用户名: 密码: 验证码:
欠驱动水面船舶航向、航迹非线性鲁棒控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界航运业的发展和繁荣,海上交通越来越密集,为了保证航行安全,人们对船舶的运动控制提出了更高的要求。在远洋航行时,为了减轻舵手的劳动强度、缩短航行距离以及减少燃料的消耗,必须准确地控制船舶的航向或航迹;此外,一些特殊作业情况,如海底电缆敷设与维修等,更需要精确的船舶航迹控制。因此,对船舶航向、航迹控制进行研究在理论上和实践上都具有极其重要的意义。
     由于船舶运动具有非线性、大时滞、大惯性等特点,又易受风、浪、流等干扰的影响,航行条件(如航速、装载情况和水深等)的变化和测量的不精确性等因素都使船舶动态产生明显的不确定性。因此,船舶航向、航迹等运动控制是一个复杂的非线性、不确定性控制问题。此外,大多数水面船舶仅装备螺旋桨主推进器和舵装置,当进行航迹控制时,需要控制船舶在航向ψ和船舶位置(x,y)上进行3个自由度的运动,此时的船舶控制系统属于欠驱动系统。欠驱动水面船舶系统是一种典型的二阶非完整约束动力学系统,针对非完整系统发展起来的一些非线性控制方法,如精确线性化、部分反馈线性化、级联系统稳定性分析理论、滑模控制方法等,难以直接应用于船舶的欠驱动控制问题。因此,针对带有不确定性和外界干扰的欠驱动船舶的控制问题已不能只用单纯的一种控制方法解决,寻求新的控制方案以适应实际航行需要已成为近几年船舶运动控制中的研究热点。
     为了解决含有模型不确定性和外界干扰条件下的欠驱动水面船舶运动控制问题,本文主要完成了以下研究工作:
     1、首先介绍了在本论文中涉及到的基本知识,包括稳定性理论、滑模控制理论和自抗扰控制技术等,为后续章节的研究打下基础。其次建立了水面船舶运动数学模型,包括船舶水平面三自由度运动模型、响应型数学模型和海况干扰模型等。建模的目的主要是为研究闭环系统特性提供一个基本的仿真平台,通过仿真研究、评估控制系统的控制系能。
     2、针对船舶航向控制中的不确定性和恶劣的海况干扰,应用三种控制策略设计船舶航向控制器:
     1)采用算法简单、抗干扰能力强的自抗扰控制技术设计了船舶航向控制器。针对外界的强干扰以及系统的实际情况,对传统的扩张状态观测器(ESO)进行了改造,使之能够真实地估计出未知扰动并消除测量噪声的影响。针对自抗扰参数难以整定的问题,采取遗传算法进行整定,克服了凑试法的不足。仿真结果证明自抗扰控制技术能够很好地解决不确定性和海况干扰问题。
     2)综合自适应控制、模糊逼近和滑模控制技术应用到船舶航向控制。通过模糊逻辑系统逼近不确定性函数,解决了模型不确定性问题;通过自适应滑模控制解决系统鲁棒性问题;针对滑模控制切换项引起的抖振问题,通过内嵌PI控制律代替滑模控制中的切换项,将切换项连续化,解决了滑模抖振。此外,为保证控制输入有界,对自适应算法进行了改进。仿真结果证明,自适应模糊滑模控制(AFSMC)具有很强的鲁棒性。
     3)综合非线性观测器(NDO)、滑模Backstepping控制技术应用到船舶航向控制。利用非线性干扰观测器观测系统的不确定性和随机海浪干扰,在控制中引入等量的补偿,实现对干扰完全抑制。应用滑模反演法设计航向控制器,不仅保证了闭环系统的稳定性,同时很好地克服了系统不确定性问题和外界干扰。
     3、针对船舶航迹控制中的欠驱动性和恶劣的海况干扰,应用三种控制策略设计船舶航迹控制器:
     1)采用自抗扰控制技术设计了船舶直线航迹控制器。针对直线航迹控制中的欠驱动特性,采用两个TD安排过渡过程,控制律采用两个被控量的误差组合方式,突破了原有自抗扰算法只适用SISO系统的限制,解决了欠驱动控制问题。为验证其鲁棒性,在同一条件下和相关文献介绍的算法做了对比仿真,证实了自抗扰控制的强鲁棒性特点。
     2)基于二自由度船舶模型,采用微分同坯变换和Backstepping技术,选择系统输出变量为船舶航向和横向位移组合的方式,采用状态反馈设计了舵控制律,解决了系统的欠驱动性和非线性问题。仿真实验验证了该算法的有效性。
     3) Line-of-sight (LOS)导航系统能够把把欠驱动系统转变为全驱动系统,从而不受Brocketts条件的限制。本文研究了LOS导航系统在船舶直线航迹和曲线航迹中的应用,结合滑模控制技术设计了直线航迹控制器;结合Backstepping技术,设计了曲线航迹控制器。仿真实验证明了该方法的有效性。
     4、简要介绍了船舶航向、航迹自动舵控制系统的实现,介绍了系统的软硬件结构以及系统联调试验的情况和试验结果。
     本文成果也可以推广应用于水下潜器、非完整移动机器人等其它具有欠驱动特性的系统中,具有较好的普适性。
With the development and prosperity of the world's shipping industry, themaritime transportation is more and more dense. In order to ensure the safety of navigation, people have put forward higher requirements for the ship motion control. Sailing in the ocean, in order to reduce the labor intensity of the helmsman, to shorten the sail away, and reduce fuel consumption, it is necessary to implement effective automatic control of the ship's heading or track; In addition, some ships for special operations, such as submarine cable laying and maintenance, etc. need more accurate ship track control especially. Therefore, the ship heading and track control study in both the theory and practice are extremely important.
     Due to the ship motion's characteristics such as nonlinear, large time delay and inertia, and the ship motion is also susceptible to disturbances of wind, waves and currents, the changes and measurement accuracy of the navigation conditions (such as speed, load and water depth, etc.), make the ship navigation state significant uncertainty. Therefore, the control of the ship heading, track, and other motion is a complex non-linear uncertainty control problem. In addition, most above-water ships are only equipped with the propeller, main propulsion and rudder, when controlling the track, it is necessary to control the ship heading and position (x,y) of ship,3degrees of freedom movement At this time, the ship control system belong to the underactuated system. Underactuated surface ship system is a typical example of second-order nonholonomic constraint dynamic systems. Nonlinear control methods developing with nonholonomic systems, such as linearization, part of the feedback linearization method, cascade system stability analysis theory, sliding mode control theory, is difficult to be directly used in solving underactuated ship's control problem. Therefore, for the control problems of underactuated ships with uncertainties and external disturbances it has not been solved by only a simple control method, but to seek a new control scheme to be adapted to the actual navigation has become a research focus on ship motion control in recent years.
     In order to solve the containing model uncertainty and disturbance conditions less drive surface ship motion control, this paper completed the following work:
     1. It introduced the basic knowledge related to this paper, including stability theory, the theory of sliding mode control and active disturbance rejection control theory which are the foundation for following chapters. Second, the surface ship motion mathematical model is established; including the ship horizontal degree of freedom motion model, respond to the mathematical model of ship motion and sea state interference model. The main purpose of modeling is to provide a basic simulation platform to study the characteristics of closed-loop system simulation studies to evaluate the performance of the control system.
     2. For uncertainties in the ship heading control and poor sea conditions interference, the three kinds of control strategies are applied to design the ship course controller:
     1) Using strong anti-interference ability ADRC controls technology with the simple algorithm to design the ship course controller. Against outside interference and the actual situation of the system, the traditional ESO has been transformed, so that it can truly estimate the unknown disturbance and eliminate the influence of measurement noise. To solve the problem that ADRC parameters is difficult to be decided, the genetic algorithm is applied to overcome the deficiencies of the hash method. The simulation results show that the ADRC control technology can solve the uncertainty and sea state interference problem very well.
     2) Adaptive control, fuzzy approximation and sliding mode control technology are applied to the ship course control. The model uncertainty can be solved by applying the fuzzy logic system for uncertainty function approximation and robustnee can be solved by using adaptive sliding mode control. Using the embedded PI control law instead of sliding mode control switch will make the switch continuous which solves the problem of sliding mode chattering. In addition, in order to ensure the control input is bounded, the adaptive algorithm has been improved. The simulation results show that the adaptive fuzzy sliding mode control (AFSMC) has a strong robustness.
     3) The nonlinear observer (NDO) and Sliding Mode Backstepping Control technology are applied to the ship Course control. Observing the uncertainty and random waves interfere of the system with use of the nonlinear disturbance observer, then, an equal amounts of compensation is introduced in control input, thereby the disturbance completely is fully inhibited. The heading controller is designed with the sliding mode inversion method, not only to ensure the stability of the closed-loop system but also to overcome the system uncertainty and external interference at the same time.
     3. For the ship track in the control of underactuated and poor sea conditions interfere with, the three kinds of control strategies are applied to design the ship track controller:
     1) Design the ship linear track controller ADRC control technology. For the underactuated features in the straight track control two TD arrangements are applied for the transition process, and the control law using the error combination with two controlled variables to break through the restrictions of the original ADRC algorithm which is only applicable to SISO systems and solves the underactuated control problem. To verify the robustness, the algorithm has been made a comparative simulation with the other algorithms in the relevant literature under the same conditions which has confirmed the strong robustness characteristics of the control of ADRC.
     2) Based on two degrees of freedom in the ship model, using the Diffeomorphism transformation and Backstepping, selecting the system output variables as the combinations of the ship course and sway displacement, and applying the state feedback for the design of a rudder control law, it solves underactuated and nonlinear problems of the system. Simulation results demonstrate the effectiveness of the algorithm.
     3) The Line-of-sight (LOS) navigation systems can transformed the underactuated system into the full-actuated system, so no Brockeets condition limits. Sliding mode control and Backstepping technology are applied to the ship straight line trajectory and curve control, which solved underactuated and nonlinear problems of the system. Simulation results demonstrate the effectiveness of the two algorithm.
     4. Ship heading(course) and track autopilot control system implementation are introduced briefly. The system hardware, software structure and the system of joint test and test results are also introduced in this paper.
     In this paper the results can also be applied to underwater vehicle, nonholonomic mobile robots and other systems with underactuated characteristics, which has a good universal.
引文
[1]张显库,贾欣乐.船舶运动控制[M].北京:国防工业出版社,2006.
    [2]杨盐生.船舶运动控制研究[J].交通运输工程学报,2003,3(2):34-39.
    [3]Fossen T. I. A survey on nonlinear ship control:From theory to practice[C]. Proceedings of the 5th IFAC Conference on Manoeuvring and Control of Marine Craft. Aalborg Denmark, 2000:1-16.
    [4]Fossen T. I.Guidance and control of ocean vehicles[M]. England:John Wiley & Sons LTD., 1994.
    [5]Skjetnea R, Fossen T I, Kokotovi P V. Adaptive maneu-vering, with experiments, for a model ship in a marine control labo-ratory[J]. Automatica,2005,41(2):289-298.
    [6]Fang M C, Luo J H. On the track keeping and roll reduction of the ship in random waves using different sliding mode controllers[J]. Ocean Engineering,2007,34(3/4):479-488.
    [7]Hu S S, Yang P H, JUANG J Y, et al. Robust nonlinear ship course-keeping control by H-inf I/O linearization and synthesis[J]. Interna-tional Journal of Robust and Nonlinear Control,2002,13(1):55-70.
    [8]鲍其莲,张炎华.智能自适应控制及其在船舶操纵系统中的应用[J].船舶工程,1998,20(2):44-48.
    [9]李铁山,杨盐生,洪碧光等.船舶航迹控制鲁棒自适应模糊设计[J].控制理论与应用,2007,24(3):445-448.
    [10]杨盐生.船舶减摇鳍系统变结构模糊自适应鲁棒控制[J].大连海事大学学报,2001,27(4):5-10.
    [11]Lefeber E, Petersen K Y, Nijmeijer H. Tracking control of an Underactuated Ship[J]. IEEE Transantions on Control Systems Technology,2003,11(1):52-61.
    [12]Mahmut Reyhanoglu, Arjan vander schaft. Dynamics and Control of a class of underaetuated Mechnical Systems[J]. IEEE Transactionsons on Automatic Control.1999, 44(9):1663-1671
    [13]郭晨,汪洋,孙富春等.欠驱动水面船舶运动控制研究综述[J].控制与决策,,2009,24(3):321-329.
    [14]杜佳璐,郭晨,杨承恩.船舶航向非线性系统的自适应跟踪控制器设计[J].应用科学学报,2006,24(1):83-88.
    [15]Kallstrom C.G., Astrom, K. J..Adaptive autopilots for tanker[J]. Automatica,1979,15(3): 241-254.
    [16]Amerongen J.V., Udink Cate A.L., Model reference adaptive autopilots for ships[J], Automatica,1975,11(5):441-450.
    [17]Amerongen J.V., Adaptive steering of ships-a model reference approach to improved maneuvering and economical course-keeping[D],USA:Delft University of Technology,1982
    [18]Amerongen J.V., Adaptive steering of ships-a model reference approach[J], Automatica, 1984,20(1):3-14.
    [19]Kallstrom, C.G., Norrbin, N.H., Performance criteria for optimum steering of ships[C], Proc. Sympp on Ship Steering Automatic Control, Genova, Italy,1980.
    [20]Ohtsu, K.M., et al, A new ship's autopilots design through a stochastic model[J], Automatica,1979,15(2):255-268.
    [21]张炎华,刘思行.一种自适应自动操舵系统[J].中国造船,1991,113:72-78.
    [22]张炎华,刘思行,鲍其莲.船舶操纵系统的鲁棒自适应控制[J].船舶工程,1995,4:40-44.
    [23]黄继起.自适应控制理论及其在船舶系统中的应用[M].北京:国防工业出版社,1992.
    [24]Slotine, J.J.E., Li, W.P., Applied nonlinear control[M]. Prentice-Hall, Inc.1991.
    [25]冯纯伯,罗宁苏,李晓明.自适应控制系统的鲁棒性[J].自动化学报,1987,13(6):463-472
    [26]Tzeng C.Y. Goodwub G.C and Criafulli S, Feedback linearization of a ship steering autopilot with saturating and slew rate limiting actuator[J] Int. J. of Adaptive Control Signal Processing,1999,13:23-30.
    [27]Rueda T.M.R, Velasco F.J.G., Moyano E.P., Robust QFT controller for marine course-changing control[C],5th Int. Symposium on Quantitative Feedback Theory and Robust Frequency Domain Methods, Public University of Navare, Pamplona, Spain,2001.
    [28]胡耀华,贾欣乐.广义预测控制应用于船舶航向和航迹保持[J].中国造船,1998,140(1):36-41.
    [29]胡耀华,贾欣乐,船舶运动的预测控制.大连海事大学学报[J].1998,24(1):5-9.
    [30]Katebi M.R, Byme J.C. LQR Adaptive Ship Autopilot[J]. Trans. Inst. MC,1988,10(4): 187-197.
    [31]彭秀艳,赵希人.船舶横向运动LQG控制鲁棒性统计分析[J].系统仿真学报,2007,19(1):3-5.
    [32]贾欣乐,张显库.H∞控制器应用于船舶自动舵[J]控制与决策,1995,10(3):250-254.
    [33]ShrShiung Hu, PaoHwa Yang, Juang J.Y. Robust nonlinear ship course-keeping control by h-inf I/O lineariazation and μ-synthesis [J]. International Journal of Robust and Nonlinear Control,2003,13(1):55-70.
    [34]Yang C., Austin P.C. and Xiao C.M., An H-inf controller with feedforward for yacht course-keeping[C], in Proc. of the IFAC Conf. CAMS 2001, Glasgow, Scotland,UK,2001.
    [35]Wu J. C., Agraval A.K. and Yang J. N., Application of Sliding Mode Control to a Benchmark Problem[C], in Proc. of the ASCE Structures Congress, Portland,1997.
    [36]Healey, A.J. and Lienard, D., Multivariable sliding mode control for autonomous diving and steering of unamanned underwater vehicles[C], IEEE Journal of Oceanic Engineering, 1993,18 (3):327-339.
    [37]宋立忠,李红江等.滑模预测离散变结构控制用于船一舵伺服系统[J].中国电机工程学报.2003,23(11):160-163.
    [38]Jialu Du, Chen Guo. Nonlinear Adaptive ship course tracking control based on Backstepping and nussbaum gain [C].IEEE Proceeding of control conference 2004 Bostion, America, IEEE press,2004:6-7.
    [39]Witkowska A., Tomera M, A Backstepping approach to ship Course controller [J]. Applied Mathematics and Computer Science,2007:73-85.
    [40]Unar M.A., Murray-smith D. J., Automatic steering of ships using neral networks[C]. Int. J. of Adaptive control signal processing,1999,13:203-218.
    [41]Burns R, Richter R. A Neural Network Approach To the control of surface ships[J]. control Eng. Practice,1996,4(3):411-416.
    [42]袁雷,吴汉松等,船舶航向保持的滑模变结构自适应模糊控制研究[J].2010.29:1-4.
    [43]聂海强,王锡怀,肖健梅,自适应模糊控制在船舶航向控制中的应用[J].2011,42(supp 1):985-990.
    [44]高健,陈高阳.船舶航向模糊滑模控制及仿真[J].江苏科技大学学报(自然科学版),2010,24(4):372-376.
    [45]Zirilli A., Roberts G. N., Tiano, A,& Sutton, R. An adaptive fuzzy autopilot for a container ship[C]. Proceedings of the Fifth IFAC Conference on Manoeuvring and Control of Marine Craft. Aalborg, Denmark,2000:317-323.
    [46]Velagic J., Vukic Z., Adaptive Fuzzy Ship Autopilot for Track-Keeping[J].Control Engineering Practice,2003, 11(4):433-444.
    [47]Rui C L, McClamroch N H, Stabilization and asymptotic path tracking of a rolling disk[C]. Proceedings of the 34th IEEE Conference on Decision and Control, Louisiana,USA,1995:4294-4299.
    [48]Altafini C, Gutman P O. Path following with reduced off-tracking for the n-trailer system[C]. In Proc.37th Conf. Decision and Control, Tampa, FL, Dec.1998:3123-3128.
    [49]Tan J D, Xi N, Kang W. Non-time based tracking controller for mobile robots[C].1999 IEEE Canadian Conference on Electrical and ComputerEngineering, Edmonton, Alberta,1999:919-924.
    [50]Jiang Z P. Global tracking control of underactuated ships by Lyapunovs direct method[J]. Automatic,2003,38(2):301-309
    [51]Godhavn, J., Nonlinear tracking of underactuated surface vessels[C]. Proc 35th Confrence on Decision and Control. Kobe,1996:975-980.
    [52]GregoryJ Toussaint, Tamer Basar, FrancescoBullo.Tracking for nonlinear underactuated surface vessels with generalized forces[C]. Proc IEEE Conf on Control Applications. Anchorage,2000:355-360.
    [53]Do K D, Jiang Z P, Pan J. Robust global output feedback stabilization of underactuated ships on a linear course[C]. Proc 41th IEEE Conf on Decision and Control. Las Vegas, 2002:1687-1692.
    [54]Do KD, PanJ. Underactuated ship global tracking without measurement of velocities[C]. Proc ACC. Denver,2003:2012-2017.
    [55]Pettersen K D, Nijmeijer H. Global practical stabilization and tracking for an underactuated ship:A combined averaging and Backstepping approach[C].Proc IFAC Conf on System Structure and Control. Nantes,1998:59-64.
    [56]Pettersen KY, Lefeber E. Way2point tracking control of ships[C]. Proc 40th IEEEConf on Decision and Control. Orlando,2001:940-945.
    [57]Erjen Lefeber, Kristin Ytterstad Pettersen, Henk Nijmeijer. Tracking control of an underactuated ship [J]. IEEE Trans on Control Systems Technology,2003,11(1):52-61.
    [58]Wenjie Dong, Yi Guo. Global time-varying stabilization of underactuated surface vessel[J]. IEEE Transon Automatic Control,2005,50(6):859-864.
    [59]Godhavn, J.M., Fossen, T. I., Berge, S. Nonlinear and adaptive Backstepping designs for tracking control of ships[C]. International Journal of Adaptive Control and Signal Processing,1998,12(8):649-670.
    [60]Do K D, Jiang Z P, Pan J. Global partial-state feedback and output-feedback tracking controllers for underactuated ships[J]. Systems &Control Letters,2005,54(10):1015-1036.
    [61]Husa, K.E., Fossen T. I., Backstepping Designs for Nonlinea Way-Point Tracking of Ships[C]. Proc. Of the 4th IFAC Conference on Manoeuvering and Control of Marine Craft, Brijuni, Croatia,1997.
    [62]Fossen T.I. Nonlinear passive control and observer design for ships[J]. Modeling, Identification and control,2000,21(3):129-184.
    [63]李铁山,杨盐生.基于耗散理论的不完全驱动船舶直线航迹控制设计[J].应用科学学报,2005,23(2):204-207.
    [64]Jiang, Z P, Global Tracking Control of Underactuated Ships by Lyapunov's Direct method[J], Automatica,2002,38,301-309.
    [65]Lefeber, E., Pettersen, K.Y., Nijmeijer, H., Tracking control of an under-actuated ship[J]. IEEE Transactions on Control Systems Technology,2003,11:52-61.
    [66]Hashem Ashrafiuon, Kenneth R. Muske Sliding Mode Tracking Control of Surface Vessels[C], American Control Conference Westin Seattle Hotel, Seattle, Washington, USA, 2008:556-561.
    [67]Zhang, R., Chen, Y., Sun, Z., Sun, F., Xu, H.,2000. Path control of a surface ship in restricted waters using sliding mode[J]. IEEE Transactions on Control Systems Technology, 2000,8(4):722-732.
    [68]卜仁祥,刘正江,胡江强,基于动态非线性滑动模态的欠驱动船舶直线航迹控制[J].清华大学学报(自然科学版),2007,47(s2):1880-1883.
    [69]Witt N A. A neural network autopilot for ship control. Proe of Maritime Communications and Control Conference[C],Marine Management(Holdings) Ltd, London, UK,1993,13-19.
    [70]Yao Zhang, Pratyush Sen. and Grant E. Hearn, A Neural Network Approach to Ship Track-Keeping Control [J]. IEEE Journal of Oceanic Engineering.1996,21(4):513-527.
    [71]Yao Zhang, Grant E. Hearn and Pratyush Sen. An online trained adaptive neural controller[J]. IEEE Control System Magazine,1995,15(5):67-75.
    [72]Parson M G, Clubb A C. An assessment of fuzzy logic vessel path control[J].IEEE Journal of Oceanic Engineering,1995,20(4):276-284.
    [73]李铁山,杨盐生,洪碧光等.船舶航迹控制鲁棒自适应模糊设计[J].控制理论与应用,2007,24(3):445-448.
    [74]Do K D, Practical control of underactuated ships[J]. Ocean Engineering,2010,37(13): 1111-1119.
    [75]Fossen, T. I., Breivik, M. and Skjetne, R., Line-Of-Sight Path Following of Underactuated Marine Craft[C], Proceedings of the Sixth IFAC Conference on Maneuvering and Control of Marine Crafts (MCMC'2003), Girona, Spain,2003:244-249.
    [76]Do K D, Jiang Z P, Pan J. Robust adaptive path following of underactuated ships[J]. Automatica,2004,40(6):929-944.
    [77]申铁龙.机器人鲁棒控制基础[M],北京:清华大学出版社,2000.
    [78]Slotine J J, Sastry S S. Tracking control of nonlinear system using sliding surfaces with application to robot manipulator[J]. International Journal of Control,1983,38(2):465-492.
    [79]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [80]Yanada H, Ohnishi H. Frequency-shaped sliding mode control of an electrohydraulic servomoto[J]. Journal of systems and Control and dynamics,1999,213(1):441-448.
    [81]Bartolini G, Ferrara A, Usani E. Chattering avoidance by second-order sliding mode control[J]. IEEE Transactions on Automatic Control,1998,43(2):241-246
    [82]Bartolini G, Ferrara A, Usani E, Utkin V I. On multi-input chattering-free second-order sliding mode control[J]. IEEE Transactions on Automatic Control,2000,1711-1717.
    [83]Bartolini G, Pisano A, Punta E, Usai E. A survey of application of second-order robust to mechanical system[J]. International Journal of control,2003,76(9):875-892.
    [84]Bartolini G, Punta E, Chattering elimination with second-order sliding mode control to coulomb friction[J]. Journal of Dynamic Systems, Measurement, and Control,2000, 122:679-686.
    [85]张天平,冯纯伯.基于模糊逻辑的连续滑模控制[J].控制与决策,1995,10(6):503-507.
    [86]Morioka H, Wada K, Sabanovic A, Jezernik K. Neural network based chattering free sliding mode control[C]. Proceeding of the 34th SICE Annual Conference,1995:1303-1308.
    [87]Lin F J, Shen P H, Hsu S P. Adaptive Backstepping sliding mode control for linear induction motor drive[C]. IEEE Proceeding Electrical Power Application,2002, 149(3):184-194.
    [88]孙宜标,郭庆鼎,孙艳娜.基于模糊自学习的交流直线伺服系统滑模变结构控制[J].电工技术学报,2001,16(1):52-56.
    [89]Eun Y, Kim J H, Kim K, Cho D H. Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism[J]. IEEE Transactions on Control Systems Technology,1999,7(4):414-422.
    [90]Hassan K. Khalil nonlinear systems(Third Edition) [M]. Ptentice Hall,2002.
    [91]程代展等译,应用非线性控制[M],北京:机械工业出版社,2009.
    [92]焦晓红,关新平.非线性系统分析与设计[M],北京:电子工业出版社,2008.
    [93]贺昱曜,闫茂德.非线性控制理论及应用[M],西安:西安电子科技大学出版社,2007.
    [94]Mamdani E. M., Applications of Fuzzy Algorithms for Simple Dynamic Plants[J], Proc.IEEE,1974,21 (12):1585-1588.
    [95]Wang L X. Fuzzy systems are universal approximators[C]. Preceeding of IEEE Conference on Fuzzy Systems, San Diego,1982,1163-1170.
    [96]韩京清,王伟.非线性跟踪微分器[J].系统科学与数学,1994,14(2):177-183.
    [97]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88.
    [98]韩京清.非线性状态误差反馈控制律-NLSEF[J]控制与决策,1995,10(3):221-225.
    [99]黄焕袍,武利强,高峰等.火电单元机组协调系统的自抗扰控制方案研究[J].中国电机工程学报,2004,24(10):168-173.
    [100]夏元清,黄一,许可康等.大射电望远镜FAST馈源舱位姿控制[J],控制与决策,2004,21(5):195-198.
    [101]韩京清,金奎焕.自抗扰控制算法在聚丙烯反应釜过程控制中的应用[J].计算机技术与自动化,2003,22(2):43-45.
    [102]杨福广,李贻斌,阮久宏,宋锐.独立电驱动车辆车轮驱动防滑自抗扰控制[J].电机与控制学报,2009,13(5):37-42.
    [103]武利强,韩京清.直线型倒立摆的自抗扰控制设计方案[J].控制理论与应用,2004,21(5):654-659.
    [104]杨福广,李贻斌,阮久宏,宋锐.无刷直流电机速度伺服系统的自抗扰控制及其仿真[C].2009 Chinese Control and Decision Conference,2009:964-968.
    [105]Jiuhong Ruan, Yibin Li. ADRC based ship course controller design and simulations[C], 2007 IEEE International Confer-ence on Automation and Logistics, Jinan, China,2007: 2731-2735.
    [106]Jiuhong Ruan, Zuowei Li, Fengyu Zhou, Yibin Li. ADRC based ship tracking controller design and simulations[C], Proceeding of the IEEE International Conference on Automation and Logistics Qingdao, China,2008:1763-1768.
    [107]Isidori A. Nonlinear control systems[M].3rd ed. London:Springer-Verlag,1995.
    [108]闵颖颖,刘允刚Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(1):1-6.
    [109]姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,1997.
    [110]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2005.
    [111]刘金琨.滑模变结构控制Matlab仿真[M].北京:清华大学出版社,2005
    [112]Ha Q P, Nguyen Q H, Rye D C, Durrant-Whyte H F. Fuzzy Sliding Mode Controllers with Application[J]. IEEE Transactions on Industrial Electronics,2001,48(1):38-41.
    [113]Huang S J, Huang K S, Chiou K C. Development and Application of A Novel Radial Basis Function Sliding Mode controller[J]. Mechatronics,2001,13:313-329.
    [114]达飞鹏,宋文忠.基于输入输出模型的模糊神经网络滑模控制[J].自动化学报,2000,26(1):136-139.
    [115]Lin F J, Chou W D. An Induction Motor Servo Drive Using Sliding Mode Controller with Genetic Algorithm[J]. Electric Power Systems Research,2003,64(2):93-108.
    [116]Zhang C F, Wang Y N, He J, Long Y H., GA-NN-Integrated Sliding Mode Control System and Its Application in The Printing Press[J]. Control Theory Applications,2003, 20(2):217-222.
    [117]Wiktor BOLRK, Jerzy SASIADEK. Singularity of Backstepping Control for Nonlinear Systems[C]. Proceedings of the American Control Conference Anchorage, AK May 8-10, 2002:2689-2694.
    [118]张春明,林飞,宋文超.异步电机鲁棒控制器及其Backstepping设计[J].控制与决策,2004,19(3):267-272.
    [119]韩京清.从P1D技术到自抗扰技术[J]控制工程,2002,9(3):13-19.
    [120]韩京清.自抗扰控制技术[M]北京:国防工业出版社,2008.
    [121]马幼捷,刘增高,周雪松,王新志.自抗扰控制器的原理解析[J].天津理工大学学报,2008,24(4):27-30.
    [122]贾欣乐,杨盐生.船舶运动数学模型一机理建模与辨识建模[M].大连:大连海事大学出版社,1999.
    [123]刘杨.欠驱动水面船舶的非线性自适应控制研究[D].大连:大连海事大学,2010.
    [124]程金.水面船舶的非线性控制研究[D].北京:中国科学院自动化研究所,2007.
    [125]张松涛.模糊多模型船舶运动控制系统的研究[D].大连:大连海事大学,2006.
    [126]李高云.大型船舶航向/航迹智能容错控制研究[D].哈尔滨:哈尔滨工程大学,2010.
    [127]Nassim Khaled. Robust Observers And Controllers For Marine Surface Vessels Undergoing Maneuvering And Course-Keeping Tasks[D]. America:Wayne State University,2010.
    [128]Kijima K, Katsuno T, Nakiri Y, et al. On the maneuvering Performance of a ship with the parameter of loading condition[J]. Journal of Soeiety of Naval Architects of Japan, 1990(168).
    [129]范尚雍.船舶操纵性[M].北京:国防工业出版社,1988.
    [130]Norrbin N H.Theory and observation on the use of amathematical model for ship manoeuvering in deep and confined waters[C]. Proe.of the eighth symposium on Naval Hydrodynamics. Goteborg, Sweden,1970.
    [131]Clarke D, Gedling P, Hine G.The aPPlieation of maneuvering criteria in hull design using linear theory [J].Transactions of Royal Institute of Naval Architect,1983,125:45-8.
    [132]杨承恩,贾欣乐,毕英君.船舶舵阻横摇及其鲁棒控制[M].大连:大连海事大学出版社,2011.
    [133]胡江强.基于克隆选择优化的船舶航向自适应控制[D].大连:大连海事大学,2008.
    [134]周风余,王伟,单金明.基于ADRC的船舶航向控制器计与仿真研究[J].山东大学学报2009,2(1):57-63.
    [135]马红雨,苏剑波,刘成刚.基于耦合自抗扰控制器的无标定手眼协调[J].系统工程与电子技术,2003,25(11):1385-1388.
    [136]周黎妮,唐国金,李海阳.航天器姿态机动的自抗扰控制器设计[J].系统工程与电子技术,2007,29(12):2122-2126.
    [137]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2005.
    [138]张付祥,付宜利,于树国.基于遗传算法的多PID控制器参数整定[J].制造业自动化,2005,27(5):1-2.
    [139]Ho H F, Wong Y K and Rad A B. Adaptive fuzzy sliding mode control design:Lyapunov approach[C].5th Asian Control Conference, Melbourne, Australia,2004, vol.3:1502-1507.
    [140]Moghaddam J J, Bagheri A. An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water re-motely operated vehicle[J]. Expert Systems with Applications,2010,37(1):647-660.
    [141]Xin W L. Stable adaptive fuzzy control of nonlinear systems[J].IEEE Transaction on Fuzzy systems,1993,1(2):146-155.
    [142]Xin W L. A Course in Fuzzy System and Control[M], Prentice-Hall, Upper Saddle River, NJ,1997.
    [143]赵希梅,郭庆鼎.为提高轮廓加工精度采用DOB和ZPETC的直线伺服鲁棒跟踪控制[J].电工技术学报,2006,21(5):111-114.
    [144]孙立宁,崔晶,曲东升等.基于离散型扰动观测器的直线电机控制研究[J].机械工程学报,2004,40(12):164-167.
    [145]张小华,刘慧贤,丁世宏,李世华.基于扰动观测器和有限时间控制的永磁同步电机调速系统[J].控制与决策.2009,24(7):1028-1032.
    [146]Kim B K, Chung W K. Advanced design of disturbance observer high performance motion control systems[C]. Proc of the American Control Conf. Anchorage,2002:2112-2117.
    [147]Ishikawa J, Tomizuka M. A novel add-on compensator for cancellation of pivot nonlinearities in hard disk drives[J]. IEEE Trans on Magnetics,1998,34(4):1895-1897.
    [148]Ryoo J R, Jin K B, Moon J H, et al. Track-following control using a disturbance observer with asymptotic disturbance rejection in high-speed optical disk drivers[J]. IEEE Trans on Consumer Electronics,2003,49(4):1178-1185.
    [149]梅志千,刘有德,李向国SCARA机器人关节伺服系统中的干扰补偿控制[J].机床与液压,2007,35(7):149-152.
    [150]Komada S, Machii N, Hori T. Control of redundant manipulators considering order of disturbance observer[J]. IEEE Trans on Industrial Electronics,2000,47(2):413-420.
    [151]张元涛,石为人,邱明伯.基于非线性干扰观测器的减摇鳍滑模反演控制[J].控制与决策,2010,25(8):1255-1260.
    [152]Do K D, Jiang Z P, Pan J. Robust and adaptive path following for underactuated autonomous underwmer vehicles[J]. Odean engineering,2004,31(16):1967-1997.
    [153]Do K D, Pan J.Global robust adaptive path following of underactuated ships[J]. Automatica, 2006,42(10):1713-1722.
    [154]Asadi M., Khayatian A. Adaptive Backstepping Autopilot for Way-point Tracking Control of a Container Ship in the presence of Time-varying Disturbances[J]. Preprints of the 18th IFAC World Congress Milano (Italy),2011:14760-14765.
    [155]Jawhar Ghommam, Faical Mnif, KhaledMetwally.BacksteppingTechnique for tracking control of an underactuated surface vessel with unmeasured thruster dynamic[C]. Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea,2008:2323-2329.
    [156]Do K D, Jiang Z P, Pan J. Underactuated ship global tracking under relaxed conditions[J]. IEEE Transactions on Automatic Control,2002,47(9):1529-1536.
    [157]Do K D, Pan J. Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices[J]. Automatica,2005,41(1):87-95.
    [158]周岗,姚琼荟,陈永冰等.不完全驱动船舶直线航迹控制稳定性研究[J].自动化学报,2007,33(4):376-384.
    [159]李铁山,杨盐生等.不完全驱动船舶航迹控制输入输出线性化设计[J].系统工程与电子技术,2004,26(7):945-980.
    [160]李铁山,杨盐生,郑云峰.不完全驱动船舶非线性控制[J].交通运输工程学报,2003,3(4):39-42.
    [161]潘永平,黄道平,孙宗海.欠驱动船舶航迹Backstepping自适应模糊控制[J].2011,28(7):907-914.
    [162]周岗,姚琼荟.基于输入输出线性化的船舶全局直线航迹控制[J].控制理论与应用,2007,24(1):117-121.
    [163]Moreira L., Fossen T. I., and Soares G. Path following control system for a tanker ship model[J]. Ocean Engineering,2007,342074-2085.
    [164]Even B(?)rhaug, Pavlov A, Pettersen K. Y. Integral LOS Control for Path Following of Underactuated Marine Surface Vessels in the Presence of Constant Ocean Currents[J]. Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, 2008:4984-4991.
    [165]Fossen T. I., Breivik M., Skjetne R. Line-of-sight path following of underactuated marine craft[C]. In Proceedings of the 6th IFAC MCMC, Girona, Spain,2003.
    [166]Skjetne R., Smogeli N, and Fossen T. I. A nonlinear ship manoeu-vering model: Identification and adaptive control with experiments for a model ship[J]. Modeling, Identification and Control,2004,25(1):3-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700