用户名: 密码: 验证码:
华南三叠纪橄榄玄粗岩系列-A型花岗岩带及其地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华南由扬子地块和华夏地块构成,是国内乃至世界上著名的花岗岩省,尤其是在中生代发育了巨量的花岗质岩浆活动,同时伴有广泛的金属成矿作用,常常形成世界级超大型矿床,自上世纪二三十年代就有学者开始探索岩浆岩与成矿作用之间的关系,且一直受到广大学者的持续关注。三叠纪岩浆岩绝大多数为花岗质岩石,罕见中基性岩石的报道,仅在道县发现三叠纪基性包体,未见火山岩。前人多次总结三叠纪岩浆岩岩的空间分布规律,随着高精度年龄资料的增多,三叠纪花岗岩在整个印支期均有一定分布,但现有研究多集中在湖南、赣南、粤北、广西等地区,其他诸如浙江、福建等地区的研究程度相对较弱。
     本文以浙江、福建以及赣东等不同地区的三叠纪橄榄玄粗岩系列岩石、A型花岗岩为主要研究对象,包括浙中地区石英二长岩-(石英)正长岩、浙西南地区石英二长岩-正长花岗岩-二长花岗岩、闽西地区正长岩类-正长花岗岩以及赣东地区石英二长岩-二长花岗岩。对它们进行了详细的野外地质考察、岩相学、锆石U-Pb年龄、主量元素和微量元素、Sr-Nd同位素和锆石Hf同位素组成的多方面研究,结合前人在华南三叠纪研究的相关成果,探讨了华南三叠纪橄榄玄粗岩系列、A型花岗岩的时空分布规律、岩石成因及其所处的大地构造背景。主要认识如下:
     (1)浙江中部(诸暨-东阳-嵊州)地区三叠纪岩浆岩有石坂岩体、大爽岩体和周庄岩体。石坂岩体的岩性为(石英)正长岩;大爽岩体的岩性包括(石英)正长岩和似斑状石英二长岩;周庄岩体的岩性为似斑状石英二长岩。对该地区的三个岩体的不同岩性分别进行了LA-ICP-MS锆石U-Pb定年,结果分别为238±2Ma、240±3Ma、236±3Ma和237±2Ma;年龄分布在236-240Ma之间,三个岩体均形成于中三叠世。石坂正长岩和大爽正长岩均为过铝质花岗岩(A/CNK值均为1.02),大爽石英二长岩为准铝质(A/CNK介于之间0.90-0.98),周庄石英二长岩在准铝质和过铝质区域均有分布,但大部分分布于过铝质区域中(A/CNK介于0.93-1.05之间);四类样品均落入橄榄玄粗岩系列区域内。从Harker图解中可以看出石坂正长岩与大爽正长岩极有可能存在成因上的联系,该地区的正长岩中富集Th.K等元素,亏损Ba、Sr、P等元素和Nb.Ta.Ti等高场强元素;轻稀土富集,具有Eu负异常,Eu/Eu'介于0.28~0.4之间;(La/Yb)N介于106~175之间。石英二长岩的地球化学特征同样显示了不同岩体的石英二长岩具有亲密的成因关系,石英二长岩中富集Ba、Th等元素,亏损Sr、P、Nb、Ta、Ti等;轻稀土富集,具有明显的Eu负异常,Eu/Eu*介于0.60~0.70之间,(La/Yb)N介于30.12~43.79之间。全岩Sr-Nd同位素研究结果表明,石坂正长岩、大爽正长岩、大爽石英二长岩和周庄石英二长岩的εNd(t)值分别为-8.60~8.71、-8.35~-8.46、-8.26~-10.92和-9.24~-10.13;相对应的两阶段模式年龄T2DM分别为1.70-1.71Ga、1.68~1.71Ga、1.68~1.89Ga和1.77~1.83Ga。锆石Hf同位素测试结果表明,石坂正长岩、大爽正长岩和大爽石英二长岩的εHf(t)加权平均值为分别为-6.6±0.33、-6.91±0.33和-11.21土0.72;对应的两阶段Hf模式年龄分别为1.62~1.75Ga、1.64~1.79Ga、1.8-2.07Ga。
     (2)浙西南(松阳-丽水)地区的三叠纪岩浆岩有梅田岩体和靖居岩体。梅田岩体的岩性包括斑状二长花岗岩和斑状石英二长岩;靖居岩体的岩性包括斑状石英二长岩和正长花岗岩。对梅田岩体二长花岗岩、石英二长岩及石英二长岩脉进行的LA-ICP-MS锆石U-Pb定年,结果分别为238±2Ma、236±2Ma、228±2Ma,表明岩体为中-晚三叠世的产物。梅田花岗岩为过铝质(A/CNK介于1.00-1.23之间),梅田的石英二长岩(A/CNK介于0.96~1.09之间)与靖居的正长花岗岩(A/CNK介于0.88-1.12之间)在准铝质与过铝质区域内均有分布,靖居的石英二长岩主要为准铝质(A/CNK介于0.83-1.04之间)。除了少量的梅田二长花岗岩落入高钾钙碱性系列区域内,其余均落入橄榄玄粗岩系列区域内。在Harker图解中,石英二长岩在总体上CaO、TiO2、Fe2O3T和P2O5与SiO2表现为负相关性,其余氧化物同SiO2无明显的相关性,说明岩浆演化过程中可能存在Ti-Fe氧化物、磷灰石等矿物的结晶分异作用;二长花岗岩TiO、Fe2O3T和P2O5与SiO2表现为负相关性;正长花岗岩MgO、Al2O3、CaO、TiO2、Fe2O3T和P2O5与SiO2呈现出负相关性,随着SiO2含量的增多,MnO无明显相关性,表明在岩浆的演化过程中可能存在长石、铁镁矿物、钛铁氧化物和磷灰石的分异结晶。该地区石英二长岩中强烈亏损Ba、Sr、P等元素和Nb、Ta、Ti等高场强元素;轻稀土富集,可见无-弱的Eu的负异常;Eu/Eu*介于0.58-1.04之间,(La/Yb)N介于15.53~4.05之间。梅田二长花岗岩非常富集Th、Rb,亏损Ba、Sr、P等元素和Nb、Ta、Ti等高场强元素:在稀十分配模式上表现,表现山轻稀土富集,Eu负异常不明显,Eu/Eu*介于0.85-2.32之间,(La/Yb)N介于24.61~47.30之间。正长花岗岩明显富集Th和Rb、K等大离子亲石元素,亏损Ba、Sr、P等元素和Nb、Ta、Ti等高场强元素;正长花岗岩稀土元素的含量(933-1772ppm)非常的高,轻稀土富集,Eu出现负异常;Eu/Eu*介于0.38~0.77之间,(La/Yb)N介于50.23-255.45之间。全岩Sr-Nd同位素研究结果表明,梅田石英二长岩和二长花岗岩的εNd(t)值分别为-13.72~-14.25和-14.57;相对应的两阶段模式年龄T2DM分别为2.12-2.16Ga和2.19Ga。锆石Hf同位素测试结果表明,梅田二长花岗岩、梅田石英二长岩、梅田石英二长岩脉和靖居正长花岗岩的εHf(t)加权平均值为分别为-17.51±0.43、-19.01±0.46、-15.19±0.48和-10.90±0.67;对应的两阶段Hf模式年龄分别为2.37-2.54Ga、2.29-2.45Ga、2.14-2.3Ga和1.84-2.08Ga。
     (3)闽西(明溪-清流)地区的三叠纪岩浆岩有坪浒(角闪)黑云母辉石正长岩、正长岩、柏亨岩体正长花岗岩和莒林正长花岗岩。通过对坪浒角闪黑云母辉石正长花岗岩、正长岩、柏亨正长花岗岩和莒林正长花岗岩进行了高精度的LA-ICP-MS锆石U-Pb定年,其结果分别为232Ma±2Ma、235.0±1.3Ma、236±2Ma和225±2Ma,岩体均形成于中-晚三叠世。坪浒(角闪)黑云母辉石正长花岗岩(A/CNK介于0.42~0.45之间)、坪浒正长岩(A/CNK介于0.50~0.80之间)、莒林正长花岗岩(A/CNK介于1.06~1.10之间)和柏亨正长花岗岩(A/CNK介于0.8~1.06之间)准铝质和过碱质区域内均有分布,其中柏亨正长花岗岩在弱过铝质区域也有分布。除了少量的柏亨正长花岗岩落入高钾钙碱性系列区内外,其余都落入橄榄玄粗岩系列区域内。在Harker图解中,坪浒(角闪)黑云母辉石正长岩CaO、Fe2O3T和MnO与SiO2之间呈现负相关性,随SiO2含量的增多,Al2O3与Na2O的含量增大;坪浒正长岩MgO、MnO、Fe2O3T和P2O5与SiO2具有一定的负相关性,Al2O3随SiO2含量的增加有所增加;柏亨正长花岗岩中MgO、Al2O3、CaO、K2O、TiO2、Fe2O3T和P2O5含量与SiO2含量存在明显的负相关性,表明在岩浆演化过程中可能存在镁铁质矿物、长石、钛铁氧化物和磷灰石的结晶分异作用;柏亨岩体正长花岗岩中可见MgO、Al2O3、CaO、TiO2、Fe2O3T和P2O5与SiO2存在明显的负相关性,随着SiO2含量的增多,MnO的含量先增大后较小,表明在岩浆演化过程中可能存在有镁铁矿物、长石、钛铁氧化物和磷灰石的分异结晶。(角闪)黑云母辉石正长岩富集Rb、Ba,亏损Nb、Ta、Ti等高场强元素;轻稀土富集,(La/Yb)N介于53.75~63.76之间,基本不见Eu的负异常,Eu/Eu*=0.77~0.98。正长岩亏损Sr、P等元素和Nb、Ta、Ti等高场强元素;总稀土含量很高,轻稀土富集,Eu略微负异常;Eu/Eu*介于0.744~0.84之间,(La/Yb)N介于41.41~87.63之间。正长花岗岩富集Th、U,损Ba、P和Ta、Ti等元素;轻稀土富集,具有Eu负异常,表明了存在斜长石的分离结晶作用或源区残留斜长石,Eu/Eu*介于0.35~0.71之间,(La/Yb)N介于7.22~19.23之间。莒林正长花岗岩中明显亏损Ba、P、Sr和Ta、Ti等高场强元素;轻稀土富集,具有明显的Eu负异常,Eu/Eu*介于0.14~0.23之间,(La/Yb)N介于9.99-22.86之间。锆石Hf同位素测试结果表明,坪浒角闪黑云母辉石正长岩、坪浒正长岩、莒林正长花岗岩和柏亨正长花岗岩的εHf(t)加权平均值为分别为-11.28±0.48、-9.88±0.36、-6.54~5.29和-8.86±0.27;对应的两阶段Hf模式年龄分别为1.88-2.05Ga、1.8-1.96Ga、1.60-1.68Ga和1.79~1.88Ga。
     (4)在赣东(宁都-兴国)地区的三叠纪花岗岩为宝华山岩体,岩性包括似斑状二长花岗岩和似斑状石英二长岩。对宝华山二长花岗岩进行LA-ICP-MS锆石U-Pb定年结果表明,二长花岗岩的年龄为228±2Ma,形成于晚三叠世。宝华山石英二长岩为准铝质(A/CNK介于0.88~0.99之间),二长花岗岩在准铝质和弱过铝质区域内均有分布(A/CNK介于0.93-1.07之间)。除了个别的二长花岗岩落入高钾钙碱性区域内,其余皆落在橄榄玄粗岩系列区域内。在Harker图解中两种岩性的岩石同SiO2均无明显的线性关系。石英二长岩中富集Th、U和Rb、K等大离子亲石元素,亏损Ba、Sr、P和Nb、Ta、Ti等高场强元素。岩石中轻稀土元素富集,可见明显的Eu负异常,表现了岩浆演化过程中斜长石的分离结晶作用或源区残留斜长石;Eu/Eu*介于0.35~0.65之间,(La/Yb)N介于12.22~46.03之间。在二长花岗岩中,Th、U和Rb、K等大离子亲石元素富集,Ba、Sr、P等元素和Nb、Ta、Ti等高场强元素出现亏损;样品中轻稀土富集,具有明显的Eu负异常,Eu/Eu*介于0.36~0.75之间,(La/Yb)N介于10.76-28.81之间。在稀土元素分配模式中,重稀土含量有所升高,可能为含有较多富稀土副矿物的结果。全岩Sr-Nd同位素研究结果表明,宝华山二长花岗岩的εNd(t)值为-9.6-9.99;相对应的两阶段模式年龄T2DM分别为1.79~1.82Ga。锆石Hf同位素测试结果表明,宝华山二长花岗岩的εHf(t)加权平均值为分别为-7.68±0.48,对应的两阶段Hf模式年龄分别为1.67~1.85Ga。
     (5)综合上述资料,浙中地区三叠纪石英二长岩是在幔源物质参与下,深部古老地壳物质熔融形成的熔体,经斜长石、角闪石、黑云母、磷灰石及钛铁氧化物等矿物结晶分异作用形成的;而正长岩类是源自相对年轻的地壳的熔体,经碱性长石、角闪石、黑云母、磷灰石等矿物结晶分异作用形成的。浙西南三叠纪二长花岗岩是源自古老地壳的熔体,经碱性长石、斜长石、黑云母、磷灰石及钛铁氧化物等矿物结晶分异作用形成的;石英二长岩是在少量地幔物质参与下形成的壳源岩浆,经经斜长石、角闪石、黑云母、磷灰石及钛铁氧化物等矿物结晶分异作用形成的;而晚期正长花岗岩则可能是相对年轻的地壳岩石熔融的产物。闽西地区正长岩类是富集岩石圈地幔部分熔融形成的,而柏亨正长花岗岩则是地壳熔融形成的熔体经碱性长石、角闪石、黑云母、磷灰石及铁钛氧化物结晶分异作用形成的,而莒林正长花岗岩的成因与浙西南正长花岗岩成因相似。赣东地区宝华山花岗岩类特征与闽西正长花岗岩相似,因而形成过程可能与闽西地区正长花岗岩相似。
     (6)为了深入认识华南三叠纪岩浆活动的构造背景,与越南北部进行了对比。越南北部构造热事件形成的时间、构造线走向、运动学方向与华南均存在一定的差异。越南北部构造热事件多集中在早-中三叠世(250-240Ma),而华南地区仅广西和浙江这一时期的构造热事件发育,其他地区构造热事件多形成于中-晚三叠世;越南北部三叠纪构造线走向多为NW向,而华南除西南地构造线走向与其相似外,其他地区区三叠纪构造线走向多为NE向或NNE向;越南北部三叠纪构造运动学方向多为右旋韧性走滑剪切,而华南除西南地区发育有右旋韧性走滑剪切外,其他地区多为左旋韧性走滑剪切。因而,从构造作用角度而言,发育在越南的印支造山作用对华南的影响有限。同时,其也难以解释华南三叠纪NE向橄榄玄粗岩系列-A型花岗岩带的形成。而古太平洋板块俯冲作用则可以很好的解释上述印支造山作用无法解释的问题,而近两年在朝鲜半岛、日本、菲律宾等地发现的晚二叠世-早三叠世弧岩浆岩,进一步证实了三叠纪古太平洋板块俯冲作用的存在,因而,华南三叠纪构造-岩浆作用主要与古太平洋板块俯冲作用有关。
South China, consisting of Yangtze Block and Cathaysia Block, is one of the most famous granite provinces in China and even in the world. Large scale granitic magma activities and related metal mineralization in Mesozoic developed in the area, forming many world-class mineral deposits. The relationships between magmatism and metal mineralization have been studied as early as the last century and still attract much attention now. Most Triassic magma rocks in the area were granitic rocks while mafic rocks were rarely reported except the mafic xenoliths in Daoxian, and volcanics were not reported. There were some studies summed up the spatial distribution regularities of the Triassic magma rocks, and with more and more high precision age data recently, many people considered that Indosinian granite were developed all over the Indosinian period. The exiting researches were mainly focused on the area to the west of the Mesozoic volcanics line of South China, while the research of the east of the line is still relatively weak.
     The thesis selected the Triassic shoshonite series and A-type granite located in several areas on the east of the Mesozoic volcanics line as study objects, which including the quartz monzonite-(quartz) syenite in the middle of Zhejiang province, quartz monzonite-syenogranite-monzogranite in the southwest of Zhejiang province, syenites-syenogranite in the west of Fujian province and quartz monzonite-monzogranite in the east of Jiangxi province. Detailed studies on field geology and petrography were taken in the first period, and the comprehensive studies on the zircon U-Pb age, major elements, trace elements, Sr-Nd isotope and zircon Hf isotope were taken later. Combined with the previous study achievements on Triassic geology in south China, the thesis discusses the petrogenesis, spatial distribution and tectonic setting of the Triassic shoshonite series and A-type granite in south China This paper has some understandings as follows:
     (1) The Triassic plutons in central Zhejiang province include Shiban intrusion, Dashuang intrusion and Zhouzhuang intrusion. The lithology of Shiban intrusion is quartz-syenite, and Dashuang intrusion consists of quartz-syenite and porphyritic quartz monzonite, while the Zhouzhuang intrusion consists of porphyritic quartz monzonite. LA-ICP-MS zircon U-Pb dating for the different lithologies of the three intrusions gives magma crystallization ages of238±2Ma,240±3Ma,236±3Ma and237±2Ma, respectively. These ages rang from236Ma to240Ma, indicating magmatism occurred at middle Triassic. The Shiban and Dashuang syenites belong to peraluminous granites (A/CNK>1.02), Dashuang quartz monzonites are metaluminous granites (A/CNK=0.90-0.98), while the Zhouzhuang quartz monzonites distribute in both metaluminous and peraluminous areas, with most of the samples are peraluminous granites (A/CNK=0.93-1.05). All the four type samples are shoshonite granites. Syenites in this area show enrichment of Th, K, depletion of Ba, Sr and high field strength elements (Ta, Ti). The chondrite-normalized REE patterns show that all syenites are enriched in light rare earth elements (LREE) with (La/Yb)N of106-175, and have pronounced negative Eu anomalies with Eu/Eu*values of0.280~0.40. The quartz monzonite samples are enriched in Ba and Th, and are depleted in Sr, P, Ta and Ti. The chondrite-normalized REE patterns show that all quartz monzonite samples are enriched in LREE ((La/Yb)N=30.12-43.79), and have pronounced negative Eu anomalies with Eu/Eu' values of0.60~0.70. Total bulk Sr-Nd isotope results show that Shiban syenite, Dashuang syenite, Dashuang quartz monzonite and Zhouzhuang quartz monzonite have εNd(t) values of-8.60~-8.71,-8.35~-8.46,-8.26~-10.92and-9.24~-10.13, respectively, and the corresponding TDM2of1.70-1.71Ga,1.68-1.71Ga,1.68-1.89Ga and1.77-1.83Ga. The zircon Hf isotope results show that Shiban syenite, Dashuang syenite and Dashuang quartz monzonite have εHf(t) values of-6.6±0.33,-6.91±0.33and-11.21±0.72, respectively, and the corresponding TDM2of1.62-1.75Ga,1.64-1.79Ga and1.8-2.07Ga.
     (2) The Triassic magmatic rocks in Southwest Zhejiang province include Meitian intrusion and Jingju intrusion. The lithologies of Meitian intrusion include porphyritic monzonite granite and porphyritic quartz monzonite, while the Jingju intrusion consists of syenogranite and quartz monzonite. LA-ICP-MS zircon U-Pb dating for Meitian monzogranite, quartz monzonite and quartz monzonitic dyke show crystallization ages of238±2Ma,236±2Ma and228±2Ma, respectively, indicating these intrusions formed in middle Triassic. The Meitian granites belong to peraluminous granites (A/CNK=1.00-1.23), and the Meitain quartz monzonite (A/CNK=0.96-1.09) and Jingju syenogranite (A/CNK=0.88-1.12) show wide rang between metaluminous and peraluminous areas, while the Jingju quartz monzonites mainly belong to metaluminous granites (A/CNK=0.83-1.04). All the Triassic plutons in Southwest Zhejiang province are shoshonitic granites except few samples in Meitian monzogranite which are high-K calc-alkaline granites. On the Harker diagrams for the quartz monzonites, the TiO2, Fe2O3T, CaO and P2O5show linear negative correlations with SiO2, while others show nearly no correlations with SiO2, For the monzogranites and syenogranites, the MgO, Al2O3, CaO, TiO2, Fe2O3T and P2O5show linear negative correlations with SiO2, while the MnO show negative correlations with SiO2first and then become positive. All the Harker diagrams suggest that the magma might have evolved by fractional crystallization of feldspars, iron-magnesium minerals, Ti-Fe oxides and apatites. Quartz monzonite in this area show enrichment of Th, Rb, and depletion of Ba, Sr and high field strength elements (Ta, Ti). The chondrite-normalized REE patterns show that quartz monzonite are enriched in LREE ((La/Yb)N=15.53-34.05), and show pronounced negative Eu anomalies with Eu/Eu values of0.58-1.04. The monzogranites in Meitian are enriched in Rb, Th, and depleted in Ba, P, Ta and Ti. The chondrite-normalized REE patterns show that monzogranites are enriched in LREE ((La/Yb)N=24.61~47.30), and show pronounced negative Eu anomalies with Eu/Eu values of0.85~2.32. Syenogranite are enriched in large ion lithophile elements (K, Rb, Th), and depleted in U, Ba, P, Ta and Ti. Samples in syenogranite have high rare earth content (933-1772ppm), and are enriched in LREE (La/Yb)N=50.23~255.45), and show pronounced negative Eu anomalies with Eu/Eu*values of0.38-0.77. Total bulk Sr-Nd isotope results show that Meitian quartz monzonite and monzonite granite have εNd(t) values and TDM2of-13.72~-14.25and-14.57, and2.12-2.16Ga and2.19Ga, respectively. The zircon Hf isotope results show that Meitian monzonite granite, quartz monzonite and quartz monzonitic dyke and Jingju syenogranite have εHf(t) values of-17.51±0.43,-19.01±0.46,-15.19±0.48and-10.90±0.67, respectively, with the corresponding TDM2of2.37~2.54Ga,2.29-2.45Ga,2.14-2.3Ga and1.84~2.08Ga.
     (3) The Triassic magmatic rocks from the Western Fujian (Mingxi-Qingxi) area are composed of Pinghu biotite-pyroxene syenites, Pinghu syenites, Baiheng syenogranites and Julin syeno granites. LA-1CP-MS zircon U-Pb analyses suggest the formation ages are232Ma±2Ma,235.0±1.3Ma,236±2Ma and225±2Ma, respectively. The samples from Pinghu biotite-pyroxene syenites have low A/CNK ratios ranging from0.42to0.45, and show metaluminous-peralkaline and shoshonitic compostions. The Harker diagrams show negative correlations between CaO, Fe2O3T, MnO and SiO2but positive correlations between Al2O3, Na2O and SiO2, indicating the fractionation of mafic minerals, feldspar and Fe-Ti oxides. All the samples are characterized by enrichment of LREE relative to HREE ((La/Yb)N=53.75±63.76), slight negative Eu anomalies, enrichment of Rb and Ba, depletion of high field strength elements (HFSE, such as Nb, Ta and Ti) and enriched εHf(t)(-11.28±0.48) with old TDM2(1.88-2.05Ga). The Pinghu syenites have A/CNK ratios ranging from0.50to0.80, plotted in the metaluminous and peralkaline areas on the A/NK-A/CNK diagrams. All samples exhibit egative correlations between MgO, Fe2O3T, MnO, P2O5and SiO2but positive correlations between A12O3and SiO2on the Harker diagrams, suggesting the fractionation of mafic minerals, feldspar, Fe-Ti oxides and apatites. They are characterized by enrichment of LREE relative to HREE ((La/Yb)N=41.41-87.63), negative Eu anomalies (Eu/Eu*=0.74~0.84), depletion of Sr, P, Nb, Ta and Ti, and enriched εHf(t)(-9.88±0.36) with old TDM2(1.8-1.96Ga).The Baiheng syenogranites have A/CNK ratios ranging from0.80to1.06, plotted in the metaluminous, peralkaline and peraluminous areas on the A/NK-A/CNK diagrams. All samples exhibit negative correlations between MgO, A12O3, Fe2O3r, MnO, P2O5, CaO, K2O and SiO2on the Harker diagrams, suggesting the fractionation of mafic minerals, feldspar, Fe-Ti oxides and apatites. They are characterized by enrichment of LREE relative to HREE ((La/Yb)N=7.22~19.23), negative Eu anomalies (Eu/Eu*=0.35~0.71),enrichment of Th and U, depletion of Ba, P, Ta and Ti, and enriched εHF(T)(-6.54~-5.29) with old TDM2(1.60-1.68Ga).The Julin syenogranites have A/CNK ratios ranging from1.06to1.10, plotted in the metaluminous and peralkaline areas on the A/NK-A/CNK diagrams. All samples exhibit negative correlations between MgO, Al2O3, Fe2O3T, P2O5, CaO, TiO2and SiO2on the Harker diagrams, suggesting the fractionation of mafic minerals, feldspar, Fe-Ti oxides and apatites. They are characterized by strong enrichment of LREE relative to HREE ((La/Yb)N=9.99~22.86), negative Eu anomalies (Eu/Eu*=0.14-0.23), enrichment of Th and U, depletion of Ba, P, Sr, Ta and Ti, and enriched εHf(t)(-8.86±0.27) with old TDM2(1.79~1.88Ga).
     (4) The Triassic magmatic rocks from the Eastern Jiangxi (Ningdou-Xingguo) consist of porphyritic monzonitic granites and Quartz monzonites. LA-ICP-MS zircon U-Pb analyses suggest that the formation age of monzonitic granites are228±2Ma. On the A/NK-A/CNK diagrams, most samples from the two rock types plot in the metaluminous area (A/CNK ratios are0.93~1.07and0.88~0.99, respectively), but some from the monzonitic granites plot in the peraluminous and weak peraluminous. Most samples exhibit shoshonitic compostions. However, some samples from monzonitic granites show High K calc-alkali compositions. On the Harker diagrams, all the samples from the two rock types exhibit no correlation with SiO2. The samples from Quartz monzonites display enrichment of LREE ((La/Yb)N=12.22~46.03), Th, U, Rb and K, depletion of Ba, P, Sr, Nb, Ta and Ti, and obvious negative Eu anomalies (Eu/Eu*=0.35~0.65) The samples from monzonitic granites are characterized by strong enrichment of LREE relative to HREE ((La/Yb)N=10.76~28.81), negative Eu anomalies (Eu/Eu*=0.36~0.75), enrichment of Th,U,Rb and K, depletion of Ba, P, Sr, Nb, Ta and Ti. They have relatively high HREE contents, indicating the presence of heavy minerals. The samples from monzonitic granites have enrichedd(t)(-9.6~9.99) and εHft)(-7.68±0.48), with old T2DM(1.79~1.82Ga) and TDM2(1.67~1.85Ga).
     (5) In summary, the Triassic quartz monzonites from the central Zhejiang area were derived from partial melting of old deep crustal materials with the participation of mantle materials and crystal fractionation of plagioclases, hornblendes, biotites, apatites and Fe-Ti oxides. However, the syenites were derived partial melting of relatively young crustal materials and crystal fractionation of alkali-feldspars, hornblendes, biotites and apatites. The Triassic monzonitic granites from Southwestern Zhejiang were generated by partial melting of old crustal materials and crystal fractionation of alkali-feldspars, biotites, apatites and Fe-Ti oxides, while the quartz monzonites were generated by partial melting of crustal materials with the participation of some mantle materials and crystal fractionation of plagioclases, hornblendes, biotites, apatites and Fe-Ti oxides. And the late monzonitic granites were mainly generated by partial melting of relatively young crustal materials. The syenites were derived partial melting of an enriched lithospheric mantle, while the Baiheng syenogranites were generated by partial melting of crustal materials and crystal fractionation of alkali-feldspars, hornblendes, biotites, apatites and Fe-Ti oxides. The origin of Julin syenogranites is similar to the syenogranites from the southwest Zhejiang area. The Baohuashan granites from Eastern Jiangxi area have the same compositions as the syenogranites from the western Fujian area, indicating they have similar genesis.
     (6)This paper compared the geology of South China to that of North Vietnam for understanding the tectonic settings of the Triassic magmatisms in South China. They have different times, strikes and kinematic directions of tectonothemal events. The tecotonothemal events developed in the North Vietnam concentrated in Early to Middle Triassic, striked Northwest (NW) and had dextral ductile strike-slip shearings. However, the tecotonothemal events developed in the South China (Guangxi and Zhejiang) concentrated in Middle to Late Triassic, striked NE or NNE. Most areas had sinistral ductile strike-slip shearings, but Southwestern areas have dextral ductile strike-slip shearings. Therefore, the Indosinian orogeny developed in the North Vietnam had less impact on the South China, and was not used to interpret the generation of Triassic NE trending shoshonitic series-A-type granitic belt in the South China. Late Permian to Early Triassic Arc magmatisms had been reported in the Korean Peninsula, Janpan and Philippines in the past two years, indicating the subduction of Paleo-Pacific plate. Take together, we propose that the Triassic magmatisms in South China are mainly related to the subduction of Paleo-Pacific plate.
引文
[1]Joplin G A. The shoshonite association A review. Journal of the Geological Society of Australia, 1968,15(2):275-294.
    [2]Joplin G A, Kiss E, Ware N G, et al. Some chemical data on members of the shoshonite association. Mineralogical Magazine,1972,38(4):936-945.
    [3]Jakws P, White A J R. Major and Trace Element Abundances in Volcanic Rocks of Orogenic Areas. Geological Society of America Bulletin,1972,83(2):29-40.
    [4]Gregg W M. Characteristics and tectonic setting of the shoshonite rock association. Lithos,1980, 13(1):97-108.
    [5]Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences,1971,8(5):523-548.
    [6]Gill R, Aparicio A, El Azzouzi M, et al. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco:geochemical and isotopic constraints on Neogene tectonic processes. Lithos,2004,78(4):363-388.
    [7]Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Minealogy and Petrology,1976,58(1):63-81.
    [8]Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos,1989,22(4):247-263.
    [9]赵振华,熊小林,王强,等.新疆北部晚古生代的底侵作用——来自橄榄玄粗岩与埃达克岩的证据.地质学报,2007,81(5):606-619.
    [10]Meen J K. Formation of Shoshonites from Calkaline Basalt Magmas-Geochemical and Experimental Constraints from the type locality. Contributions to Minealogy and Petrology,1987, 97(3):333-351.
    [11]Meen J K. Elevation of Potassium Content of Basaltic Magma by Fractio Crystallization-the Effect of Pressure. Contributions to Minealogy and Petrology,1990,104(3):309-331.
    [12]Hesse M, Grove T L. Absarokites from the western Mexican Volcanic Belt:constraints on mantle wedge conditions. Contributions to Minealogy and Petrology,2003,146(1):10-27.
    [13]Marchev P, Georgiev S, Zajacz Z, et al. High-K ankaramitic melt inclusions and lavas in the Upper Cretaceous Eastern Srednogorie continental arc, Bulgaria:Implications for the genesis of arc shoshonites. Lithos,2009,113(1-2):228-245.
    [14]Roberts M P, Clemens J D. Origin of High-Potassium, Calc-alkaline, I-type Granitoids. Geology,1993,21(9):825-828.
    [15]Schmidt M W. Experimental constraints on recycling of potassium from subducted oceanic crust. Science,1996,272(5270):1927-1930.
    [16]Sekine T, Wyllie P J. Phase-Relationships in the System KalSiO4-Mg2SiO2-H2O as a Model for hybridization Between Hydrous Siliceous Melts and Peridotite. Contributions to Minealogy and Petrology,1982,79(4):368-374.
    [17]Foley S. Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos,1992,28(3-6):187-204.
    [18]Foley S. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos,1992,28(3-6):435-453.
    [19]Peccerillo A. Potassic and ultrapotassic rocks:Compositional characteristics, petrogenesis and geologic significance. Episodes,1992,15(4):243-251.
    [20]Muller D, Rock N, Groves D I. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings:A pilot study. Mineralogy and Petrology,1992,46(4): 259-289.
    [21]邓晋福,肖庆辉.火成岩的分类命名及相关术语和名词.见:肖庆辉主编.花岗岩研究思维与方法.北京:地质出版社,2002.1-11.
    [22]Scarrow J H, Bea F, Montero P, et al. Shoshonites, vaugnerites and potassic lamprophyres: similarities and differences between 'ultra'-high-K rocks. Earth and Environmental Science Transactions of the Royal Society of Edinburgh,2009,99(3-4):159-175.
    [23]Loiselle M C, Wones D R.1979. Characteristics and origin of anorogenic granites[Z]. California:San Diego.468.
    [24]Chappell B W, White A J R. Two contrasting granite types. Pacific Geology,1974,8:173-174.
    [25]Creaser R A, Price R C, Wormald R J. A-type granites revisited:Assessment of a residual-source model. Geology,1991,19(2):163-166.
    [26]Pearce A J, Harris N, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,1984,25(4):956-983.
    [27]Bonin B. A-type granites and related rocks:Evolution of a concept, problems and prospects. Lithos,2007,97(1-2):1-29.
    [28]王汝成,赵广涛,王德滋,等.A型花岗岩中流体的分异聚集:副矿物证据.科学通报,2000,45(7):771-775.
    [29]谢磊,王汝成,陈小明,等.碱性A型花岗岩中的富钍锆石:矿物学研究与岩石学意义.科学通报,2005,50(10):1016-1023.
    [30]Charoy B, Raimbault L. Zr-, Th-and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China)-the key role of fluorine. Journal of Petroloy,1994,35(4): 919-962.
    [31]邱检生,王德滋,蟹泽聪史,等.福建沿海铝质A型花岗岩的地球化学及岩石成因.地球化学,2000,29(4):313-321.
    [32]Collins W J, Beams S D, White A, et al. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Minealogy and Petrology,1982,80(2):189-200.
    [33]Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis. Contributions to Minealogy and Petrology,1987,95(4):407-419.
    [34]King P L, Chappell B W, Allen C M, et al. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences,2001,48(4):501-514.
    [35]King P L, White A, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology,1997,38(3): 371-391.
    [36]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题.岩石学报,2007,23(6):1217-1238.
    [37]苏玉平,唐红峰.A型花岗岩的微量元素地球化学.矿物岩石地球化学通报,2005,24(3):245-251.
    [38]Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology,1992,20(7):641-644.
    [39]洪大卫,韩宝福.碱性花岗岩的构造环境分类及其鉴别标志.中国科学:B辑,1995,25(4):418-426.
    [40]许保良,李之彤.A型花岗岩的岩石学亚类及其物质来源.地学前缘,1998,5(3):113-124.
    [41]刘昌实,陈小明,陈培荣,等.A型岩套的分类、判别标志和成因.高校地质学报,2003,9(4):573-591.
    [42]Frost C D, Frost B R. On Ferroan (A-type) Granitoids:their Compositional Variability and Modes of Origin. Journal of Petrology,2011,52(1):39-53.
    [43]Frost B R, Barnes C G, Collins W J, et al. A Geochemical Classification for Granitic Rocks. Journal of Petrology,2001,42(11):2033-2048.
    [44]Frost B R, Frost C D. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology,2008,49(11):1955-1969.
    [45]Clemens J D, Holloway J R, White A. Origin of A-type granite:Experimental constraints. American Mineralogist,1986,71(3-4):317-324.
    [46]Skjerlie K P, Johnston A D. Vapor-absent melting at 10-kbar of a biotite-bearing and amphibole-bearing tonalitic gneiss:implications for the generation of A-type granites. Geology,1992, 20(3):263-266.
    [47]Douce A. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology,1997,25(8):743-746.
    [48]张旗,冉皞,李承东.A型花岗岩的实质是什么?.岩石矿物学杂志,2012,31(4):621-626.
    [49]Duchesne J C, Wilmart E. Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (Southwest Norway). A jotunite (Hypersthene monzodiorite)-derived A-type granitoid suite. Journal of Petrology,1997,38(3):337-369.
    [50]Han B F, Wang S G, Jahn B M, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology,1997,138(3-4):135-159.
    [51]Wong J, Sun M, Xing G F, et al. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite:Extension at 125-100 Ma and its tectonic significance for South China. Lithos,2009,112(3-4):289-305.
    [52]Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos,2006,89(1-2):89-106.
    [53]Chen L, Ma C Q, She Z B, et al. Petrogenesis and tectonic implications of A-type granites in the Dabie orogenic belt, China:geochronological and geochemical constraints. Geological Magazine, 2009,146(5):638-651.
    [54]周新民.对华南花岗岩研究的若干思考.高校地质学报,2003,9(4):556-565.
    [55]李献华,李武显.华南早中生代岩浆作用的时代、成因及构造意义.中国海南海口:2004,2.
    [56]王岳军,范蔚茗,梁新权,等.湖南印支期花岗岩SHRIMP锆石U-Pb年龄及其成因启示.科学通报,2005,50(12):1259-1266.
    [57]徐夕生,邓平,O'Reilly S.Y.,等.华南贵东杂岩体单颗粒锆石激光探针1CPMS U-Pb定年及其成岩意义.科学通报,2003,48(12):1328-1334.
    [58]陈正宏,李寄嵎,谢佩珊,等.利用EMP独居石定年法探讨浙闽武夷山地区变质基底岩石与花岗岩的年龄.高校地质学报,2008,14(1):1-15.
    [59]张爱梅,王岳军,范蔚茗,等.闽西南清流地区加里东期花岗岩锆石U-Pb年代学及Hf同位素组成研究.大地构造与成矿学,2010,34(3):408-418.
    [60]徐先兵,张岳桥,舒良树,等.闽西南玮埔岩体和赣南菖蒲混合岩锆石La ICPMS U-Pb年代学.地质论评,2012,55(2):277-285.
    [61]Guo F, Fan W M, Lin G, et al. Sm-Nd isotopic age and genesis of gabbro xenoliths in Daoxian County, Hunan Province. Chinese Science Bulletin,1997,42(21):1814-1817.
    [62]范蔚茗,王岳军,郭锋,等.湘赣地区中生代镁铁质岩浆作用与岩石圈伸展.地学前缘,2003,10(3):159-169.
    [63]Wang Q, Li J, Jian P, et al. Alkaline syenites in eastern Cathaysia (South China):link to Permian-Triassic transtension. Earth and Planetary Science Letters,2005,230(3-4):339-354.
    [64]Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution. Episodes,2006,29(1):26-33.
    [65]陈卫锋,陈培荣,周新民,等.湖南阳明山岩体的La-ICP-MS锆石U-Pb定年及成因研究.地质学报,2006,80(7):1065-1077.
    [66]陈卫锋,陈培荣,黄宏业,等.湖南白马山岩体花岗岩及其包体的年代学和地球化学研究.中国科学D辑,2007,37(7):873-893.
    [67]Wang Y J, Fan W M, Sun M, et al. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block:A case study in the Hunan Province. Lithos,2007,96(3-4):475-502.
    [68]Yu J H, O'Reilly S Y, Zhao L, et al. Origin and evolution of topaz-bearing granites from the Nanling Range, South China:a geochemical and Sr-Nd-Hf isotopic study. Mineralogy and Petrology, 2007,90(3-4):271-300.
    [69]Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology,2007,35(2): 179-182.
    [70]于津海,王丽娟,王孝磊,等.赣东南富城杂岩体的地球化学和年代学研究.岩石学报,2007,23(6):1441-1456.
    [71]谢才富,朱金初,赵子杰,等.三亚石榴霓辉石正长岩的锆石SHRIMP U-Pb(?)龄:对海南岛海西-印支期构造演化的制约.高校地质学报,2005,11(1):47-57.
    [72]Wang Y J, Fan W M, Zhang G W, et al. Phanerozoic tectonics of the South China Block:Key observations and controversies. Gondwana Research,2013,23(4):1273-1305.
    [73]孙涛.新编华南花岗岩分布图及其说明.地质通报,2006,25(3):332-335.
    [74]万渝生,刘敦一,董春艳,等.中国最老岩石和锆石.岩石学报,2009,25(8):1793-1807.
    [75]郑永飞,张少兵.华南前寒武纪大陆地壳的形成和演化.科学通报,2007,52(1):1-10.
    [76]张少兵,郑永飞.扬子陆核的生长和再造:锆石U-Pb年龄和Hf同位素研究.岩石学报,2007,23(2):393-402.
    [77]焦文放,吴元保,彭敏,等.扬子板块最古老岩石的钻石U-Pb年龄和Hf同位素组成.中国科学(D辑:地球科学),2009,39(7):972-978.
    [78]Zheng J P, Griffin W L, O'Reilly S Y, et al. Widespread Archean basement beneath the Yangtze craton. Geology,2006,34(6):417-420.
    [79]于津海,O'Rcilly S.Y.,王丽娟,等.华夏地块古老物质的发现和前寒武纪地壳的形成.科学通报,2007,52(1):11-18.
    [80]舒良树.华南构造演化的基本特征.地质通报,2012,31(7):1035-1053.
    [81]Qiu Y, Gao S. First evidence of> 3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology,2000,28(1): 11-14.
    [82]黄汲清.中国地质构造基本特征的初步总结.地质学报,1960,40(1):1-32.
    [83]水涛.中国东南大陆基底构造格局.中国科学(B辑),1987,17(4):414-422.
    [84]胡雄健,李惠民.浙西南早元古代花岗岩,伟晶岩的单颗粒锆石U—Pb年龄.科学通报,1992,37(11):1016-1018.
    [85]甘晓春,李惠民.浙西南早元古代花岗质岩石的年代.岩石矿物学杂志,1995,14(1):1-8.
    [86]李曙光,陈移之,葛宁洁,等.浙西南八都群变火山岩系及变晶糜棱岩的同位素年龄及其构造意义.岩石学报,1996,12(1):79-87.
    [87]Yu J H, Wang L J, O'Reilly S Y, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research,2009, 174(3-4):347-363.
    [88]Wan Y, Liu D, Xu M, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China:Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research,2007,12(1-2): 166-183.
    [89]Wang Y J, Zhang A M, Fan W M, et al. Kwangsian crustal anatexis within the eastern South China Block:Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos,2011,127(1-2):239-260.
    [90]高林志,丁孝忠,张传恒,等.江南古陆变质基底地层年代的修正和武陵运动构造意义.资源调查与环境,2012,33(2):71-76.
    [91]邢光福,卢清地,姜杨,等.闽东南长乐-南澳断裂带”片麻状”浆混杂岩的厘定及其地质意义.地质通报,2010,29(1):31-43.
    [92]水汀,阎晋英,施华生,等.政和—大埔断裂带基本特征及其演化模式.火山地质与矿产,1993,14(2):53-62.
    [93]Zhao G C, Guo J H. Precambrian geology of China:Preface. Precambrian Research,2012, 222(SI):1-12.
    [94]王一先,赵振华.浙江花岗岩类地球化学与地壳演化——Ⅱ.元古宙花岗岩类.地球化学,1997,26(6):57-68.
    [95]刘锐,周汉文,张利,等.华夏地块古元古代陆壳再造:锆石微量元素与U-Pb和Lu-Hf同位素证据.科学通报,2009,54(7):906-917.
    [96]彭敏,吴元保,汪晶,等.扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义.科学通报,2009,54(5):641-647.
    [97]熊庆,郑建平,余淳梅,等.宜昌圈椅埫A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用.科学通报,2008,53(22):2782-2792.
    [98]张丽娟,马昌前,王连训,等.扬子地块北缘古元古代环斑花岗岩的发现及其意义.科学通报,2011,56(1):44-57.
    [99]Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift:magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia. Precambrian Research,2003,122(1-4Sp.Iss. SI):85-109.
    [100]张芳荣,舒良树,王德滋,等.华南东段加里东期花岗岩类形成构造背景探讨.地学前缘,2009,16(1):248-260.
    [101]Wang Y, Fan W, Zhao G, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research, 2007,12(4):404-416.
    [102]Leake B E, Woolley A R, Arps C, et al. Nomenclature of amphiboles:Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist,1997,35(1):219-246.
    [103]刘彬,马昌前,刘园园,等.鄂东南铜山口铜(钼)矿床黑云母矿物化学特征及其对岩石成因与成矿的指示.岩石矿物学杂志,2010,29(2):151-165.
    [104]N. Morimoto,黄婉康.辉石命名法.矿物学报,1988,8(4):289-305.
    [105]Middlemost E A K. Naming materials in the magma/igneous rock system. Earth-Science Reviews,1994,37(3-4):215-224.
    [106]Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos,1989,22(4):247-263.
    [107]Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geological Society of America Bulletin,1989,101(5):635-643.
    [108]Yu J H, Wang L J, O'Reilly S Y, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research,2009, 174(3-4):347-363.
    [109]Shu L S, Faure M, Yu J H, et al. Geochronological and geochemical features of the Cathaysia block (South China):New evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research,2011,187(3-4):263-276.
    [110]Sylvester P J. Post-collisional strongly peraluminous granites. Lithos,1998,45(1-4):29-44.
    [111]许靖华,孙枢,李继亮.是华南造山带而不是华南地台.中国科学(B辑),1987,17(10):1107-1115.
    [112]徐树桐,陈冠宝,陶正,等.皖南变质岩中古生物化石及其大地构造意义.中国科学(B辑),1993,23(6):652-659.
    [113]赵崇贺,何科昭.赣东北深断裂带蛇绿混杂岩中含晚古生代放射虫硅质岩的发现及其意义.科学通报,1995,40(23):2161-2163.
    [114]赵崇贺.关于华南大地构造问题的再认识.现代地质,1996,10(4):512-517.
    [115]樊光明,薛重生,等.江南皖浙赣区段混杂岩带及其区域构造意义.地质科技情报,1996,15(4):81-87.
    [116]何科昭,周正国.赣东北蛇绿混杂岩带中多处发现含晚古生代放射虫硅质岩.现代地质,1996,10(3):303-307.
    [117]杨晓松,薛重生,张克信,等.赣东北浅变质岩系中微体古生物化石及其大地构造意义.科学通报,1997,42(4):409-412.
    [118]何科昭,赵崇贺,乐昌硕,等.”板溪群”构造属性的再认识与思考.地学前缘,1999,6(4):353-362.
    [119]王玉净.中国古生代放射虫研究世纪回顾——为庆贺盛金章院十80华诞而作.微体古生物学报,2001,18(4):313-320.
    [120]王博,舒良树.对赣东北晚古生代放射虫的初步认识.地质论评,2001,47(4):337-344.
    [121]下玉净,杨群,尹磊明,等.赣东北蛇绿混杂岩带和变质岩系中”放射虫硅质岩”的再研究.高校地质学报,2006,12(1):98-105.
    [122]张宁,夏文臣,张素新.华南海西印支期放射虫生态环境.石油与天然气地质,1998,19(2):124-131.
    [123]李献华.赣东北蛇绿混杂岩带中硅质岩的地球化学特征及构造意义.中国科学D辑,2000,30(3):284-290.
    [124]吴新华,楼法生,王玉净,等.赣东北地区不同时代硅质岩的地球化学特征及其地质意义.高校地质学报,2004,10(2):209-216.
    [125]Lepvrier C, Maluski H, Van Vuong N, et al. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam) Ar-40-Ar-39 Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics,1997,283(1-4):105-127.
    [126]Lepvrier C, Faure M, Van V N, et al. North-directed Triassic nappes in Northeastern Vietnam (East Bac Bo). Journal of Asian Earth Sciences,2011,41(1):56-68.
    [127]任纪舜.印支运动及其在中国大地构造演化中的意义.地球学报,1984,6(2):31-44.
    [128]Nam T N, Sano Y, Terada K, et al. First SHRIMP U-Pb zircon dating of granulites from the Kontum massif (Vietnam) and tectonothermal implications. Journal of Asian Earth Sciences,2001, 19(1-2):77-84.
    [129]Carter A, Roques D, Bristow C, et al. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology,2001,29(3): 211-214.
    [130]Osanai Y, Nakano N, Owada M, et al. Permo-Triassic ultrahigh-temperature metamorphism in the Kontum massif, central Vietnam. Journal of Asian Earth Sciences,2004,99(4):225-241.
    [131]Lepvrier C, Maluski H, Van Tich V, et al. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics,2004,393(1-4):87-118.
    [132]Sone M, Metcalfe I. Parallel Tethyan sutures in mainland Southeast Asia:New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 2008,340(2-3):166-179.
    [133]Maluski H, Lepvrier C, Leyreloupa A, et al. Ar-40-Ar-39 geochronology of the charnockites and granulites of the Kan Nack complex, Kon Turn Massif, Vietnam. Journal of Asian Earth Sciences, 2005,25(4):653-677.
    [134]Owada M, Osanai Y, Hokada T, et al. Timing of metamorphism and formatidh of garnet granite in the Kontum Massif, central Vietnam:Evidence from monazite EMP dating. Journal of Asian Earth Sciences,2006,101(6):324-328.
    [135]Nakano N, Osanai Y, Owada M, et al. Geologic and metamorphic evolution of the basement complexes in the Kontum Massif, central Vietnam. Gondwana Research,2007,12(4):438-453.
    [136]Nakano N, Osanai Y, Minh N T, et al. Discovery of high-pressure granulite-facies metamorphism in northern Vietnam:Constraints on the Permo-Triassic Indochinese continental collision tectonics. Comptes Rendus Geoscience,2008,340(2-3):127-138.
    [137]Nakano N, Osanai Y, Sajeev K, et al. Triassic eclogite from northern Vietnam:inferences and geological significance. Journal of Asian Earth Sciences,2010,28(1):59-76.
    [138]Osanai Y, Nakano N, Owada M, et al. Collision zone metamorphism in Vietnam and adjacent South-eastern Asia:Proposition for Trans Vietnam Orogenic Belt. Journal of Mineralogical and Petrologgical,2008,103(4):226-241.
    [139]Khuong T H. Overview of magmatism in Northwestern Vietnam. Annales Societatis Geologorum Poloniae,2010,80(2):185-226.
    [140]Glotov A I, Polyakov G V, Hoa T T, et al. The Ban Phuc Ni-Cu-PGE deposit related to the phanerozoic komatiite-basalt association in the Song Da Rift, nortwestern Vietnam. Canadian Mineralogist,2001,39(2):573-589.
    [141]Hanski E, Walker R J, Huhma H, et al. Origin of the Permian-Triassic komatiites, northwestern Vietnam. Contributions to Mineralogy and Petrology,2004,147(4):453-469.
    [142]Hoa T T, Izokh A E, Polyakov G V, et al. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume. Russian Geology and Geophysics,2008,49(7): 480-491.
    [143]Hoa T T, Anh T T, Phuong N T, et al. Permo-Triassic intermediate-felsic magmatism of the Truong Son belt, eastern margin of Indochina. Comptes Rendus Geoscience,2008,340(2-3):112-126.
    [144]Liu J L, Tran M D, Tang Y, et al. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam:Geochronology, geochemistry and tectonic implications. Gondwana Research, 2012,22(2SI):628-644.
    [145]Lepvrier C, Van Vuong N, Maluski H, et al. Indosinian tectonics in Vietnam. Comptes Rendus Geoscience,2008,340(2-3):94-111.
    [146]Carter A, Clift P D. Reply to the comment on Was the Indosinian orogeny a Triassic mountain building or a thermotectonic reactivation event? by A. Carter and PD Clift [C. R. Geoscience 340 (2008) 83-93]. Comptes Rendus Geoscience,2008,340(12):896-897.
    [147]Ree J H, Cho M S, Kwon S T, et al. Possible eastward extension of Chinese collision belt in South Korea:The Imjingang belt. Geology,1996,24(12):1071-1074.
    [148]Chough S K, Kwon S T, Ree J H, et al. Tectonic and sedimentary evolution of the Korean peninsula:a review and new view. Earth-Science Reviews,2000,52(1-3):175-235.
    [149]Ree J H, Kwon S H, Park Y, et al. Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea:Implications for the timing of strike-slip shearing and thrusting. Tectonics,2001,20(6):850-867.
    [150]Kwon S, Sajeev K, Mitra G, et al. Evidence for Permo-Triassic collision in Far East Asia:The Korean collisional orogen. Earth and Planetary Science Letters,2009,279(3-4):340-349.
    [151]Kim S W, Oh C W, Ryu I C, et al. Neoproterozoic bimodal volcanism in the Okcheon Belt, South Korea, and its comparison with the Nanhua Rift, South China:Implications for rifting in Rodinia. Journal of Geology,2006,114(6):717-733.
    [152]Kim S W, Williams I S, Kwon S, et al. SHRIMP zircon geochronology, and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea:Implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research,2008,162(3-4):475-497.
    [153]Oh C W, Choi S G, Seo J, et al. Neoproterozoic tectonic evolution of the Hongseong area, southwestern Gyeonggi Massif, South Korea; implication for the tectonic evolution of Northeast Asia. Gondwana Research,2009,16(2SI):272-284.
    [154]Oh C W, Kim S W, Williams I S. Spinel granulite in Odesan area, South Korea:Tectonic implications for the collision between the North and South China blocks. Lithos,2006,92(3-4): 557-575.
    [155]Oh C W, Kusky T. The late permian to triassic hongseong-odesan collision belt in south Korea, and its tectonic correlation with China and Japan. Internaltional Geology Reviews,2007,49(7): 636-657.
    [156]Tsujimori T, Liou J G, Emst W G, et al. Triassic paragonite-and garnet-bearing epidote-amphibolite from the Hida Mountains, Japan. Gondwana Research,2006,9(1-2):167-175.
    [157]Osanai Y, Owada M, Kamei A, et al. The Higo metarnorphic complex in Kyushu, Japan as the fragment of Permo-Triassic metamorphic complexes in East Asia. Gondwana Research,2006,9(1-2): 152-166.
    [158]Kim C B, Turek A. Advances in U-Pb zircon geochronology of Mesozoic plutonism in the southwestern part of Ryeongnam massif, Korea. Geochemical Journal,1996,30(6):323-338.
    [159]Turek A, Kim C B. U-Pb zircon ages of Mesozoic plutons in the Damyang-Geochang area, Ryongnam massif, Korea. Geochemical Journal,1995,29(4):243-258.
    [160]Cheong C S, Kwon S T, Sagong H. Geochemical and Sr-Nd-Pb isotopic investigation of Triassic granitoids and basement rocks in the northern Gyeongsang Basin, Korea:Implications for the young basement in the East Asian continental margin. Island Arc,2002,11(1):25-44.
    [161]Kim C B, Chang H W, Turek A. U-Pb zircon ages and Sr-Nd-Pb isotopic compositions for Permian-Jurassic plutons in the Ogcheon belt and Ryeongnam massif, Korea:Tectonic implications and correlation with the China Qinling-Dabie belt and the Japan Hida belt. Island Arc,2003,12(4): 366-382.
    [162]Oh C W, Krishnan S, Kim S W, et al. Mangerite magmatism associated with a probable Late-Permian to Triassic Hongseong-odesan collision belt in South Korea. Gondwana Research,2006, 9(1-2):95-105.
    [163]Sagong H, Kwon S T, Ree J H. Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics,2005,24(5):C50025.
    [164]Wu F Y, Han R H, Yang J H, et al. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology,2007,238(3-4):232-248.
    [165]Choi T, Lee Y I, Orihashi Y. Mesozoic detrital zircon U-Pb ages of modern river sediments in Korea:implications for migration of arc magmatism in the Mesozoic East Asian continental margin. Terra Nova,2012,24(2):156-165.
    [166]Kim S W, Kwon S, Koh H J, et al. Geotectonic framework of Permo-Triassic magmatism within the Korean Peninsula. Gondwana Research,2011,20(4):865-889.
    [167]Kamei A, Owada M, Hamamoto T, et al. Isotopic equilibration ages for the Miyanohara tonalite from the Higo metamorphic belt in central Kyushu, Southwest Japan:Implications for the tectonic setting during the Triassic. Island Arc,2000,9(1):97-112.
    [168]Arakawa Y, Saito Y, Amakawa L. Crustal development of the Hida belt, Japan:Evidence from Nd-Sr isotopic and chemical characteristics of igneous and metamorphic rocks. Tectonophysics,2000, 328(1-2):183-204.
    [169]Takahashi Y, Cho D L, Kee W S. Timing of mylonitization in the Funatsu Shear Zone within Hida Belt of southwest Japan:Implications for correlation with the shear zones around the Ogcheon Belt in the Korean Peninsula. Gondwana Research,2010,17(1):102-115.
    [170]Fujii M, Hayasaka Y, Terada K. SHRIMP zircon and EPMA monazite dating of granitic rocks from the Maizuru terrane, southwest Japan:Correlation with East Asian Paleozoic terranes and geological implications. ISLAND ARC,2008,17(3):322-341.
    [171]Horie K, Yamashita M, Hayasaka Y, et al. Eoarchean-Paleoproterozoic zircon inheritance in Japanese Permo-Triassic granites (Unazuki area, Hida Metamorphic Complex) Unearthing more old crust and identifying source terrranes. Precambrian Research,2010,183(1SI):145-157.
    [172]郭福祥.中国南方中新生代大地构造属性和南华造山带褶皱过程.地质学报,1998,72(1):22-23.
    [173]郭福祥.华南印支运动的性质.云南地质,1992,11(2):169-180.
    [174]胡世玲,邹海波,周新民.江南元古宙碰撞造山带的两个-(40)Ar/-(39)Ar年龄值.科学通报,1992,11(3):286.
    [175]向华,张利,周汉文,等.浙西南变质基底基性-超基性变质岩锆石U-Pb年龄、Hf同位素研究:华夏地块变质基底对华南印支期造山的响应.中国科学(D辑:地球科学),2008,38(4):401-413.
    [176]陈多福,李献华,潘晶铭,等.浙江景宁鹤溪群斜长角闪岩变质新生锆石特征、离子探针(SHRIMP)U-Pb(?)龄及地质意义.矿物学报,1998,18(4):396-400.
    [177]朱炳泉,王一先,王慧芬,等.黄山-温州地球化学剖面及廊区解析.地球化学,1997,26(2):6-18.
    [178]Xiao W J, He H Q. Early Mesozoic thrust tectonics of the northwest Zhejiang region (Southeast China). Geological Society of America Bulletin,2005,117(7-8):945-961.
    [179]Wang Y, Zhang Y, Fan W, et al. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. Journal of Structural Geology,2005,27(6): 985-998.
    [180]邵建国,彭少梅,鼓松柏.云开地块周边断裂带40Ar/36Ar-39Ar/36Ar等时线定年.广东地质,1995,10(2):34-40.
    [181]彭少梅,鼓松柏.云开地块周边断裂带的地质特征与构造演化.广东地质,1995,10(2):9-16.
    [182]Zhang K, Cai J. NE-SW-trending Hepu-Hetai dextral shear zone in southern China:Penetration of the Yunkai Promontory of South China into Indochina. Journal of Structural Geology,2009,31(7): 737-748.
    [183]陈新跃,王岳军,范蔚茗,等.琼西南NE向韧性剪切带构造特征及其40Ar-39Ar年代学约束.地球化学,2006,35(5):479-488.
    [184]陈新跃,王岳军,韦牧,等.海南公爱NW向韧性剪切带构造特征及其40Ar-39Ar年代学约束.大地构造与成矿学,2006,30(3):312-319.
    [185]张文兰,华仁民,王汝成,等.江西大吉山五里亭花岗岩单颗粒锆石U-Pb同位素年龄及其 地质意义探讨.地质学报,2004,78(3):352-358.
    [186]Li W Y, Ma C Q, Liu Y Y, et al. Discovery of the Indosinian aluminum A-type granite in Zhejiang Province and its geological significance. Science China-Earth Science,2012,55(1):13-25.
    [187]Li X H, Li Z X, Li W X, et al. Initiation of the Indosinian Orogeny in South China:Evidence for a Permian magmatic arc on Hainan Island. Journal of Geology,2006,114(3):341-353.
    [188]于津海,刘潜,胡修棉,等.华南晚古生代岩浆活动的新发现:岛弧还是陆内造山?.科学通报,2012,57(31):2964-2971.
    [189]Yi K, Cheong C S, Kim J, et al. Late Paleozoic to Early Mesozoic arc-related magmatism in southeastern Korea:SHRIMP zircon geochronology and geochemistry. Island Arc,2012,153(SI): 129-141.
    [190]Knittel U, Hung C H, Yang T F, et al. Permian arc magmatism in Mindoro, the Philippines:An early Indosinian event in the Palawan Continental Terrene. Tectonophysics,2010,493(1-2):113-117.
    [191]Zhao K D, Jiang S Y, Chen W F, et al. Zircon U-Pb chronology and elemental and Sr-Nd-Hf isotope geochemistry of two Triassic A-type granites in South China:Implication for petrogenesis and Indosinian transtensional tectonism. Lithos,2013,160-161:292-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700