起的相位误差。之后,提出了保偏光子晶体光纤陀螺的整体结构,利用琼斯矩阵建立了各光学器件的理论模型及保偏光子晶体光纤陀螺的理论模型。分析并给出了保偏光子晶体光纤陀螺的相位调制及闭环处理方案。给出了保偏光子晶体光纤与传统保偏光纤的熔接技术和保偏光纤定轴技术。
     (4)论文对保偏光子晶体光纤敏感环和传统光纤敏感环进行了温度对比实验,并对光子晶体光纤陀螺进行了常温和变温情况下的温度实验,实验验证了保偏光子晶体光纤具有较强的温度稳定性,以及保偏光子晶体光纤陀螺在抑制陀螺温度效应、提高陀螺稳定性及提高陀螺精度方面的潜在优势。为进一步抑制保偏光子晶体光纤陀螺中的温度效应,论文提出温度补偿和陀螺结构优化等方法,不仅设计出模场匹配性好的新型保偏光子晶体光纤结构,还设计出光纤敏感环拆卸装置。
Like all interferometers, the FOG is sensitive to temperature, albeit to a lower extent thanmost interferometers due to its basic reciprocal configuration. In a FOG, an asymmetrictemperature variation along the sensing fiber will induce a drift in the output signal, whichwill be erroneously interpreted as a change in rotation rate. Though a number of engineeringsolutions have been implemented to combat the Shupe effect, such as special fiber windingschemes, they do not constitute a perfect solution and they have also resulted in an increasedcomplexity and cost. This effect is still currently responsible for the bulk of the drift in FOGs,and it is large enough to prevent the successful use of a FOG for navigation.Therefore, we dofurther analysis on this issue, to find a breakthrough point to solve the problem from anotherresearch direction, and the urgent need to propose a new method to suppress the effect oftemperature on the impact of FOG.
     The development of photonic crystal fibers(PCFs), especially the development andresearch of polarization maintaining(PM) PCFs have provided the brand-new thought for thefiber optical gyroscope solution adaptability to environment issue. Compared with traditionaloptical fiber, PCFs possess flexibility design degree, characteristics of lower sensitivity oftemperature and stress, and low bending loss. The development and application of PCFs haveprovided broad prospect for the research of FOG. Compared to the normal optical fibers,PCFs are much more superiority in decreasing optic noise, decreasing FOG volume andincreasing the temperature stability and precision for FOG. We take the problem oftemperature drift characteristics of FOG as the breakthrough point of this dissertation.Starting from research subject of restrain temperature effect of FOG, we carry out study onnew mechanism and restraining method of temperature effect for the FOG in basic researchlevel. The following main topics are included in this dissertation:
     (1) In view of the fact that PCFs have many advantages. In this dissertation, a newthought that using PCFs make FOG sensitive ring proposed, in order to improve thetemperature effect of the FOG. Starting from the mechanism of temperature effect, Shupeeffects in optical fibers is analyzed indepth and detailedly. Light transmission model in PCFis theoretically derived. The influence of temperature field for solid-core PCFs is analyzed. Inaddition, temperature distribution model of the sensitive fiber rings and temperature noise ofthe FOG is carried out analysis and research in-depth.
     (2) In view of the issue encountered in the development of FOG, the performancerequirement of FOG to PM fiber is analyzed and given in this dissertation. Through carefully analyzing various performance of PM PCFs, it has fully confirmed the superiority of PMPCFs in solution FOG adaptability to environment issue. In view of the different demand forfiber properties of FOG, dissertation presented optimization and design method for modelfield, non-linearity, effective refractive index and birefringence and other performance of PCF,and has carried on the analysis and the proof to these methods.
     (3) Fiber optic ring is one of the most important FOG devices, it is also most affected bytemperature effect. Therefore, the temperature gradient, stress, the effects of electromagneticinterference on performance of fiber optic ring are analyzed indepth in this dissertation. Thewinding way of PCFs sensitive ring is studied, and a phase error caused by the windingprocess of the non-ideal is nalyzed. The overall structure of PM PCF optic gyro is proposed.The theoretical models of optics and theoretical model of PM PCF optic gyroscope areestablished using Jones matrix. The phase modulation plan and closed-loop processing of PMPCF gyroscope is analyzed and given. The welding technology between PM PCFs andtraditional PM fibers is given, and the alignment technology of PM PCF are given.
     (4) Temperature contrast experiment between PM PCF optic ring and traditional fiberoptic ring is carried on, and temperature experiments of PCF gyroscope which under normaltemperature and poikilothermia situation are carried on in this dissertation. It verify that thetemperature stability of PM PCFs is much stronger, and it verify that the PM PCF optic gyropossess potential advantages on suppressing temperature effect, increasing stability andimproving accuracy of FOG. In order to further repress the temperature effect of PM PCFoptic gyroscope, temperature compensation, structural optimization and other methods arepropsded in this dissertation. novel PM PCF structures with good matching mode field aredesigned, also a disassembling installment of sensitive optical fiber ring is designed.
引文
[1] Vali V, Shorthill R W. Fiber ring Interferometer. Applied Optics.1976,15(5):1099-1100P
    [2] Barhour N, Schmidt G. Inertial sensor technology trends. IEEE Sensors Journal.2001,1(4):332-339P
    [3]张维叙.光纤陀螺及其应用.北京:北京国防工业出版社,2008:1-2页
    [4]张桂才.光纤陀螺原理与技术.北京:国防工业出版社,2008:1-2页
    [5]李绪友,杨汉瑞,于莹莹,李武涛.光子晶体光纤在干涉型光纤陀螺中的应用进展.哈尔滨工程大学自动化学院2012年会议
    [6] Strandjord K. Performance improvements of a polarization-rotating resonatorfiber-optic gyroscope. SPIE,1992,1795:314-320P
    [7] Hotate K. Adjustment-free method to eliminate the noise induced by thebBackscattering in an optical passive ring-resonator gyro. IEEE Photon. Technol.Lett.,1990,2(1):109-112P
    [8] Hotate K,ed. Grasp of the behavior of lock-in phenomenon and a manner toovercome it in brillouin fiber optic gyro,SPIE,1998,3541:57-65P
    [9] Zarinetchi F,ed. Stimulated brillouin fiber-optic gyroscope, Opt. Lett.,1991,16(4):229-231P
    [10]张桂才.光纤陀螺原理与技术.北京:国防工业出版社,2008:4-5页
    [11]谭健荣,刘永智,黄琳.光纤陀螺的发展现状.激光技术.2006,30(5):544-547页
    [12]金杰,王玉琴.光纤陀螺研究综述.光纤与电缆及其应用技术.2003,(6):4-7页
    [13] Honeywell to acquire smiths industries fiber optic gyroscope technology and productsbusiness. Business Wire. March14,1996
    [14] To see that,for example,www. kvh. com.
    [15] To see that,for example,www. northropgrumman. com.
    [16] Diane Stratman. Boeing maintains its role as leading supplier of submarinenavigators,All Systems Go. Journal of Boeing Intergrated Defence Systems.2004,2(1):8-9P
    [17] To see that,for example,www. ixsea. com.
    [18]陈桂红.光纤陀螺中的Shupe误差及八极绕环技术研究.天津:天津大学硕士学位论文,2010:5-8页
    [19] Lefèvre H C. An overview of fiber-optic gyroscopes. IEEE Journal of LightwaveTechnology.1984,2(2):91-107P
    [20]吴衍记,杜伟.浅谈光子晶体光纤在光纤陀螺中的应用.惯性技术发展动态发展方向研讨会文集.2009:191-194页
    [21]殷建玲,鲁军,刘军.光子晶体光纤及其在光纤陀螺中的应用.传感器世界.2010,16(5):6-10页
    [22]中华人民共和国国家军用标准.GJB2426-95《光纤陀螺仪测试方法》.1995
    [23]田酉牧.光纤陀螺温度漂移与补偿方法的研究.哈尔滨:哈尔滨工程大学硕士学位论文.2007:22-23页
    [24] Knight J C, Birks T A, Russell P S J, Atkin D M. All-sillica single-mode opticalfiber with photonic crystal cladding. Opt.Lett..1996,21:1547-1549P
    [25] Bjarklev A,Broeng J,Barkou Libori S E,ed. Photonic crystal fiber modeling andapplications. OFC2001.2001,2:TUC1-1—TUC1-3
    [26] Broeng J, Mogilevstev D, Barkou S E,ed. Photonic crystal fiber: a new class ofoptical waveguides. Optical Fiber Technology.1999,5:305-330P
    [27] Broeng J, Barkou S E, Sondergaard T,ed. Analysis of air-guiding photonic crystalbandgap fibers. Opt. Lett..2000,25(2):96-98P
    [28] Birks T A, Knight J C, Russel P S J. Endlessly single-mode photonic crystal fiber.Opt. Lett..1997,22(7):961-963P
    [29] Birks T A, Mogilevtsev D, Knirht J C, Russell P S J. Dispersion compensationusing single-material fiber. Photonic Tech. Lett..1999,11(6):674-676P
    [30] Wang X. Digitalized optical ring resonator gyroscope using photonic bandgap fiber.Tokyo: Master Degree Thesis in University of Tokyo,2008
    [31]张亚妮.高双折射聚合物光子晶体保偏光纤设计及制备与表征的初步结果.西安:陕西师范大学,2007:8-10页
    [32] Lefevre H C. The fiber-optic gyroscope. Norwood,MA:Artech House.1993
    [33] Shupe D M. Thermally induced nonreciprocity in the Fiber optical interferometer.Applied Optics.1980,19(5):54-655P
    [34]孟照魁,崔佳涛,章博,杜新政.高精度光纤陀螺温度实验研究.宇航学报.2007,28(3):580-583页
    [35] Jesse T, Farhad H,ed. Photonic crystal fiber IFOGs. Opt. Fiber Sensors.2006:ME8
    [36] Willig R L, Kelleher W P, Smith S P. Photonic crystal interferometric fiber opticalgyroscope. United States Patent Application Publication:US2004/0263856.2004
    [37] Kim H K, Digonnet M J F, Kino G. S. Air-core photonic-bandgap fiber-opticgyroscope. Lightwave Technol.2006,24:3169P
    [38]黄滕超,陈侃,舒晓武,刘承.全光子晶体光纤陀螺.中国:CN101294807A.2008
    [39]王琳.偏振保持光子晶体光纤及其在光纤陀螺中的应用研究.北京:北京交通大学.2009
    [40]陈侃,黄滕超,舒晓武,刘承.一种基于双芯光子晶体光纤的光纤陀螺.中国:CN101294808A.2008
    [41]马宝春.基于模糊神经网络的光纤陀螺温度控制研究.重庆:重庆大学硕士学位论文.2011
    [42]刘大伟.精密温控在光纤陀螺仪中的研究与应用.哈尔滨:哈尔滨工程大学硕士学位论文.2003
    [43]何丽芳.光纤陀螺温度控制及补偿技术研究.哈尔滨:哈尔滨工程大学硕士学位论文.2009
    [44]胡英辉.液浮陀螺仪温度控制系统的研究.哈尔滨:哈尔滨工业大学硕士学位论文.2007
    [45]任俊骐.光纤陀螺温度漂移及补偿方法研究.南京:南京理工大学硕士学位论文.2004
    [46]段靖远,宋凝芳,杜新政,林恒,张春熹.光纤陀螺的温度试验及温度补偿方法研究.山西大学学报(自然科学版).2005,(04)
    [47]刘思科.光纤陀螺建模及误差特性研究.西安:西北工业大学硕士学位论文.2007
    [48]张俊杰.闭环干涉式光纤陀螺仪温度补偿技术的研究.秦皇岛:燕山大学硕士学位论文.2005
    [49]侯丹丹,邓方艺,毛武军,马妙技.一种用于光纤陀螺随动系统温度补偿电路.惯性技术学术年会论文集.2007
    [50]于明飞,陈孝君,冯进良,韦宏强,孙安信.减小光纤陀螺零偏的温度补偿研究.长春理工大学学报(自然科学版).2007,(01)
    [51] Tirat O F J. Finite element model of thermal transient effect in fiber optic gyro. ProcSPIE.1996,2837:230-238P
    [52] Miao Ling-juan, Zhang Fangs-heng, Sheng Jun,ed. Data analysis and modeling offiber optic gyroscope drift. Journal of Beijing institute of technology.2002,11(1):50-55P
    [53]孟照魁,崔佳涛,杜新政,元春峰.光纤陀螺系统热建模及仿真.北京航空航天大学学报.2007.(06)
    [54]余先伦,罗映祥,宋明成.温度场对实芯光子晶体光纤的影响分析.量子电子学.2007,24(6):768-774P
    [55] Shupe D. Thermally induced nonreciprocity in the fiber-optic interferometer.Applied Optics.1980,19(5):654-655P
    [56] Shupe D. Fiber resonator gyroscope: sensitivity and thermal nonreciprocity. AppliedOptics.1981,20(2):286-289P
    [57]戴旭涵,杨国光,刘承.光纤环中的Shupe效应及其补偿方法研究.光子学报.2001,30(12):1470-1473页
    [58] Dyott R B.Reduction of the Shupe effect in fibre optic gyros; the random-woundcoil.Electronics Letters.1996,32(23):2177-2178P
    [59] Mohr F. Thermooptically induced bias drift in fiber optical Sagnac interferometers.Journal of Lightwave Technology.1996,14(1):27-41P
    [60] Zhao Y, Liu J, Zhang C, Liu H. Fiber optic gyroscope sensing coils and theirwinding method. Semiconductor Electronics.2002,23(5):312-314P
    [61] Blin S, Kim H K, Digonnet M J F, Kino G S. Reduced thermal sensitivity of afiber-optic gyroscope using an air-core photonic-bandgap fiber. Journal of LightwaveTechnology.2007,25(3):861-865P
    [62] MIL-HDBK-217B. Reliability prediction of electronic equipment. US Dept Defense,Springfield,Va NTIS.1974
    [63] Danny Wong. Thermal stability of intrinsic stress birefringence in optical fibers.Journal of Lightwave Technology.1990,8(11):1757-1761P
    [64]毛宁.光纤陀螺特性分析与热平衡研究.长春:长春理工大学硕士论文.2006:26-40页
    [65]刘思科.光纤陀螺建模及误差特性研究.西安:西北工业大学硕士学位论文.2007:37-40页
    [66]杨兴光.干涉型光纤陀螺仪关键技术研究.哈尔滨:哈尔滨工程大学硕士学位论文.2004:53-59页
    [67]延凤平,蓝慧娟,简水生.光纤陀螺温度补偿方案研究.光学学报.1999,19(7):968-974页
    [68]蓝慧娟,延风平等.动态偏置干涉型光纤陀螺温度噪声的研究.北方交通大学学报.1997,21(6):677-679页
    [69]左瑞芹.光纤陀螺温度补偿技术研究.哈尔滨:哈尔滨工程大学硕士学位论文.2006:20-23页
    [70]周琪,秦永元,赵长山.光纤陀螺温度漂移误差的模糊补偿方案研究.传感技术学报.2010,23(7):926-930页
    [71] Ruffin P B. Thermally symmetric,crossover-free fiber optic sensor coils and methodfor winding them. U.S. Patent No.5,781,1998:301P
    [72] Rajarajan M,Rahman B M A,Kabir A K M S,Grattan K T. Modal solutions ofphotonic crystal fibers by using the H-field finite element method. Proc. SPIE.2005,5650:345P
    [73] Yifan Li,Fengping Yan,Lin Wang,Taorong Gong,Peng Liu,Yang Liu,ShuishengJian. Polarization-stable highly birefringent photonic crystal fiber with near-ellipticinner cladding structure. Proc. SPIE.2007,6781:67811G
    [74]杨汉瑞,李绪友,郝金会,洪伟.五角芯型保偏光子晶体光纤(Q-PM-PCF)的双折射.中国惯性技术学报.2011,19(3):355-358页
    [75] Rahman B M A,Kabir A K M S,Rajarajan M,Grattan K T V, Rakocevic V.Birefringence study of photonic crystal fibers by using the full-vectorial finite elementmethod.Applied Physics B:Laser and optics.2006,84(1-2):75-82P
    [76] Kamal Kishor, Sinha R K,Anshu D. Varshney and Jaspreet Singh. Characterizationof polarization maintaining photonic crystal fiber from far field measurements. Proc.of SPIE.2009,7420:742015
    [77]顾晓蕴.保偏光子晶体光纤特性的研究.南京:南京邮电大学硕士学位论文.2009:3-12页
    [78]钱德儒.光纤陀螺温度漂移补偿及光纤环测试方法研究.哈尔滨:哈尔滨工程大学硕士学位论文.2009:10-15页
    [79] Kaminow I P, Ramaswamy V. Single polarization optical fibers: Slab mode. Appl.Phys. Lett..1979,34(4):268-271P
    [80] Hosaka T, Okamoto K, Sasaki Y,ed. Single mode fibers with asymmetricalrefractive-index pits on both sides of the core. Electron. Lett..1981,17(5):191-193P
    [81] Okoshi T, Oyamada K, Nishimura M,ed. Side tunnel fiber: An approach topolarization maintaining optical wavelength scheme. Electron. Lett..1982,18(19):824-826P
    [82] Katsuyama T, Matsumura H, Suganurna T. Propagation characteristics of singlepolarization fibers. Appl. Opt..1983,22(11):1748-1753P
    [83] Adrian C. Panda-style fibers move beyond telecommunication. Laser focus word.2004,8(S):11-13P
    [84] Varnham M P, Payne D N, Birch R D,ed. Single polarization operation of highlybirefringence Bow-tie optical fibers. Electron. Lett..1983,19(7):246-247P
    [85] Dyott R B, Cozens J R, Morris D G. Preservation of polarization in optical fiberwaveguides with elliptical core. Electron. Lett..1979,15(13):380-382P
    [86]毕聪志,吴衍记.适用于光纤陀螺的保偏光纤特性研究.红外与激光.2007,36(S):566-569P
    [87]毛栋.全固态保偏光子晶体光纤及其功能器件.哈尔滨:哈尔滨工程大学硕士学位论文.2011:8-10页
    [88] Blanch A O, Knight J C, Wadsworth W J,ed. Highly birefringent photonic crystalfiber. Opt. Lett..2000,25:1325-1327P
    [89] Suzuki K,Kubota H,Kawanishi S,ed. High-speed bi-directional polarization divisionmultiplexed optical transmission in ultra low-loss (1.3dB/km) polarizationmaintaining photonic crystal fiber. Electron Lett..2001,37(23):1399-1400P
    [90] Kubota H,Kawanishi S,Koyanagi S,et al. Absolutely single polarization photoniccrystal fiber. IEEE Photonics Technol Lett..2004,16(1):182-184P
    [91] Szpulak M,Olszewski J,Martynkien T,ed. Photonic crystal fibers. Proceedings ofSPIE.2007,6588:658801
    [92] An L,Z,Zheng Li,Liu Y,ed. Ultra-wideband single-polarizaiton single-modephotonic crystal fiber with high nonlinearity and low dispersion. Opt Commun..2009,280:3266-3269
    [93]杨汉瑞.光纤陀螺用光子晶体光纤理论分析与研究.哈尔滨:哈尔滨工程大学硕士学位论文.2011:10-16页
    [94]李一凡.近椭圆内包层偏振保持光子晶体光纤特性研究.北京:北京交通大学硕士论文.2007:37-40页
    [95] Monro T M, Richardson D J, Broderick N G R, Bennett P J. Modeling large airfraction holey optical fibers. Journal of Lightwave Technology.2000,18:50-56P
    [96] Li Y, Wang C, Chen Y, Hu M, Liu B, Chai L. Solution of the fundamentalspace-filling mode of photonic crystal fibers: numerical method versus analyticalapproaches. Applied Physics B: Lasers and Optics.2006,85:597-601P.
    [97] Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods formaxwell’s equations in a planewave basis. Optics Express.2001,8:173-190P
    [98] Guo S, Albin S. Simple plane wave implementation for photonic crystal calculations.Optics Express.2003,11:167-175P
    [99] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber.Optics Letters.1997,22:961-963P
    [100] Midrio M, Singh M P, Hu M L. A fully vectorial effective index method forphotonic crystal fibers: application to dispersion calculation. Optics Communications.2004,238:29-33P
    [101] Park K N, Lee K S. Improved effective-index method for analysis of photoniccrystal fibers. Optics Letters.2005,30:958-960P
    [102] Li H,Mafi A,Schulzgen A,Li L,Temyanko V L,Peyghambarian N,MoloneyJ V. Analysis and design of photonic crystal fibers based on an improvedeffective-index method. Journal of Lightwave Technology.2007,25:1224-1230P
    [103] White T P,McPhedran R C,Sterke C M D,Botten L C,Smith G H. Calculationsof air-guided modes in photonic crystal fibers using the mutipole method. OpticsExpress.2001,9:721-732P
    [104] White T P, McPhedran R C, Sterke C M D, Botten L C. Mutipole method forefficient microstructured optical fiber calculation. Baltimore.MD.2001:597-598P
    [105] Kuhlmey B T, White T P, Renversez G, Maystre D, Botten L C,Sterke C MD, McPhedran R C. Multipole method for microstructured optical fibers.II.Implementation and results. Journal of the Optical Society of America B:OpticalPhysics.2002,19:2331-2340P
    [106] Cherif R, Zahal M, Chatta R, Neila C B. Full vector beam propagation methodmodeling of dual core photonic crystal fiber couplers. Strasbourg France.2006:61822P
    [107] Adamowicz L, Nguyen V Q. Electromagnetic field in a slab of photonic crystal byBPM. Optics and Lasers in Engineering.2001,35:67-78P
    [108] Fogli F, Saccomandi L, Bassi P, Bellanca G, Trillo S. Full vectorial BPMmodeling of index-guiding photonic crystal fibers and couplers. Optics Express.2002,10:54-59P
    [109] Huang W P, Xu C L, Lui W, Yokoyama K. Perfectly matched layer(PML)boundary condition for the beam propagation method. IEEE Photonic TechnologyLetters.1996,8:649-651P
    [110] He Y Z, Shi F G. Analysis of fundamental mode of photonic crystal fiber byimaginary-distance beam propagation method. San Jose CA. United States.2003:175-181P
    [111] Gauthier R C, Mnaymneh K. FDTD analysis of photonic quasi-crystalsymmetry-breaking resonator modes with waveguide applications. San Jose. CA.United States.2006:61281P
    [112] Jiang W, Shen L, Chen D, Chi H. An extended FDTD method with inclusion ofmaterial dispersion for the full-vectorial analysis of photonic crystal fibers. Journal ofLightwave Technology.2006,24:4417-4423P
    [113] Zhu Y, Chen Y, Huray P, Dong X. Application of a2D-CFDTD algorithm to theanalysis of photonic crystal fibers(PCFs). Columbia. SC.2002:215-219P
    [114] Lou S,Wang Z,Ren G,Jian S. Compact2D FDTD method for modeling photoniccrystal fibers. Wuhan China.2004:158-164P
    [115] Jianfei Guan. Finite element analysis of propagation characteristics for an octagonalphotonic crystal fiber. The International Society for Optical Engineering.2008,7134:71342P
    [116] Kejalakshmy N,Rahman B M A, Agrawal A, Wongcharoen T, Grattan K T V.Characterization of single-mode and single-polarization photonic crystal fibers byusing a full-vectorial finite element approach. Lasers and Optics.2007,93:223-230P
    [117] Rajarajan M,Rahman B M A,Kabir A K M S,Grattan K T V. Modal solutions ofphotonic crystal fibers by using the H-field finite element method. Proc. SPIE.2005,5650:345P
    [118] Aristizabal V H, Velez F J, Torres P. Modeling of photonic crystal fibers with thescalar finite element method. Porlamar Venezuela.2004:849-854P
    [119] Franco M A R, Hattori H T, Sircilli F, Passaro A, Abe N M. Finite elementanalysis of photonic crystal fibers. Belem,Brazil.2001:5-7P
    [120] Cucinotta A, Selleri S, Vincetti L, Zoboli M. Perturbation analysis of dispersionproperties in photonic crystal fibers through the Finite Element Method. IEEE/OSAJournal of Lightwave Technology.2002,20:1433–1442P
    [121] Cucinotta A, Selleri S, Vincetti L, Zobol M. Holey fiber analysis through thefinite-element method. IEEE Photonics Technology Letters.2002,14:1530–1532P
    [122] Cucinotta A, Pelosi G, Selleri S, Vincetti L, Zoboli M. Perfectly matchedanisotropic layers for optical waveguides analysis through the finite element beampropagation method. Microwave and Optical Technology Letters.1999,23:67–69P
    [123] Nicolet A,Guenneau S,Zolla F,Lasquellec S. Modeling of photonic crystal opticalfibers with finite elements. IEEE Transactions on Magnetics.2002,38:1261-1264P
    [124] Obayya S S A, Rahman B M A, Grattan K T V. Accurate finite element modalsolution of photonic crystal fibers. IEEE Proceedings:Optoelectronics.2005,152:241-246P
    [125] Rajarajan M,Rahman B M A, Kabir A K M S, Grattan K T V. Modal solutions ofphotonic crystal fibers by using the H-field finite element method. Proc. Of SPIE.Bellingham WA.2005,650:345-355P
    [126] Pomplun J, Zschiedrich L, Klose R, Schmidt F, Burger S. Finite elementsimulation of radiation losses in photonic crystal fibers. Phys. Stat.2007, vol.(a)204.No.11:3822-3837P
    [127] Guenneau S,Nicolet A,Zolla F,Lasquellec S. Modeling of photonic crystal opticalfibers with finite elements. IEEE Transactions on magnetics.2002,38:2P
    [128]卫延,常德远,郑凯,简水生.光子晶体光纤的温度特性数值模拟.中国激光.2007,34(7):945-951页
    [129]姜凌红,侯蓝田,杨倩倩.三种典型结构光子晶体光纤基本特性的比较和分析.物理学报.2010,59(7):4726-4731页
    [130]杨远洪,段伟倩,叶淼,杨明伟.光子晶体光纤陀螺技术.红外与激光工程.2011,40(6):1143-1147页
    [131] Li Xuyou, Yang Hanrui, He Zhou, and Zhang Yonggang. Modeling and simulationanalysis of a new photonic crystal fiber.2010IEEE International Conference onInformation and Automation.2010,5512285:1438-1441P
    [132] Xuyou Li,Hanrui Yang,Wei Hong,Jinhui Hao. Analysis of Non-Linearity of AQuinquangular-Core Photonic Crystal Fiber. Sensor Lett.2012,10:1351-1354P
    [133] Yang Han-Rui(杨汉瑞), Li Xu-You(李绪友),Hong Wei(洪伟), Hao Jin-Hui(郝金会). Equilateral pentagon polarization maintaining photonic crystal fiber with lownonlinearity. Chin. Phys. B..2012,21(2):024211
    [134] Blanch A O, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A,Russell P S J. Highly birefringent photonic crystal fibers. Optics Letters.2000,25,(18):1325-1327P
    [135] Suzuki K, Kubota H, Kawanishi S, Tanaka M, Fujita M. High-speedbi-directional polarisation division multiplexed optical transmission in ultra low-loss(1.3dB/km) polarisation-maintaining photonic crystal fibre. Electron. Lett..2001,37:1399-1401P
    [136] Ademgil H, Haxha S, AbdelMalek Fathi. Highly nonlinear bending-insensitivebirefringent photonic crystal fibers. Engineering.2010,2:608-616P
    [137] Ju J,Jin W,Hoo Y L,Ho H L,Demokan M S. Design of single-polarization PCFat1300-and1550-nm bands. Proc. SPIE.2004,5502:358P
    [138] Sun Y S,Chau Y F,Yeh H H,Shen L F,Yang T J,Tsai D P. Hign birefringencephotonic crystal fiber with complex unit cell of asymmetry elliptical air holes cladding.Applied Optics.2007,46(22):5276-5281P
    [139] Ritari T, Ludvigsen H, Wegmuller M, Legre M, Gisin N, Folkenberg J R,Nielsen M D. Experimental study of polarization properties of highly birefringentphotonic crystal fibers. Optics Express.2004,12(24):5931-5939P
    [140] Xuyou Li,Hanrui Yang,Qiuli Zheng,Jinhui Hao,Wei Hong. Polarization and modalfield properties of quinquangular-core photonic crystal fibers. Chinese Optics Letters.2011,9(9):090602P
    [141]孟照魁,邵洪峰,徐宏杰等.固胶对保偏光纤环的影响.北京航空航天大学学报.2006,32(8):958-961页
    [142]傅怀杰,黄秀钦.光纤环的绕制.光通信研究.1996(77)
    [143]张琛.光纤陀螺光路系统稳定性研究.哈尔滨:哈尔滨工程大学硕士学位论文.2008:8-27页
    [144]马科斯·波恩,埃米尔·沃尔夫著.光学原理.杨葭荪(译).第七版.北京:电子工业出版社,2006:514-523页
    [145]张桂才.光纤陀螺原理与技术.国防工业出版社.2008:81P
    [146] Choi S,Eom T J,Yu J W,LeeB H,Oh K. Novel all-fiber bandpass filter based onhollow opticalfiber. IEEE Photon. Techol. Lett..2002,14:170l-1703P
    [147]毕卫红,金娃,付广伟.光子晶体光纤熔接热源偏移量的研究.燕山大学学报.2009,33(3):238-231P
    [148]张巍,张磊,陈实,蔡青,黄翊东,彭江德.高非线性光子晶体光纤与单模光纤低损耗熔接实验.中国激光.2006,33(10):1389-1392P
    [149]郭铁英,娄淑琴,李宏雷,姚磊,简水生.光子晶体光纤的低损耗电弧熔接方案.2009,29(2):511-516P
    [150]田酉牧.光纤陀螺温度漂移与补偿方法的研究.哈尔滨:哈尔滨工程大学硕士学位论文.2007:44-64页
    [151] Yuanhong Yang,Miao Ye,Weiqian Duan,Wei Jin,Chengxiang Liu,ShuangchenRuan.Polarization maintaining photonic crystal fiber IFOG.Proc. of SPIE.2012,8421:84210D

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700